Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Feb 15;88(4):1130–1133. doi: 10.1073/pnas.88.4.1130

Evidence for an involvement of the brain cholecystokinin B receptor in anxiety.

L Singh 1, A S Lewis 1, M J Field 1, J Hughes 1, G N Woodruff 1
PMCID: PMC50970  PMID: 1996314

Abstract

The effect of neuropeptide cholecystokinin (CCK) receptor agonists and antagonists was examined in the rat elevated X-maze model of anxiety. The selective CCK-B receptor antagonists CI-988 (PD 134308) and L-365,260 produced anxiolytic-like effects, whereas MK-329, a CCK-A receptor antagonist, was respectively less potent by factors of 313 and 200. The intracerebroventricular administration of the nonselective CCK receptor agonist caerulein or the selective CCK-B receptor agonist pentagastrin increased dose dependently the level of anxiety. CI-988 dose dependently antagonized the anxiogenic response to pentagastrin but not that induced by pentylenetetrazol. These results strongly suggest that activation of the brain CCK-B receptor induces anxiety and that selective antagonists of this receptor represent a separate class of anxiolytic agents.

Full text

PDF
1130

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chang R. S., Lotti V. J. Biochemical and pharmacological characterization of an extremely potent and selective nonpeptide cholecystokinin antagonist. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4923–4926. doi: 10.1073/pnas.83.13.4923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Daugé V., Steimes P., Derrien M., Beau N., Roques B. P., Féger J. CCK8 effects on motivational and emotional states of rats involve CCKA receptors of the postero-median part of the nucleus accumbens. Pharmacol Biochem Behav. 1989 Sep;34(1):157–163. doi: 10.1016/0091-3057(89)90367-5. [DOI] [PubMed] [Google Scholar]
  3. Demeulemeester H., Vandesande F., Orban G. A., Brandon C., Vanderhaeghen J. J. Heterogeneity of GABAergic cells in cat visual cortex. J Neurosci. 1988 Mar;8(3):988–1000. doi: 10.1523/JNEUROSCI.08-03-00988.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Deschodt-Lanckman M., Bui N. D., Noyer M., Christophe J. Degradation of cholecystokinin-like peptides by a crude rat brain synaptosomal fraction: a study by high pressure liquid chromatography. Regul Pept. 1981 Apr;2(1):15–30. doi: 10.1016/0167-0115(81)90062-8. [DOI] [PubMed] [Google Scholar]
  5. Dockray G. J. Immunochemical evidence of cholecystokinin-like peptides in brain. Nature. 1976 Dec 9;264(5586):568–570. doi: 10.1038/264568a0. [DOI] [PubMed] [Google Scholar]
  6. Dourish C. T., Rycroft W., Iversen S. D. Postponement of satiety by blockade of brain cholecystokinin (CCK-B) receptors. Science. 1989 Sep 29;245(4925):1509–1511. doi: 10.1126/science.2781294. [DOI] [PubMed] [Google Scholar]
  7. Handley S. L., Mithani S. Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of 'fear'-motivated behaviour. Naunyn Schmiedebergs Arch Pharmacol. 1984 Aug;327(1):1–5. doi: 10.1007/BF00504983. [DOI] [PubMed] [Google Scholar]
  8. Harro J., Põld M., Vasar E. Anxiogenic-like action of caerulein, a CCK-8 receptor agonist, in the mouse: influence of acute and subchronic diazepam treatment. Naunyn Schmiedebergs Arch Pharmacol. 1990 Jan-Feb;341(1-2):62–67. doi: 10.1007/BF00195059. [DOI] [PubMed] [Google Scholar]
  9. Hill D. R., Campbell N. J., Shaw T. M., Woodruff G. N. Autoradiographic localization and biochemical characterization of peripheral type CCK receptors in rat CNS using highly selective nonpeptide CCK antagonists. J Neurosci. 1987 Sep;7(9):2967–2976. doi: 10.1523/JNEUROSCI.07-09-02967.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hill D. R., Shaw T. M., Graham W., Woodruff G. N. Autoradiographical detection of cholecystokinin-A receptors in primate brain using 125I-Bolton Hunter CCK-8 and 3H-MK-329. J Neurosci. 1990 Apr;10(4):1070–1081. doi: 10.1523/JNEUROSCI.10-04-01070.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hill D. R., Shaw T. M., Woodruff G. N. Species differences in the localization of 'peripheral' type cholecystokinin receptors in rodent brain. Neurosci Lett. 1987 Aug 31;79(3):286–289. doi: 10.1016/0304-3940(87)90445-9. [DOI] [PubMed] [Google Scholar]
  12. Hughes J., Boden P., Costall B., Domeney A., Kelly E., Horwell D. C., Hunter J. C., Pinnock R. D., Woodruff G. N. Development of a class of selective cholecystokinin type B receptor antagonists having potent anxiolytic activity. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6728–6732. doi: 10.1073/pnas.87.17.6728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Innis R. B., Snyder S. H. Distinct cholecystokinin receptors in brain and pancreas. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6917–6921. doi: 10.1073/pnas.77.11.6917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lotti V. J., Chang R. S. A new potent and selective non-peptide gastrin antagonist and brain cholecystokinin receptor (CCK-B) ligand: L-365,260. Eur J Pharmacol. 1989 Mar 21;162(2):273–280. doi: 10.1016/0014-2999(89)90290-2. [DOI] [PubMed] [Google Scholar]
  15. McDonald J. K., Parnavelas J. G., Karamanlidis A. N., Rosenquist G., Brecha N. The morphology and distribution of peptide-containing neurons in the adult and developing visual cortex of the rat. III. Cholecystokinin. J Neurocytol. 1982 Dec;11(6):881–895. doi: 10.1007/BF01148306. [DOI] [PubMed] [Google Scholar]
  16. Pellow S., Chopin P., File S. E., Briley M. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. 1985 Aug;14(3):149–167. doi: 10.1016/0165-0270(85)90031-7. [DOI] [PubMed] [Google Scholar]
  17. Rehfeld J. F., Hansen H. F., Marley P. D., Stengaard-Pedersen K. Molecular forms of cholecystokinin in the brain and the relationship to neuronal gastrins. Ann N Y Acad Sci. 1985;448:11–23. doi: 10.1111/j.1749-6632.1985.tb29902.x. [DOI] [PubMed] [Google Scholar]
  18. Rodin E. A., Calhoun H. D. Metrazol tolerance in a "normal" volunteer population. A ten year follow-up report. J Nerv Ment Dis. 1970 Jun;150(6):438–443. doi: 10.1097/00005053-197006000-00003. [DOI] [PubMed] [Google Scholar]
  19. Somogyi P., Hodgson A. J., Smith A. D., Nunzi M. G., Gorio A., Wu J. Y. Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin- or cholecystokinin-immunoreactive material. J Neurosci. 1984 Oct;4(10):2590–2603. doi: 10.1523/JNEUROSCI.04-10-02590.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Vanderhaeghen J. J., Signeau J. C., Gepts W. New peptide in the vertebrate CNS reacting with antigastrin antibodies. Nature. 1975 Oct 16;257(5527):604–605. doi: 10.1038/257604a0. [DOI] [PubMed] [Google Scholar]
  21. de Montigny C. Cholecystokinin tetrapeptide induces panic-like attacks in healthy volunteers. Preliminary findings. Arch Gen Psychiatry. 1989 Jun;46(6):511–517. doi: 10.1001/archpsyc.1989.01810060031006. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES