Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Feb 15;88(4):1177–1181. doi: 10.1073/pnas.88.4.1177

Selective inhibition by a synthetic hirudin peptide of fibrin-dependent thrombosis in baboons.

Y Cadroy 1, J M Maraganore 1, S R Hanson 1, L A Harker 1
PMCID: PMC50980  PMID: 1996320

Abstract

To determine the importance of the thrombin substrate recognition exosite for fibrinogen binding in the formation of both arterial and venous thrombi, we evaluated the antithrombotic effects of the tyrosine-sulfated dodecapeptide from residues 53-64 of hirudin (H peptide) in a nonhuman primate model. This peptide was studied because it inhibits thrombin cleavages of fibrinogen by simple competition without blocking enzyme catalytic-site function. When an exteriorized arteriovenous access shunt model was used in baboons (Papio anubis), thrombus formation was induced by placing a thrombogenic device made of (i) a segment of tubing coated covalently with type I collagen, which generated platelet-rich thrombi under arterial flow conditions, and (ii) two subsequent annular regions of flow expansion that produced fibrin-rich thrombi typically associated with venous valves and veins. Thrombus formation was quantified by measurements of 111In-labeled platelet and 125I-labeled fibrinogen deposition in both arterial-flow and venous-flow portions of the device. Continuous infusion of H peptide (0.5, 15, and 75 mg/kg) proximal to the device for 40 min interrupted, in a dose-response fashion, formation of fibrin-rich thrombus in the regions of disturbed flow and generation of fibrinopeptide A. In contrast, H peptide did not inhibit the capacity of platelets to deposit on the collagen surface (P greater than 0.2 at all doses) or to form hemostatic plugs (as assessed by measurements of bleeding time; P greater than 0.1 at all doses). These findings suggest that, by competitive inhibition of fibrinogen binding to thrombin, fibrin-rich venous-type thrombus formation may be selectively prevented. This strategy may be therapeutically attractive for preserving normal platelet function when conventional anticoagulant therapy is contraindicated.

Full text

PDF
1177

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagdy D., Barabas E., Gráf L., Petersen T. E., Magnusson S. Hirudin. Methods Enzymol. 1976;45:669–678. doi: 10.1016/s0076-6879(76)45057-7. [DOI] [PubMed] [Google Scholar]
  2. Bourdon P., Fenton J. W., 2nd, Maraganore J. M. Affinity labeling of lysine-149 in the anion-binding exosite of human alpha-thrombin with an N alpha-(dinitrofluorobenzyl)hirudin C-terminal peptide. Biochemistry. 1990 Jul 10;29(27):6379–6384. doi: 10.1021/bi00479a006. [DOI] [PubMed] [Google Scholar]
  3. Cadroy Y., Harker L. A., Hanson S. R. Inhibition of platelet-dependent thrombosis by low molecular weight heparin (CY222): comparison with standard heparin. J Lab Clin Med. 1989 Oct;114(4):349–357. [PubMed] [Google Scholar]
  4. Cadroy Y., Horbett T. A., Hanson S. R. Discrimination between platelet-mediated and coagulation-mediated mechanisms in a model of complex thrombus formation in vivo. J Lab Clin Med. 1989 Apr;113(4):436–448. [PubMed] [Google Scholar]
  5. Chang J. Y. The functional domain of hirudin, a thrombin-specific inhibitor. FEBS Lett. 1983 Dec 12;164(2):307–313. doi: 10.1016/0014-5793(83)80307-x. [DOI] [PubMed] [Google Scholar]
  6. Dodt J., Schmitz T., Schäfer T., Bergmann C. Expression, secretion and processing of hirudin in E. coli using the alkaline phosphatase signal sequence. FEBS Lett. 1986 Jul 7;202(2):373–377. doi: 10.1016/0014-5793(86)80721-9. [DOI] [PubMed] [Google Scholar]
  7. Fortkamp E., Rieger M., Heisterberg-Moutses G., Schweitzer S., Sommer R. Cloning and expression in Escherichia coli of a synthetic DNA for hirudin, the blood coagulation inhibitor in the leech. DNA. 1986 Dec;5(6):511–517. doi: 10.1089/dna.1.1986.5.511. [DOI] [PubMed] [Google Scholar]
  8. Hanson S. R., Harker L. A. Interruption of acute platelet-dependent thrombosis by the synthetic antithrombin D-phenylalanyl-L-prolyl-L-arginyl chloromethyl ketone. Proc Natl Acad Sci U S A. 1988 May;85(9):3184–3188. doi: 10.1073/pnas.85.9.3184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hanson S. R., Kotze H. F., Savage B., Harker L. A. Platelet interactions with Dacron vascular grafts. A model of acute thrombosis in baboons. Arteriosclerosis. 1985 Nov-Dec;5(6):595–603. doi: 10.1161/01.atv.5.6.595. [DOI] [PubMed] [Google Scholar]
  10. Harvey R. P., Degryse E., Stefani L., Schamber F., Cazenave J. P., Courtney M., Tolstoshev P., Lecocq J. P. Cloning and expression of a cDNA coding for the anticoagulant hirudin from the bloodsucking leech, Hirudo medicinalis. Proc Natl Acad Sci U S A. 1986 Feb;83(4):1084–1088. doi: 10.1073/pnas.83.4.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heras M., Chesebro J. H., Penny W. J., Bailey K. R., Badimon L., Fuster V. Effects of thrombin inhibition on the development of acute platelet-thrombus deposition during angioplasty in pigs. Heparin versus recombinant hirudin, a specific thrombin inhibitor. Circulation. 1989 Mar;79(3):657–665. doi: 10.1161/01.cir.79.3.657. [DOI] [PubMed] [Google Scholar]
  12. Jakubowski J. A., Maraganore J. M. Inhibition of coagulation and thrombin-induced platelet activities by a synthetic dodecapeptide modeled on the carboxy-terminus of hirudin. Blood. 1990 Jan 15;75(2):399–406. [PubMed] [Google Scholar]
  13. Krstenansky J. L., Mao S. J. Antithrombin properties of C-terminus of hirudin using synthetic unsulfated N alpha-acetyl-hirudin45-65. FEBS Lett. 1987 Jan 19;211(1):10–16. doi: 10.1016/0014-5793(87)81264-4. [DOI] [PubMed] [Google Scholar]
  14. Maraganore J. M., Chao B., Joseph M. L., Jablonski J., Ramachandran K. L. Anticoagulant activity of synthetic hirudin peptides. J Biol Chem. 1989 May 25;264(15):8692–8698. [PubMed] [Google Scholar]
  15. Markwardt F., Fink G., Kaiser B., Klöcking H. P., Nowak G., Richter M., Stürzebecher J. Pharmacological survey of recombinant hirudin. Pharmazie. 1988 Mar;43(3):202–207. [PubMed] [Google Scholar]
  16. Markwardt F. Pharmacological approaches to thrombin regulation. Ann N Y Acad Sci. 1986;485:204–214. doi: 10.1111/j.1749-6632.1986.tb34582.x. [DOI] [PubMed] [Google Scholar]
  17. Naski M. C., Fenton J. W., 2nd, Maraganore J. M., Olson S. T., Shafer J. A. The COOH-terminal domain of hirudin. An exosite-directed competitive inhibitor of the action of alpha-thrombin on fibrinogen. J Biol Chem. 1990 Aug 15;265(23):13484–13489. [PubMed] [Google Scholar]
  18. Rydel T. J., Ravichandran K. G., Tulinsky A., Bode W., Huber R., Roitsch C., Fenton J. W., 2nd The structure of a complex of recombinant hirudin and human alpha-thrombin. Science. 1990 Jul 20;249(4966):277–280. doi: 10.1126/science.2374926. [DOI] [PubMed] [Google Scholar]
  19. Savage B., McFadden P. R., Hanson S. R., Harker L. A. The relation of platelet density to platelet age: survival of low- and high-density 111indium-labeled platelets in baboons. Blood. 1986 Aug;68(2):386–393. [PubMed] [Google Scholar]
  20. Stone S. R., Hofsteenge J. Kinetics of the inhibition of thrombin by hirudin. Biochemistry. 1986 Aug 12;25(16):4622–4628. doi: 10.1021/bi00364a025. [DOI] [PubMed] [Google Scholar]
  21. Thomas D. P. Overview of venous thrombogenesis. Semin Thromb Hemost. 1988 Jan;14(1):1–8. doi: 10.1055/s-2007-1002749. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES