Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Oct 28;72(Pt 11):1672–1674. doi: 10.1107/S2056989016017187

Crystal structure of 5-butyl­amino-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde obtained from a microwave-assisted reaction using caesium carbonate as catalyst

Mario A Macías a, Jessica Orrego-Hernández b, Jaime Portilla b,*
PMCID: PMC5095859  PMID: 27840734

The new compound 5-butyl­amino-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde has been synthesized using a microwave-assisted reaction.

Keywords: crystal structure, pharmaceutical compound, 5-amino­pyrazoles, nucleophilic substitution, hydrogen bonding

Abstract

The title compound, C14H18N4O, synthesized from an unconventional microwave-assisted method using caesium carbonate as catalyst, has an approximately planar conformation with the pyridyl and pyrazole rings inclined by a dihedral angle of 7.94 (3)°, allowing the formation of an intra­molecular N—H⋯N hydrogen bond. The supra­molecular assembly has a three-dimensional arrangement controlled mainly by weak C—H⋯O and C—H⋯π inter­actions.

Chemical context  

Pyrazole derivatives are compounds with notable biological activity (Peng et al., 2013) and some derivatives have the capacity to form complexes with metal ions (Budzisz et al., 2009). Currently, 5-amino­pyrazoles have been found to play an important role as biologically active compounds (Zhang et al., 2014). As such, they are considered to be building blocks of high inter­est for pharmaceutical agents (Sakya et al., 2006) and agrochemicals (Yuan et al., 2013). Recently, our research group reported the chemoselective synthesis of 5-alkyl­amino-1H-pyrazole-4-carbaldehydes in which C—N bond formation in pyrazole rings were efficiently assisted by using caesium carbonate under microwave irradiation with short reaction times and excellent yields (Orrego-Hernández et al., 2015a ). Herein, we report the crystal structure of the new 5-(butylamino)-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde derived from 5-chloro-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde and butyl­amine by using the ‘caesium effect’ and microwave irradiation.graphic file with name e-72-01672-scheme1.jpg

Structural commentary  

In the mol­ecular structure of the title compound (Fig. 1), the pyridyl and pyrazole rings are nearly coplanar with a dihedral angle between their planes of 7.94 (3)°. The pyridyl ring has an orientation that allows the formation of an intra­molecular N5—H1⋯N11 hydrogen bond (Fig. 1 and Table 1) to generate an S(6) motif. This structural feature is also observed in its analog 5-cyclo­hexyl­amino-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde, which even shows a smaller dihedral angle between the pyridyl and pyrazole rings [2.47 (5)°; Orrego-Hernández et al., 2015b ). In both mol­ecules, the 3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde nucleus presents a similar, but not identical, conformation with a maximum r.m.s. deviation of 0.0906 Å, keeping the atomic distances very similar in the pyrazole ring.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing anisotropic displacement ellipsoids drawn at the 50% probability level. The intramolecular N—H⋯N hydrogen bond is shown as a dashed line (see Table 1).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 abd Cg2 are the centroids of the C3–C5/N1/N2 and N11/C12–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H1⋯N11 0.88 (1) 2.00 (1) 2.7117 (7) 137 (1)
C15—H15⋯O41i 0.95 2.36 3.2906 (8) 165
C52—H52BCg1ii 0.99 2.77 3.5141 (6) 132
C53—H53ACg2iii 0.99 2.98 3.8761 (6) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

In the crystal structure, C15—H15⋯O41i [symmetry code: (i) x − 1, −y + Inline graphic, z − Inline graphic] inter­actions link the mol­ecules into C(10) chains running along [201], see Fig. 2. Parallel chains are connected by weak C52—H52BCg1ii [Cg1 is the centroid of the C3–C5/N1/N2 ring; symmetry code: (ii) −x + 1, −y + 1, −z + 2] and C53—H53ACg2iii [Cg2 is the centroid of the N11/C12–C16 ring; symmetry code: (iii) x + 1, y, z] inter­actions, which help to define a three-dimensional array.

Figure 2.

Figure 2

The crystal structure of the title compound, showing the C—H⋯O and C—H⋯π hydrogen-bond inter­actions.

Database survey  

A search of the Cambridge Structural Database (CSD Version 5.37 with two updates; Groom et al., 2016) for the 1-(pyridin-2-yl)-1H-pyrazole nucleus with the possibility of any group bonded to C3, C4 or C5 gave 12 hits of which 10 correspond to organometallic compounds, one to 2-(3,5-bis(4-(n-oct­yloxy)phen­yl)pyrazol-1-yl)pyridine and the last to 2,6-bis(pyrazol­yl)pyridine. Any other search considering the presence of the butyl­amino or carbaldehyde groups gave no hits. However, two related compounds 5-cyclo­hexyl­amino-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde and (Z)-4-[(cyclo­hexyl­amino)­methyl­idene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one have been published recently (Orrego-Hernández et al., 2015b ). These compounds are pyrazole derivatives which, despite the overall similarities of the mol­ecular geometries and the potentially available donors and acceptors for hydrogen-bonding inter­actions, present different supra­molecular assemblies.

Synthesis and crystallization  

All reactive and solvents, including caesium carbonate (99%, Aldrich), were purchased from commercial sources and used as received. A mixture of 5-chloro-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde [(I) in Fig. 3; 0.100 g, 0.45 mmol, 1 equiv.], butyl­amine [(II) in Fig. 3; 0.56 mmol, 1.3 equiv.], caesium carbonate (0.029 g, 20% mmol, 0.2 equiv.) and 2 mL of di­methyl­formamide (DMF) were placed in a reaction tube of a CEM DiscoverTM, containing a magnetic stirring bar. The tube was sealed with a plastic microwave septum and was irradiated at 433 K for 25 min at 100 W. The resulting crude product was partitioned between di­chloro­methane and water. The organic layer was washed with water, then brine, and dried over anhydrous sodium sulfate. Subsequently, the solvent was removed under vacuum and the residue was purified by silica gel flash chromatography (DCM) to afford 5-(butyl­amino)-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carb­aldehyde [(III) in Fig. 3]. Yellow crystals of (III) suitable for single-crystal X-ray diffraction were grown in DMF by slow evaporation, at ambient temperature and in air, [94% yield, m.p. 354 K]. HRMS (ESI+): [M + H]+ calculated for C14H19N4O+ 259.1553, found 259.1546. Yield 0.109 g, 94%; m.p. 348–350 K; IR νmax (KBr): 3448, 3211, 3096, 2924, 2858, 1643, 1596, 1563, 1436, 1002 cm−1; 1H NMR (CDCl3): 0.95 (t, J = 7.4, 3H), 1.44 (m, 2H), 1.68 (m, 2H), 2.44 (s, 3H), 3.60 (t, J = 7.1 Hz, 2H), 7.10 (t, J = 5.2 Hz, 1H), 7.78 (t, J = 7.0 Hz, 1H), 7.93 (d, J = 8.4 Hz, 1H), 8.28 (d, J = 4.8 Hz, 1H), 9.82 (s, 1H); 13C NMR (CDCl3): 13.7 (CH3), 14.5 (CH3), 19.9 (CH2), 32.0 (CH2), 46.4 (CH2), 106.6 (C), 114.0 (CH), 119.8 (CH), 138.8 (CH), 145.8 (CH), 152.8 (C), 153.0 (C), 154.3 (C), 182.0 (CH); MS (EI) m/z 258 (M +, 26%), 215 (67), 187 (59), 134 (32), 93 (47), 78 (76), 51 (24), 32 (100); HRMS m/z (ESI) calculated for [C14H18N4O+H]+: 259.1553; found 259.1546 [(M + H)+].

Figure 3.

Figure 3

Schematic representation of the microwave-assisted reaction using caesium carbonate as catalyst.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and included as riding with isotropic displacement parameters set at 1.2–1.5 times the U eq value of the parent atom. H atoms belonging to NH groups were located in difference density maps and were freely refined.

Table 2. Experimental details.

Crystal data
Chemical formula C14H18N4O
M r 258.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.2854 (2), 7.59144 (18), 19.4452 (5)
β (°) 102.818 (3)
V3) 1336.52 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.10 × 0.10 × 0.05
 
Data collection
Diffractometer Rigaku MicroMax-007HF
Absorption correction Multi-scan [SADABS (Bruker, 2008) and Blessing (1995)]
T min, T max 0.766, 0.996
No. of measured, independent and observed [I > 2σ(I)] reflections 14709, 6368, 5580
R int 0.016
(sin θ/λ)max−1) 0.848
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.037, 0.110, 1.05
No. of reflections 6368
No. of parameters 178
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.51, −0.23

Computer programs: APEX2 andSAINT (Bruker, 2011), SIR2011 (Burla et al., 2012), SHELXL2014 (Sheldrick, 2015) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016017187/bg2597sup1.cif

e-72-01672-sup1.cif (454.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016017187/bg2597Isup2.hkl

e-72-01672-Isup2.hkl (506.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016017187/bg2597Isup3.cml

CCDC reference: 1511522

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for financial support from the Universidad de los Andes and the Colombian Institute for Science and Research (COLCIENCIAS).

supplementary crystallographic information

Crystal data

C14H18N4O F(000) = 552
Mr = 258.32 Dx = 1.284 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.2854 (2) Å Cell parameters from 5580 reflections
b = 7.59144 (18) Å θ = 2.2–37.1°
c = 19.4452 (5) Å µ = 0.09 mm1
β = 102.818 (3)° T = 100 K
V = 1336.52 (6) Å3 Block, yellow
Z = 4 0.10 × 0.10 × 0.05 mm

Data collection

Rigaku MicroMax-007HF diffractometer 6368 independent reflections
Radiation source: Microfocus rotating anode X-ray tube, Rigaku MicroMax-007HF 5580 reflections with I > 2σ(I)
Confocal Max Flux optic monochromator Rint = 0.016
Detector resolution: 512 pixels mm-1 θmax = 37.1°, θmin = 2.2°
Fullsphere data collection, phi and ω scans h = −15→11
Absorption correction: multi-scan [SADABS (Bruker, 2008) and Blessing (1995)] k = −12→9
Tmin = 0.766, Tmax = 0.996 l = −26→32
14709 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: mixed
wR(F2) = 0.110 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.1608P] where P = (Fo2 + 2Fc2)/3
6368 reflections (Δ/σ)max = 0.002
178 parameters Δρmax = 0.51 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Experimental. It should be noted that the esd's of the cell dimensions are probably too low; they should be multiplied by a factor of 2 to 10
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.36539 (5) 0.84047 (6) 1.01082 (2) 0.01366 (8)
H1 0.4865 (12) 0.6805 (13) 0.9303 (5) 0.026 (2)*
N2 0.33841 (5) 0.91944 (6) 1.07161 (2) 0.01495 (9)
C4 0.56919 (6) 0.79751 (7) 1.09414 (3) 0.01398 (9)
C3 0.45948 (6) 0.89383 (7) 1.12030 (3) 0.01481 (9)
N5 0.55256 (5) 0.68697 (7) 0.97014 (3) 0.01577 (9)
C5 0.50458 (6) 0.76672 (7) 1.02231 (3) 0.01291 (9)
C51 0.70133 (6) 0.62013 (7) 0.97538 (3) 0.01519 (9)
H51A 0.7209 0.5222 1.0098 0.018*
H51B 0.7741 0.7147 0.9921 0.018*
C41 0.70862 (6) 0.73665 (8) 1.13548 (3) 0.01890 (11)
H41 0.7729 0.6763 1.1117 0.023*
O41 0.74985 (6) 0.75754 (8) 1.19936 (3) 0.02881 (12)
C31 0.47057 (7) 0.96306 (9) 1.19315 (3) 0.02071 (11)
H31A 0.5549 1.0435 1.2054 0.031*
H31B 0.4843 0.8647 1.2266 0.031*
H31C 0.3797 1.0264 1.1952 0.031*
C16 0.16351 (7) 0.74104 (9) 0.83692 (3) 0.02033 (11)
H16 0.1776 0.6732 0.7979 0.024*
C15 0.03122 (7) 0.83021 (9) 0.83065 (3) 0.02048 (11)
H15 −0.0437 0.8234 0.7886 0.025*
C14 0.01147 (6) 0.93004 (8) 0.88782 (3) 0.01946 (11)
H14 −0.0779 0.9931 0.8853 0.023*
C13 0.12286 (6) 0.93706 (8) 0.94845 (3) 0.01672 (10)
H13 0.1119 1.0050 0.9880 0.020*
C12 0.25184 (6) 0.84098 (7) 0.94950 (3) 0.01387 (9)
N11 0.27354 (6) 0.74497 (7) 0.89524 (3) 0.01754 (9)
C52 0.71751 (6) 0.55527 (8) 0.90348 (3) 0.01585 (10)
H52A 0.7075 0.6566 0.8707 0.019*
H52B 0.6366 0.4715 0.8847 0.019*
C53 0.86547 (6) 0.46467 (8) 0.90607 (3) 0.01637 (10)
H53A 0.9465 0.5504 0.9214 0.020*
H53B 0.8789 0.3679 0.9410 0.020*
C54 0.87324 (7) 0.39047 (9) 0.83406 (3) 0.01989 (11)
H54A 0.9708 0.3383 0.8367 0.030*
H54B 0.8568 0.4855 0.7991 0.030*
H54C 0.7971 0.3000 0.8202 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.01143 (17) 0.01598 (19) 0.01227 (17) 0.00075 (14) −0.00017 (14) 0.00018 (14)
N2 0.01383 (19) 0.01611 (19) 0.01371 (18) 0.00040 (14) 0.00052 (14) −0.00137 (14)
C4 0.01133 (19) 0.0156 (2) 0.0135 (2) −0.00096 (15) −0.00037 (16) 0.00017 (16)
C3 0.0136 (2) 0.0155 (2) 0.0140 (2) −0.00133 (16) 0.00010 (16) −0.00071 (16)
N5 0.01264 (18) 0.0202 (2) 0.01381 (18) 0.00099 (15) 0.00157 (14) −0.00068 (15)
C5 0.01084 (19) 0.0134 (2) 0.01358 (19) −0.00073 (15) 0.00066 (15) 0.00134 (15)
C51 0.0126 (2) 0.0166 (2) 0.0161 (2) −0.00029 (16) 0.00243 (16) −0.00001 (16)
C41 0.0137 (2) 0.0238 (3) 0.0168 (2) 0.00154 (18) −0.00179 (18) −0.00114 (19)
O41 0.0213 (2) 0.0437 (3) 0.0168 (2) 0.0072 (2) −0.00562 (17) −0.00410 (19)
C31 0.0202 (2) 0.0248 (3) 0.0153 (2) 0.0004 (2) 0.00020 (19) −0.00476 (19)
C16 0.0190 (2) 0.0280 (3) 0.0119 (2) −0.0014 (2) −0.00112 (18) 0.00153 (19)
C15 0.0163 (2) 0.0270 (3) 0.0152 (2) −0.0032 (2) −0.00273 (18) 0.00527 (19)
C14 0.0135 (2) 0.0217 (3) 0.0204 (2) −0.00041 (18) −0.00236 (18) 0.00482 (19)
C13 0.0127 (2) 0.0171 (2) 0.0183 (2) 0.00055 (16) −0.00094 (17) 0.00179 (17)
C12 0.01192 (19) 0.0151 (2) 0.0130 (2) −0.00119 (15) −0.00053 (15) 0.00273 (15)
N11 0.0159 (2) 0.0230 (2) 0.01223 (18) 0.00039 (16) −0.00005 (15) 0.00079 (15)
C52 0.0141 (2) 0.0184 (2) 0.0148 (2) 0.00027 (17) 0.00264 (16) 0.00057 (17)
C53 0.0143 (2) 0.0196 (2) 0.0152 (2) 0.00035 (17) 0.00317 (17) 0.00079 (17)
C54 0.0181 (2) 0.0246 (3) 0.0172 (2) 0.0018 (2) 0.00455 (19) −0.00125 (19)

Geometric parameters (Å, º)

N1—C5 1.3804 (7) C16—N11 1.3478 (7)
N1—N2 1.3968 (7) C16—C15 1.3841 (9)
N1—C12 1.4056 (7) C16—H16 0.9500
N2—C3 1.3137 (7) C15—C14 1.3909 (9)
C4—C5 1.4119 (7) C15—H15 0.9500
C4—C3 1.4357 (8) C14—C13 1.3862 (8)
C4—C41 1.4403 (8) C14—H14 0.9500
C3—C31 1.4928 (8) C13—C12 1.3986 (8)
N5—C5 1.3396 (7) C13—H13 0.9500
N5—C51 1.4539 (7) C12—N11 1.3340 (8)
N5—H1 0.876 (10) C52—C53 1.5272 (8)
C51—C52 1.5208 (8) C52—H52A 0.9900
C51—H51A 0.9900 C52—H52B 0.9900
C51—H51B 0.9900 C53—C54 1.5258 (8)
C41—O41 1.2261 (7) C53—H53A 0.9900
C41—H41 0.9500 C53—H53B 0.9900
C31—H31A 0.9800 C54—H54A 0.9800
C31—H31B 0.9800 C54—H54B 0.9800
C31—H31C 0.9800 C54—H54C 0.9800
C5—N1—N2 111.99 (4) C15—C16—H16 118.1
C5—N1—C12 129.61 (5) C16—C15—C14 117.90 (5)
N2—N1—C12 118.37 (4) C16—C15—H15 121.1
C3—N2—N1 105.12 (4) C14—C15—H15 121.1
C5—C4—C3 104.82 (5) C13—C14—C15 119.67 (6)
C5—C4—C41 129.14 (5) C13—C14—H14 120.2
C3—C4—C41 125.89 (5) C15—C14—H14 120.2
N2—C3—C4 112.39 (5) C14—C13—C12 117.86 (6)
N2—C3—C31 119.97 (5) C14—C13—H13 121.1
C4—C3—C31 127.63 (5) C12—C13—H13 121.1
C5—N5—C51 125.11 (5) N11—C12—C13 123.54 (5)
C5—N5—H1 114.2 (7) N11—C12—N1 116.94 (5)
C51—N5—H1 120.7 (7) C13—C12—N1 119.51 (5)
N5—C5—N1 121.17 (5) C12—N11—C16 117.28 (5)
N5—C5—C4 133.17 (5) C51—C52—C53 112.78 (5)
N1—C5—C4 105.66 (5) C51—C52—H52A 109.0
N5—C51—C52 109.55 (4) C53—C52—H52A 109.0
N5—C51—H51A 109.8 C51—C52—H52B 109.0
C52—C51—H51A 109.8 C53—C52—H52B 109.0
N5—C51—H51B 109.8 H52A—C52—H52B 107.8
C52—C51—H51B 109.8 C54—C53—C52 111.19 (5)
H51A—C51—H51B 108.2 C54—C53—H53A 109.4
O41—C41—C4 124.33 (6) C52—C53—H53A 109.4
O41—C41—H41 117.8 C54—C53—H53B 109.4
C4—C41—H41 117.8 C52—C53—H53B 109.4
C3—C31—H31A 109.5 H53A—C53—H53B 108.0
C3—C31—H31B 109.5 C53—C54—H54A 109.5
H31A—C31—H31B 109.5 C53—C54—H54B 109.5
C3—C31—H31C 109.5 H54A—C54—H54B 109.5
H31A—C31—H31C 109.5 C53—C54—H54C 109.5
H31B—C31—H31C 109.5 H54A—C54—H54C 109.5
N11—C16—C15 123.75 (6) H54B—C54—H54C 109.5
N11—C16—H16 118.1
C5—N1—N2—C3 −0.35 (6) C5—N5—C51—C52 −174.43 (5)
C12—N1—N2—C3 177.72 (5) C5—C4—C41—O41 −173.30 (7)
N1—N2—C3—C4 −0.34 (6) C3—C4—C41—O41 1.38 (10)
N1—N2—C3—C31 179.52 (5) N11—C16—C15—C14 0.30 (10)
C5—C4—C3—N2 0.88 (6) C16—C15—C14—C13 −0.09 (9)
C41—C4—C3—N2 −174.85 (5) C15—C14—C13—C12 −0.37 (9)
C5—C4—C3—C31 −178.97 (6) C14—C13—C12—N11 0.69 (9)
C41—C4—C3—C31 5.29 (10) C14—C13—C12—N1 −178.05 (5)
C51—N5—C5—N1 174.02 (5) C5—N1—C12—N11 6.28 (8)
C51—N5—C5—C4 −5.74 (10) N2—N1—C12—N11 −171.40 (5)
N2—N1—C5—N5 −178.93 (5) C5—N1—C12—C13 −174.90 (5)
C12—N1—C5—N5 3.28 (9) N2—N1—C12—C13 7.42 (7)
N2—N1—C5—C4 0.89 (6) C13—C12—N11—C16 −0.49 (9)
C12—N1—C5—C4 −176.91 (5) N1—C12—N11—C16 178.28 (5)
C3—C4—C5—N5 178.77 (6) C15—C16—N11—C12 −0.02 (9)
C41—C4—C5—N5 −5.69 (10) N5—C51—C52—C53 −173.79 (5)
C3—C4—C5—N1 −1.02 (6) C51—C52—C53—C54 176.10 (5)
C41—C4—C5—N1 174.53 (6)

Hydrogen-bond geometry (Å, º)

Cg1 abd Cg2 are the centroids of the C3–C5/N1/N2 and N11/C12–C16 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N5—H1···N11 0.876 (10) 2.004 (11) 2.7117 (7) 137.0 (9)
C15—H15···O41i 0.95 2.36 3.2906 (8) 165
C52—H52B···Cg1ii 0.99 2.77 3.5141 (6) 132
C53—H53A···Cg2iii 0.99 2.98 3.8761 (6) 152

Symmetry codes: (i) x−1, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z+2; (iii) x+1, y, z.

References

  1. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  2. Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Budzisz, E., Miernicka, M., Lorenz, I.-P., Mayer, P., Krajewska, U. & Rozalski, M. (2009). Polyhedron, 28, 637–645.
  5. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. Orrego-Hernández, J., Cobo, J. & Portilla, J. (2015a). Eur. J. Org. Chem. pp. 5064–5069.
  9. Orrego Hernández, J., Portilla, J., Cobo, J. & Glidewell, C. (2015b). Acta Cryst. C71, 363–368. [DOI] [PubMed]
  10. Peng, X.-M., Cai, G.-X. & Zhou, C.-H. (2013). Curr. Top. Med. Chem. 13, 1963–2010. [DOI] [PubMed]
  11. Sakya, S. M., Lundy DeMello, K. M., Minich, M. L., Rast, B., Shavnya, A., Rafka, R. J., Koss, D. A., Cheng, H., Li, J., Jaynes, B. H., Ziegler, C. B., Mann, D. W., Petras, C. F., Seibel, S. B., Silvia, A. M., George, D. M., Lund, L. A., Denis, S. S., Hickman, A., Haven, M. L. & Lynch, M. P. (2006). Bioorg. Med. Chem. Lett. 16, 288–292. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Yuan, J.-G., Wu, H.-X., Lu, M.-L., Song, G.-P. & Xu, H.-H. (2013). J. Agric. Food Chem. 61, 4236–4241. [DOI] [PubMed]
  14. Zhang, Z., Ojo, K. K., Vidadala, R., Huang, W., Geiger, J. A., Scheele, S., Choi, R., Reid, M. C., Keyloun, K. R., Rivas, K., Siddaramaiah, L. K., Comess, K. M., Robinson, K. P., Merta, P. J., Kifle, L., Hol, W. G. J., Parsons, M., Merritt, E. A., Maly, D. J., Verlinde, C. L. M. J., Van Voorhis, W. C. & Fan, E. (2014). ACS Med. Chem. Lett. 5, 40–44. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016017187/bg2597sup1.cif

e-72-01672-sup1.cif (454.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016017187/bg2597Isup2.hkl

e-72-01672-Isup2.hkl (506.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016017187/bg2597Isup3.cml

CCDC reference: 1511522

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES