Abstract
The 10 ligation species of human cyanomethemoglobin were previously found to distribute into three discrete cooperative free energy levels according to a combinatorial code (i.e., dependent on both the number and configuration of ligated subunits). Analysis of this distribution showed that the hemoglobin tetramer occupies a third allosteric state in addition to those of the unligated (T) and fully ligated (R) species. To determine the nature of the intermediate allosteric state, we have studied the effects of pH, temperature, and single-site mutations on its free energy of quaternary assembly, in parallel with corresponding data on the deoxy (T) and fully ligated (R) species. Results indicate that the intermediate allosteric tetramer has the deoxy (T) quaternary structure. This finding, together with the resolved energetic distribution of the 10 microstates reveals a symmetry rule for quaternary switching--i.e., switching from T to R occurs whenever a binding step creates a tetramer with one or more ligated subunits on each side of the alpha 1 beta 2 intersubunit contact. These studies also reveal significant cooperativity within each alpha 1 beta 1 dimer of the T-state tetramer. The ligand-induced tertiary free energy alters binding affinity within the T structure by 170-fold prior to quaternary switching.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ackers G. K., Smith F. R. The hemoglobin tetramer: a three-state molecular switch for control of ligand affinity. Annu Rev Biophys Biophys Chem. 1987;16:583–609. doi: 10.1146/annurev.bb.16.060187.003055. [DOI] [PubMed] [Google Scholar]
- Ackers G. K. The energetics of ligand-linked subunit assembly in hemoglobin require a third allosteric structure. Biophys Chem. 1990 Aug 31;37(1-3):371–382. doi: 10.1016/0301-4622(90)88036-r. [DOI] [PubMed] [Google Scholar]
- Baldwin J., Chothia C. Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism. J Mol Biol. 1979 Apr 5;129(2):175–220. doi: 10.1016/0022-2836(79)90277-8. [DOI] [PubMed] [Google Scholar]
- Fung L. W., Minton A. P., Ho C. Nuclear magnetic resonance study of heme-heme interaction in hemoglobin M Milwaukee: implications concerning the mechanism of cooperative ligand binding in normal hemoglobin. Proc Natl Acad Sci U S A. 1976 May;73(5):1581–1585. doi: 10.1073/pnas.73.5.1581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gelin B. R., Lee A. W., Karplus M. Hemoglobin tertiary structural change on ligand binding. Its role in the co-operative mechanism. J Mol Biol. 1983 Dec 25;171(4):489–559. doi: 10.1016/0022-2836(83)90042-6. [DOI] [PubMed] [Google Scholar]
- Herzfeld J., Stanley H. E. A general approach to co-operativity and its application to the oxygen equilibrium of hemoglobin and its effectors. J Mol Biol. 1974 Jan 15;82(2):231–265. doi: 10.1016/0022-2836(74)90343-x. [DOI] [PubMed] [Google Scholar]
- Ip S. H., Ackers G. K. Thermodynamic studies on subunit assembly in human hemoglobin. Temperature dependence of the dimer-tetramer association constants for oxygenated and unliganded hemoglobins. J Biol Chem. 1977 Jan 10;252(1):82–87. [PubMed] [Google Scholar]
- Johnson M. L., Turner B. W., Ackers G. K. A quantitative model for the cooperative mechanism of human hemoglobin. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1093–1097. doi: 10.1073/pnas.81.4.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koshland D. E., Jr, Némethy G., Filmer D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry. 1966 Jan;5(1):365–385. doi: 10.1021/bi00865a047. [DOI] [PubMed] [Google Scholar]
- Lee A. W., Karplus M. Structure-specific model of hemoglobin cooperativity. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7055–7059. doi: 10.1073/pnas.80.23.7055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lesk A. M., Janin J., Wodak S., Chothia C. Haemoglobin: the surface buried between the alpha 1 beta 1 and alpha 2 beta 2 dimers in the deoxy and oxy structures. J Mol Biol. 1985 May 25;183(2):267–270. doi: 10.1016/0022-2836(85)90219-0. [DOI] [PubMed] [Google Scholar]
- LiCata V. J., Speros P. C., Rovida E., Ackers G. K. Direct and indirect pathways of functional coupling in human hemoglobin are revealed by quantitative low-temperature isoelectric focusing of mutant hybrids. Biochemistry. 1990 Oct 23;29(42):9771–9783. doi: 10.1021/bi00494a003. [DOI] [PubMed] [Google Scholar]
- MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
- Miura S., Ho C. Preparation and proton nuclear magnetic resonance investigation of cross-linked mixed valency hybrid hemoglobins: models for partially oxygenated species. Biochemistry. 1982 Nov 23;21(24):6280–6287. doi: 10.1021/bi00267a037. [DOI] [PubMed] [Google Scholar]
- Miura S., Ho C. Proton nuclear magnetic resonance investigation of cross-linked asymmetrically modified hemoglobins: influence of the salt bridges on tertiary and quaternary structures of hemoglobin. Biochemistry. 1984 May 22;23(11):2492–2499. doi: 10.1021/bi00306a027. [DOI] [PubMed] [Google Scholar]
- Miura S., Ikeda-Saito M., Yonetani T., Ho C. Oxygen equilibrium studies of cross-linked asymmetrical cyanomet valency hybrid hemoglobins: models for partially oxygenated species. Biochemistry. 1987 Apr 21;26(8):2149–2155. doi: 10.1021/bi00382a013. [DOI] [PubMed] [Google Scholar]
- Perrella M., Benazzi L., Shea M. A., Ackers G. K. Subunit hybridization studies of partially ligated cyanomethemoglobins using a cryogenic method. Evidence for three allosteric states. Biophys Chem. 1990 Jan;35(1):97–103. doi: 10.1016/0301-4622(90)80064-e. [DOI] [PubMed] [Google Scholar]
- Perrella M., Rossi-Bernardi L. Detection of hemoglobin hybrid formation at subzero temperature. Methods Enzymol. 1981;76:133–143. doi: 10.1016/0076-6879(81)76122-6. [DOI] [PubMed] [Google Scholar]
- Perutz M. F. Stereochemistry of cooperative effects in haemoglobin. Nature. 1970 Nov 21;228(5273):726–739. doi: 10.1038/228726a0. [DOI] [PubMed] [Google Scholar]
- Perutz M. F. Stereochemistry of cooperative effects in haemoglobin. Nature. 1970 Nov 21;228(5273):726–739. doi: 10.1038/228726a0. [DOI] [PubMed] [Google Scholar]
- Pettigrew D. W., Romeo P. H., Tsapis A., Thillet J., Smith M. L., Turner B. W., Ackers G. K. Probing the energetics of proteins through structural perturbation: sites of regulatory energy in human hemoglobin. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1849–1853. doi: 10.1073/pnas.79.6.1849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith F. R., Ackers G. K. Experimental resolution of cooperative free energies for the ten ligation states of human hemoglobin. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5347–5351. doi: 10.1073/pnas.82.16.5347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith F. R., Gingrich D., Hoffman B. M., Ackers G. K. Three-state combinatorial switching in hemoglobin tetramers: comparison between functional energetics and molecular structures. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7089–7093. doi: 10.1073/pnas.84.20.7089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szabo A., Karplus M. A mathematical model for structure-function relations in hemoglobin. J Mol Biol. 1972 Dec 14;72(1):163–197. doi: 10.1016/0022-2836(72)90077-0. [DOI] [PubMed] [Google Scholar]
- Thillet J., Chu A. H., Romeo P., Tsapis A., Ackers G. K. Effects of anions on the ligand-linked subunit assembly of human hemoglobin: the mutual effects of Cl- and EDTA. Hemoglobin. 1983;7(2):141–157. doi: 10.3109/03630268309048643. [DOI] [PubMed] [Google Scholar]
- Valdes R., Jr, Ackers G. K. Study of protein subunit association equilibria by elution gel chromatography. Methods Enzymol. 1979;61:125–142. doi: 10.1016/0076-6879(79)61011-x. [DOI] [PubMed] [Google Scholar]
- Williams R. C., Jr, Tsay K. Y. A convenient chromatographic method for the preparation of human hemoglobin. Anal Biochem. 1973 Jul;54(1):137–145. doi: 10.1016/0003-2697(73)90256-x. [DOI] [PubMed] [Google Scholar]