Skip to main content
Oxidative Medicine and Cellular Longevity logoLink to Oxidative Medicine and Cellular Longevity
. 2016 Oct 25;2016:7316492. doi: 10.1155/2016/7316492

Nrf2 and Notch Signaling in Lung Cancer: Near the Crossroad

Angelo Sparaneo 1, Federico Pio Fabrizio 1, Lucia Anna Muscarella 1,*
PMCID: PMC5099458  PMID: 27847554

Abstract

The transcription factor Nrf2 (NF-E2 related factor 2) is a master regulator of the cell antioxidant response associated with tumor growth and resistance to cytotoxic treatments. In particular, Nrf2 induces upregulation of cytoprotective genes by interacting with the closely situated AREs (Antioxidant Response Elements) in response to endogenous or exogenous stress stimuli and takes part to several oncogenic signaling pathways. Among these, the crosstalk with Notch pathway has been shown to enhance cytoprotection and maintenance of cellular homeostasis, tissue organization by modulating cell proliferation kinetics, and stem cell self-renewal in several organs. The role of Notch and Nrf2 related pathways in tumorigenesis is highly variable and when they are both abnormally activated they can synergistically cause neoplastic proliferation by promoting cell survival, differentiation, invasion, and metastases. NFE2L2, KEAP1, and NOTCH genes family appear in the list of significantly mutated genes in tumors in both combined and individual sets, supporting the crucial role that the aberrant Nrf2-Notch crosstalk might have in cancerogenesis. In this review, we summarize current knowledge about the alterations of Nrf2 and Notch pathways and their reciprocal transcriptional regulation throughout tumorigenesis and progression of lung tumors, supporting the potentiality of putative biomarkers and therapeutic targets.

1. Introduction

Notch receptors (Notch1–Notch4) are a family of transmembrane proteins which interact with ligands of the Delta and/or Jagged/Serrate family. These receptors play a key role in the normal development of tissues and cell types, through diverse effects on differentiation, survival, and proliferation [13]. In tumors, Notch signaling has been observed to exert either oncogenic or antiproliferative effects within the mechanisms of cell invasion and metastases development.

The Nrf2 is a key regulator of the cell adaptive response to reactive oxygen species (ROS) and xenobiotics through the interaction with its master negative regulator, the Keap1 protein. Currently, the dark side of Nrf2 has emerged and growing evidences suggest that constitutive upregulation of Nrf2 is linked to cancer development and progression and contributes to chemo- and radioresistance.

Notch and Nrf2 are both transcription factors and their related pathways were discovered independently [4]. However, recent data have demonstrated the existence of a Nrf2-Notch crosstalk which supports cytoprotection and improves maintenance of cellular homeostasis and tissue organization. This review will mainly focus on the available scientific data which underlie the biological relevance of Nrf2 and Notch pathways and their crosstalk in lung tumors and suggest the potentiality of molecularly targeted agent combinations to overcome resistance to therapies.

2. Notch Signaling

NOTCH genes encode for highly conserved cell membrane receptors from Drosophila to humans that orchestrate a complex signaling pathway involving a number of ligands, negative and positive modifiers, and transcription factors [5]. In mammals, four Notch receptors (Notch1 to Notch4) and two families of Notch ligands (Jagged1 and Jagged2 and Delta-like-1, Delta-like-3, and Delta-like-4) have been described to play a critical role in the cell-contact-dependent cellular communications [2, 3, 6].

Although the overall structure of Notch receptors is similar, there are significant differences in the protein domains. The Notch1–4 receptors share an extracellular portion which contains a variable number of epidermal growth factor- (EGF-) like repeats: the Notch1 and Notch2 receptors contain 36 EGF repeats, whereas Notch3 contains 34 repeats and Notch4 contains 29 repeats. The other difference is in the transactivation domain (TAD). Notch1 and Notch2 contain a strong and a weak TAD, respectively, Notch3 has a potent but specific TAD best suited to the activation of the HES-5 promoter. In contrast, Notch4 does not contain a TAD. These structural differences may offer clues to the functional divergence among mammalian Notch paralogs [7].

The EGF-like repeats of extracellular portion of Notch are essential for ligand binding. The bond between ligands and extracellular Notch domains activates the intracellular portion and promotes intracellular sequential proteolytic cleavages by a metalloproteases of ADAM's family. Then the Notch intracellular domain (NICD) is released from the cytoplasmic membrane and translocates as active form into the nucleus, where it enhances the expression of several target genes encoding for Hairy Enhancer of Split (HES) family proteins, HES-related proteins (HEY), and p21cip1/waf1, cyclin D1 and 3, c-myc, and Her2, in a cell-context-dependent manner [3, 8, 9].

Beside this canonical pathway activation, additional noncanonical Notch signaling pathways have been described. These additional pathways are independent from CSL (CBF1, Suppressor of Hairless, and Lag-1) transcription factor and related to other different transcription factors, such as beta-catenin, HIF-1a (hypoxia-inducible factor-1a), NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells), and estrogen receptor ERα (Figure 1) [1013].

Figure 1.

Figure 1

Canonical and noncanonical Notch signaling pathways. Notch signaling has a pleiotropic effect and is involved in cell survival, cell proliferation, cell metabolism, and differentiation. Canonical Notch pathway is primed by interaction of the Notch protein with a cell bound ligand. Upon interaction, Notch results cleaved, firstly by ADAM 10/17 protease and then by cleavage by the γ- secretase. Furthermore, Notch activated (NICD) translocates into nucleus and interacts with CSL protein, where, upon interaction, the proteins complex is converted into a transcriptional activator of targets genes. Noncanonical Notch pathways may be activated either dependently or independently of ligand interaction and may be γ-secretase dependent or independent. Noncanonical Notch signaling interacts with mTORC2, AKT, Wnt, HIF-1α, NFκB, and PI3K pathways at either the cytoplasmic or nuclear levels. The gene regulatory region of the major Notch1 transcript has been described to possess a functional ARE through which Nrf2 can regulate Notch1 gene expression. In the activated state (orange arrow, transient upon stress stimuli or constitutive due to mutations in tumor cells), de novo synthesized Nrf2 protein accumulates into the nucleus, where it activates the transcription of several ARE-genes, including NOTCH1. In the basal state (green arrow), Keap1 binds Nrf2 and induces its ubiquitination. Upon ubiquitination, Nrf2 is degraded by proteasome complex.

The Notch transcriptional machinery and signaling pathway are conserved among species, but in mammals this system shows the peculiarity to induce several, even opposite, biological effects depending on specific tissue types [4, 14]. Notch signaling networks can regulate a wide range of events in embryonic and postnatal development, including proliferation, apoptosis, border formation, and cell fate decisions. Aberrant expression of Notch receptors and Notch target genes have been reported in different human malignancies, including lung, skin, pancreas, breast, and colon cancers [1520]. In lung tumors, depending on the subtype or specific molecular profiles, Notch family activity is often deregulated and activates several oncogenic pathways via direct or indirect induction [21, 22].

In a transgenic mouse model, Notch1 was overexpressed in the alveolar epithelium and induced alveolar hyperplasia and pulmonary adenomas through regulating type II lung epithelial cells. Moreover, the concomitant expression of MYC led to a progression to adenocarcinoma and metastases, indicating a synergistic effect between Notch1 and other oncogenes [23]. It has also been reported that Notch1 signaling plays a central role in the negative modulation of cell growth in lung adenocarcinoma through the ADAM metalloproteases and promotes apoptosis escape through a negative modulation of the p53 stability at protein level. These findings might explain the correlation between Notch1 activation and poor prognosis in NSCLC patients without TP53 mutations [2428]. Few data have been provided so far concerning the roles of Notch1 in lung adenocarcinoma harboring mutations in other lung cancer driver genes, such as PIK3CA or EGFR (Epidermal Growth Factor Receptor). In NSCLC cell lines, it has been preliminary observed that the expression of the active form of Notch1 (NICD1) leads to increased proliferation activity, malignant transformation, and tumor growth in presence of EGF (Epidermal Growth Factor), suggesting that EGFR activation may be essential for Notch-mediated malignant transformation and tumor growth [25].

Notch1 signaling has been shown to also act either as a negative or as a positive regulator of Phosphatase and Tensin Homologue gene (PTEN) transcription [29]. PTEN downregulation is modulated by Notch1 through the activation of the transcription factor hair and enhancer of SPLIT (HES1), whereas PTEN upregulation derives from the inhibition of the binding protein suppressor of hairless (RBPJ), also known as CBF-1 [3032]. In NSCLC and malignant mesothelioma cells, the activation of PTEN transcription by Notch1 upregulation has been observed to lead the prosurvival phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway [2932].

In contrast with the role of Notch1 in promoting tumor initiation and progression, Notch2 shows a tumor suppressive activity by mediating cell differentiation in lung carcinogenesis. This evidence was also supported by immunohistochemical analysis of human NSCLC samples showing the loss or downregulation of Notch2 compared with normal lung tissues [33, 34]. In malignant mesothelioma (MM) cells Notch2 also appears to be diminished with a consequent decrease of toxic effects and a general benefit for cells [35]. Finally, the effect of Notch3 in lung carcinoma has been observed to be strongly dependent on cell type being a tumor suppressor in Small Cell Lung Cancer (SCLC) and a tumor promoting in NSCLC by differentially modulating cell adhesion, Epithelial Mesenchymal Transition (EMT), and cell motility [36].

Various studies have assessed the clinicopathological and prognostic value of Notch1 and Notch3 expression in NSCLC, but the results remain controversial. NSCLC tissues have significantly higher Notch1 protein levels compared to lung normal tissues, with strong variations in different studies and even within the same histotypes. Overall, Notch signaling can be suggested as a valuable biomarker to predict tumor progression in NSCLC. Overexpression of Notch1 and Notch3 has been associated with increased risk of lymph node metastasis and advanced TNM (tumor size, lymph nodes, and metastases) stages. Notch1 also represents an independent prognostic factor in surgically resected adenocarcinoma patients with a major impact in combination with VEGF-A (Vascular Epidermal Growth Factor-Alpha) upregulation [37, 38]. Future investigations might clarify the usefulness of targeting Notch signaling in specific subpopulation of NSCLC patients [39].

A key role of Notch signaling has been recently highlighted in the context of SCLC growth and resistance to therapy. Stable expression of the active form of Nocth1 in SCLC cells inhibits cell proliferation and decreases the expression of several neuroendocrine markers [40]. Moreover, alteration of Notch-Ascl1-Rb-p53 axis has been recently described as major driver of secondary transition from NSCLC to neuroendocrine phenotype and SCLC [41]. These findings provide a novel cellular mechanism for lung histology transition [42] and suggest Notch signaling reactivation as a possible therapeutic strategy for SCLC patients [43].

Finally, emerging evidences suggest that Notch signaling participates to the process of EMT, a highly coordinated process observed when epithelial cells lose some or most epithelial characteristics and acquire properties that are typical of mesenchymal cells. The transition of epithelial cells to mesenchymal cells is essential during embryogenesis and includes phenotypic changes such as loss of cell-cell adhesion, loss of cell polarity, and the acquisition of migratory and invasive properties. Accumulating evidences suggest that aberrant activation of the EMT developmental program contributes to tumor initiation, invasion, metastasis, and acquisition of therapeutic resistance [44, 45]. Notch, Wnt, Hedgehog (Hh), and TGF-b pathways induce well-differentiated epithelial cells to convert into motile mesenchymal cells in tumors via the activation of multiple EMT transcription factors, including Twist, Snail, Slug, and ZEB [46] and their deregulation correlates with poor clinical outcomes [47]. These findings corroborate the hypothesis that Notch1 and Notch3 may represent typical markers of stem-like cells indifferent solid tumors, including lung cancer [48].

3. Mechanisms of Notch Deregulation in Cancer

Notch receptors have been found deregulated in many tumors, and the prevalence and location of mutations within each Notch receptor coding gene varied considerably according to the tumor type [49]. Many identified mutations are heterozygous and correlate with a haploinsufficiency in tissue pattering and suggest that loss of a single copy functionally impairs signaling and therefore induces tumorigenesis. In general, NOTCH1 gene mutations are more frequently recognized than in the other NOTCH receptor genes. This was in part, but not entirely, due to the greater number of tumors with Notch1 sequencing data. For head and neck cancer (HNSCC) and lung and breast cancers, NOTCH1 mutations were relatively recurrent (5–15%) and clustered at or near identified important domains.

In lung cancer, the deregulation of the Notch pathway is mainly correlated with activating missense mutations mostly affecting the ligand-binding domain (EGF repeats 11 and 12) or the ankyrin domains which lead to a ligand-independent activation [50]. NOTCH1 activating mutations have been defined as a common event in human NSCLC [51] and have been correlated to poor prognosis and response to therapy in lung patients without p53 mutations [52]. To note, NOTCH1 mutations in SqCC appeared to be more frequent than pulmonary adenocarcinoma, and their typical location in close proximity of the ligand-binding domain leads to the speculation that Notch1 is more likely to function as a tumor suppressor in SqCC than in the adenocarcinoma histology [49]. However, the real frequency of NOTCH1 mutations in NSCLC remains to be determined. The limited size and intrinsic variations of the just reported studied cohorts, along with the differences in sequencing strategy, do not allow a definitive conclusion on the magnitude of this event [53].

By contrast, mutations affecting the NOTCH family genes have been widely assessed and described as one of the most mutated pathways driving neuroendocrine features and SCLC. Different missense changes affecting all NOTCH1–NOTCH4 genes with different frequency in relation to the different histologies of lung neuroendocrine tumors have been reported [54]. In SCLC, frequent damaging mutations have been identified in the extracellular domain with an incidence of about 25%, suggesting that Notch may act a tumor suppressor [55], leading to growth inhibition and neuroendocrine markers reduction [56].

Mutations in NOTCH1–NOTCH4 family genes (28%) have also been recently reported in Large Cell Neuroendocrine Cancer (LCNEC) by genomic analysis. Many mutations were located in the extracellular EGF-like domain and were mainly associated with NSCLC-like subgroup but differ from the typical mutation pattern of lung adenocarcinoma. This represents an additional, strong evidence of the crucial role of Notch in lung neuroendocrine development [57].

In addition to direct mutations of NOTCH genes, alternative mechanisms of Notch deregulation have been reported in lung cancers. Molecular profiling of alternative splicing variants in lung adenocarcinoma have revealed frequent alternative splicing events affecting the NUMB gene, similar to primary breast and colon cancers. These abnormal isoforms lack normal activity and aberrantly induce the reduction of Numb protein expression levels and activation of the Notch signaling pathway there by promoting cell proliferation [58].

Finally, recent evidences indicate that there is a significant crosstalk between Notch and microRNAs. As a key component of the Notch-mediated transcription complex, Notch can regulate expression of a number of microRNAs; at the same time, Notch ligands, Notch receptors, or Notch effectors are regulated by microRNAs [59]. Indeed, members of five different families of miRNAs (miR-2, miR-4, miR-7, miR-11, and miR-79) have been shown to negatively regulate Notch target genes by recognizing conserved binding motifs within their transcripts [60]. However, few evidences about the role of this epigenetic mechanism of expression regulation have been provided in lung cancer. Pharmacological induction of miR-34a decreased the expression of Notch1 and its downstream targets including HES-1, Cyclin D1, Survivin, and Bcl-2, impairing Notch signaling, cell proliferation, and invasion and inducing apoptosis in NSCLC cells [61].

4. Nrf2 Signaling

Nrf2 is a basic region-leucine zipper (bZIP) transcription factor that acts as a master modulator of cellular protection against carcinogens and oxidative damage in organisms. Although diverse mechanisms might be involved, it is speculated that the induction of phase II cytoprotective enzymes by Nrf2 chemical inducers occurs, at least in part, by modulating the activities of intracellular signaling kinases [62]. In the cellular basal state, the majority of de novo synthesized Nrf2 is repressed by physical interaction with Keap1, which is an adaptor protein to Cullin 3- (Cul3-) dependent ubiquitination and proteasomal degradation [6367]. When cells are exposed to exogenous and endogenous toxic substances and to oxidative damage, a specific pattern of Keap1 cysteine modification arises [66]. By consequence, the Keap1 releases Nrf2 which translocates into the nucleus where it forms a heterodimer with small Maf proteins. This complex specifically recognizes enhancer sequences known as Antioxidant Response Elements (AREs), located in the regulatory regions of genes encoding for cellular defense enzymes, and activates their expression through the transcription machinery [68, 69]. Several Nrf2 target genes have been identified so far, and the number has increased through the recent technical advances [70]. Apart from the major cytoprotective functions of Nrf2 targeted genes, many of these genes also play in the context of oncogenesis, cell proliferation, apoptosis, and tumor cell growth in many cancer types (Figure 2). Recently, the involvement of Nrf2 has also been recognized in mitochondrial physiology as inductor of respiration substrates, membrane potential maintenance, integrity, and biogenesis [7074].

Figure 2.

Figure 2

Keap1/Nrf2 axis in lung cancer. Under basal conditions (green arrow), Nrf2 is sequestered in the cytoplasm by the Keap1-Cul3 complex and rapidly degraded in the ubiquitin-proteasome dependent manner. This Keap1-mediated degradation activity requires two reactive cysteine residues of Keap1, located into the IVR domain. Upon stress stimuli (orange arrow), modification of these cysteine residues of Keap1 inhibits ubiquitin conjugation to Nrf2 by the Keap1-Cul3 complex, thereby provoking Nrf2-Keap1 impairment and resulting in the nuclear accumulation of de novo synthesized Nrf2 protein and enhancement of target genes transcription.

Scientific findings in several neoplastic backgrounds underlined how the Nrf2 activity is clearly connected with oncogenic kinase pathways, structural proteins, hormonal regulation, other transcription factors, and epigenetic enzymes involved in the pathogenesis of tumors [75].

The large-scale genomic studies of NSCLC by The Cancer Genome Atlas (TCGA) consortium and others have supported that Nrf2 deregulation represents one of the major cancer driver pathways in the specific histotypes of SqCC where cigarette exposure can activate the oxidant stress response [76] and LCNEC of the lung with Non-Small-Cell Carcinoma features [77, 78]. Several mechanistic studies proved opposite roles of Nrf2 during carcinogenesis, either protective or promoting malignant progression [79]. The latter is supported by many clinical observations showing that constitutive upregulation is strongly associated with cancer development, progression, and resistance to conventional chemotherapy and radiotherapy in NSCLC [7982]. Measuring nuclear Nrf2 abundance in NSCLC patients might be a useful index to predict the efficacy of platinum-based treatments. Nuclear accumulation of Nrf2 correlated with worse NSCLC cancer-specific survival and worse progress-free survival in three independent datasets of SqCC patients treated with surgery only [8385]. As the main negative regulator of Nrf2, Keap1 activity and impairment also correlated with NSCLC survival. Our group discovered that NSCLC patients harboring KEAP1 alterations had worse progression-free survival compared with other patients [86]. Similarly, Takahashi et al. found that KEAP1 mutations caused an increase of Nrf2 expression in NSCLC patients and were correlated with worse progression-free and overall survival [87].

Along with KEAP1 mutations, the expression levels of two Nrf2 downstream transcripts expressions, Ho-1 [88, 89] and Nqo1 [9092], were found significantly associated with tumor invasiveness and patients survival in NSCLC advanced stage. In this regard, a recent extensive meta-analysis of microarray data for 240 Nrf2-mediated genes expression signature identify a group of 50 genes (NFE2L2-associated molecular signature, NAMS) that predicts a worse clinical outcome in 60% of NSCLC cohorts analyzed. These data corroborate the idea that NAMS could represent a promising prognostic biomarker in human lung cancer [93]. Correlation of Nrf2 downstream transcripts expression with tumor invasiveness and patients survival in NSCLC advanced stage has been also reported for Ho-1 [88, 89] and Nqo1 [9092].

Three major crosstalks between Nrf2 and other classical oncogenic signaling pathways such as phosphatidylinositol 3-kinase (PI3K) [94], Kirsten retrovirus-associated DNA sequence (K-ras), [95] and Notch [4] have been reported in lung cancer as having a strong impact on tumor resistance outcome. The PI3K-Akt-mTOR pathway is commonly deregulated in several human malignancies including NSCLC [96], and activated PI3K signal increased accumulation of Nrf2 into the nucleus to enhance the transcription of enzymes involved in the pentose phosphate pathway [72]. Since radiotherapy agents can effectively induce apoptosis through generation of ROS [97] it was observed that specific PI3K inhibitor such as NVP-BKM120 can be used in SqCC to decrease Nrf2 protein levels and sensitize NFE2L2 or KEAP1-mutant cells to radiation [94]. KRAS gene mutations occur approximately in 20–30% of NSCLCs and confer to cancer cells resistance and survival [98, 99]. Promoter analysis showed that a TPA response element (TRE) located in exon1 of NFE2L2 gene was activated by Kras. Thus, oncogenic Kras confers in NSCLC chemoresistance by upregulating Nrf2, enhancing the antitumor efficacy of cisplatin and providing a strong preclinical rationale to improve the management of lung tumors harboring KRAS mutations with Nrf2 pathway inhibitors [79, 95, 100].

5. Mechanisms of Nrf2 Deregulation in Cancer

Firstly described in NSCLC cell lines and tissues by Singh et al. in 2006, molecular impairment of Keap1/Nrf2 axis has been then extensively investigated in lung with different mutation clusters found to be related to specific histological subtypes. The overexpression of nuclear Nrf2 and the subsequent increase in the antioxidant defense in lung cancer cells are mainly related to genetic and epigenetic alterations of the KEAP1 and NFE2L2 genes [101]. Somatic mutations of the KEAP1 gene frequently affect the DC domain and produce a decrease in Keap1-promoted Nrf2 ubiquitination by Cul3 or the impairment of nuclear export of Nrf2 by Keap1/Cul3 complexes. In both cases, under cellular stress condition, Nrf2 escapes degradation and translocates into the nucleus to induce the expression of its target genes [102104]. Mutations in NFE2L2 gene were also widely described in lung tumors, suggesting a strong link between molecular perturbations of the Nrf2 pathway and tissue exposure to ROS [105]. NFE2L2 mutations should determine a constitutive activation and have been found to mainly cluster within the DLG and ETGE motifs, which are hotspot sites for Nrf2 binding to the Keap1 DC binding domain. In particular, the ETGE mutant proteins are not ubiquitinated and concentrate in the nucleus, whereas mutations in the DLG resulting in the stabilization of Nrf2 increased its nuclear translocation and Nrf2 de novo molecules synthesis [106, 107].

Mutations and copy number alterations of NFE2L2 and KEAP1 and/or deletion or mutation of CUL3 were observed in 25–34% of SqCC among the classical alterations associated with this smoking-related histology subtype of lung cancer [77, 84]. Instead, a low incidence of KEAP1 mutations has been reported in advanced stage ADC patients with different ethnicity (3–19%) and a lower incidence of EGFR mutations [108, 109], except for papillary adenocarcinoma tumors subtypes (60%) [110]. In addition, TCGA analysis of lung adenocarcinomas has shown that the odds of a tumor carrying a KEAP1 mutation increased more than sixfold among tumors with LKB1 loss. LKB1-deficient tumors are susceptible to oxidative stress because they are unable to produce the appropriate adaptive responses in metabolism and biosynthesis. The high level of overlap in loss of function of KEAP1 and LKB1 genes may suggest that selective pressure exists for the activation of Nrf2 as a secondary protective mechanism to compensate for LKB1 loss [111].

More recently, new experimental evidences have demonstrated a mutual regulation between Nrf2 and microRNAs, especially in the mechanisms of tumor chemoresistance. Indeed, several miRNAs have been validated to target Nrf2 and thus affect its signaling pathway, although only few data have been collected in lung tumor [112115]. On the other hand, Nrf2 has been demonstrated to regulate the expression of different miRNAs. For instance, functional studies in human lung fibroblasts reported as Nrf2/miR-140 signaling confers radioprotection by inducing Nrf2 nuclear translocation and subsequent activation of miR-140 transcription [116]. Moreover, miR-200a reactivation by histone deacetylation has been reported to destabilize Keap1 transcript in resistant lung tumor cell lines [117], whereas Nrf2-dependent regulation of miR-1 and miR-206 has been described to crucially promote non-small-cell lung proliferation and tumorigenesis by modulating the pentose phosphate pathway [118].

Lately, KEAP1 alterations have emerged as an important molecular feature of neuroendocrine tumors of the lung. By performing genome/exome and transcriptome sequencing Fernandez-Cuesta et al. have demonstrated that it is possible to distinguish an LCNEC SCLC-like group, carrying MYCL1 amplifications and mutations in both RB1 and TP53 genes from an AD/SQ-like group, harboring CDKN2A deletions, TTF1 amplifications, and frequent mutations in KEAP1 and STK11. This represents a picture of an evolutionary trunk that can branch to SCLC or AD/SQ on the basis of a different genetic background [112]. These data have been confirmed by Rekhtman et al., who reported an incidence of 31% of KEAP1 mutations in LCNEC NSCLC-like subset [78].

In addition to somatic mutations, other mechanisms affecting Nrf2 expression in lung tumors have been found, even though this field still remains mostly unexplored. For instance, there are compelling evidences that epigenetic regulation might play a key role in modulating Keap1/Nrf2 axis in lung cancer cells [119]. Hypermethylation of the KEAP1 promoter region was firstly described by Wang et al. as a pivotal mechanism in the modulation of the KEAP1 mRNA expression in cell lines and primary lung tumors that could be restored by 5-Aza treatment [120]. A larger study from our group on a cohort of resected primary NSCLCs confirmed these results and further proposed the epigenetic inactivation of KEAP1 by promoter hypermethylation as the main mechanism which leads to reduced or absent Keap1 protein expression previously reported in NSCLC. Genetic and epigenetic analyses on this cohort suggest KEAP1 biallelic inactivation as molecular marker of worst prognosis [86]. It has been recently demonstrated by in vitro analysis that the methylation status of KEAP1 can also predict the tumor cells sensitivity to radiation. Importantly, when radiation is combined with the angiogenesis inhibitor Genestein, there is an increase of ROS levels and cell apoptosis via overexpression of Nrf2, GSS, and Ho-1 in lung adenocarcinoma cells [121]. A possible role of histone deacetylation/acetylation in the epigenetic regulation of the Keap1/Nrf2 pathway has been reported in human NSCLC, where hMOF-mediated acetylation of Nrf2 increased its nuclear retention and the transcription of its downstream genes, subsequently modulating tumor growth and drug resistance [122]. This new role of histone modification in the modulation of Nrf2 has been supported by Li et al., who showed that decreased Ezh2 expression significantly correlated with elevated expression of Nrf2 and its target genes, both in lung cancer tissues and in cell lines [113].

More recently, among the epigenetic mechanisms, new experimental evidences have demonstrated that miRNAs may crucially modulate the Nrf2 expression and affect its signaling pathway in a chemoresistance context [114116, 119]. Nevertheless, most of the data have been reported in epithelial tumors such as breast and colon, whereas only few have been provided in lung cancer. On the other hand, functional studies on human lung fibroblasts reported as Nrf2/miR-140 signaling confer radioprotection by inducing Nrf2 nuclear translocation and subsequent activation of miR-140 transcription [117]. MiR-200a reactivation by histone deacetylation has been reported to destabilize Keap1 transcript in resistant lung tumor cell lines [118], whereas Nrf2-dependent regulation of miR-1 and miR-206 has described as crucial in non-small-cell lung proliferation and tumorigenesis through the modulation of the pentose phosphate pathway [123].

6. Nrf2-Notch Pathways Crosstalk in Lung Cancer

Nrf2, Keap1, and Notch1 rank among the first frequently mutated genes in tumors and were deemed to be significant both in the combined sets of tumors and in individual tumor types. This observation leads to the speculative general notion that the outcome from aberrant Nrf2-Notch crosstalk by molecular impairment in these genes might enhance tumorigenesis and progression to cancer [4], especially in the stem cell (SC) context.

A number of experimental models have been employed to demonstrate that Nrf2 is involved in the maintenance of the stem cell phenotype. ROS have more recently been found to have useful roles in SC proliferation and differentiation [129]. However, the functional significance of the ROS status in different types of SCs, the downstream signaling events, and the role of ROS in SC self-renewal for repair and homeostasis is controversial [130132]. In Drosophila intestinal stem cells, loss of the CncCbZIP-CNC (cap-n-collar subfamily of basic leucine zipper) transcription factor has been reported to increase ROS levels and cell proliferation rates, suggesting that CncC is required to keep the intestinal stem cells in a state of quiescence and to prevent them from entering the cell cycle [130]. In mouse hematopoietic stem cells, loss of Nrf2 has been shown to lead to an expansion of the progenitor pool of myeloid and lymphoid lineages, again suggesting that Nrf2 supports stem cell renewal and proliferative quiescence [133]. A reciprocal Nrf2-Notch transcriptional regulation has been described in hepatobiliary system, having a key role in liver development and in maintenance of hepatic function and its deregulation might be one of the main pathways for promoting cancer [134136].

Less evidences have been provided for a clear Notch-Nrf2 crosstalk in lung cancer. The airway epithelium is constantly exposed to environmental oxidants and therefore serves as an interesting model system to study redox signaling. Cigarette smoke is known to cause oxidative stress-induced airway injury [137], diseases, and cancer airway-related through well-known mechanisms [138].

Additionally, Nrf2 has been implicated in the self-renewal of human airway basal stem cells, but in this case the flux of ROS levels appeared to be the critical factor. In the same context, Notch1 signaling pathway was implicated in helping dynamic changes in ROS levels [138] and has been noted to be essential in early lung development and in the regulation of stem cell self-renewal; thus, when abnormally activated these pathways can cause neoplastic proliferation, representing an early event in tumorigenesis [139]. Beside this, an inverse modulation of Notch by Nrf2 was observed. The gene regulatory region of the major Notch1 transcript has been described to possess a functional ARE region through which Nrf2 can directly regulate Notch1 gene expression, thus promoting airway basal stem cells' self-renewal [138, 140]. Finally, recent data have shown that Nrf2 strongly regulates Notch1 activity and promotes radiation-induced apoptosis through Nrf2 mediated Notch1 signaling in NSCLC cells. Thus, Notch signaling is an important determinant in radioresistance of lung cancer cells [141] (Figure 3).

Figure 3.

Figure 3

Integrated network of Nrf2-Notch crosstalk in lung. Links for biological events occurring in lung involving Nrf2 and Notch interaction with other signaling networks. Black lines indicate interaction, green arrows indicate activation, and red arrows indicate repression.

An indirect suggestion of a functional interdependence in the Notch and Nrf2 pathways comes from recently published studies of genomic analysis in LCNECs. Genes mutation profiling revealed a high incidence of NOTCH genes family (33%) and KEAP1-NFE2L2 (39%) alterations in specific subsets of LCNECs. In particular, NOTCH genes family alterations represent one of the most relevant differences in NSCLC-like LCNEC from classic lung adenocarcinoma and are of particular interest because they give a strong evidence for their crucial role of Notch receptors in neuroendocrine fate specifications in normal and tumor development [55, 57]. However, despite the overall similarity, the most relevant differences identified in SCLC-like LCNEC were an elevated rate of KEAP1-NFE2L2 mutations that rarely occur in conventional SCLC but are frequent in SqCC, suggesting a stronger histogenetic relationship of some conventional SCLCs and SqCCs [78]. Finally, frequent cooccurring mutations NFE2L2, KEAP1, and NOTCH1 in a study on more than four thousand human cancers support the notion that the outcome from aberrant Nrf2–Notch crosstalk by mutations in these genes might specifically enhance tumorigenesis and progression to cancer [142].

7. Therapeutic Targeting of Notch and Nrf2 Pathways

The central role of Notch signaling in cancer, cancer stem cell maintenance, and angiogenesis has significantly fostered the transition from preclinical research into clinical application of alternative targeted compounds, including small molecule inhibitors and large mAbs (monoclonal antibodies) targeting Notch signaling [143]. At the same time, the adjuvant effect of these inhibitors in combination with current chemotherapeutics is still under evaluation in different clinical trials (Table 1) [144].

Table 1.

Details of selected trials with therapeutic Notch-targeting agents for lung cancer treatment.

Class Mechanism Drug Target Condition Development phase Trial status/ID
mAbs to Notch receptors or ligands (neutralizing antibody) Interference with ligand-induced Notch subunit separation and Notch ligands OMP21M18 + CP DLL4 (Delta-like ligand 4) Nonsquamous NSCLC Ib Active, not recruiting/NCT01189968
OMP-59R5 + EP/CDDP or CBDCA Notch2/Notch3 Stage IV Small Cell Lung Cancer (SCLC) Ib/II Recruiting/NCT01859741

mAbs to Wnt signaling pathway (monoclonal antibody) Blocking canonical WNT/β-catenin signaling through binding of five FZD receptor OMP-18R5 + DTX Wnt cancer stem cell pathway Recurrent or advanced NSCLC Ib Recruiting/NCT01957007

γ-Secretase inhibitor (GSI) Inhibition of final Notch cleavage by γ-secretase RO4929097 Notch1, Notch2, Notch3, Notch4, Notch ligands Recurrent NSCLC Stage IIIB NSCLC Stage IV NSCLC II Terminated/NCT01193868
RO4929097 + OSI-774 Recurrent NSCLC Stage IV NSCLC I Terminated/NCT01193881
BMS-906024 Advanced/metastatic squamous NSCLC I Ongoing/NCT01292655
BMS-906024 + chemotherapy regimens Advanced/metastatic squamous NSCLC Ib Ongoing/NCT01653470
BMS-906024 + PTX NSCLC I Synergistic antitumor activity of the Notch gamma secretase inhibitor BMS-906024 and paclitaxel in the treatment of lung adenocarcinoma. Abstract 2535, AA

γ-Secretase inhibitor (GSI)/VEGFR tyrosine kinase inhibitor Inhibit of final Notch cleavage by γ-secretase and stop the growth of tumor cells by blocking some of the enzymes needed for cell growth RO4929097 + AZD2171 Recurrent NSCLC Stage IIIA NSCLC Stage IIIB NSCLC Stage IV NSCLC I Completed/NCT01131234

Chemotherapy agent: CP (carboplatin plus paclitaxel); EP (etoposide), CDDP (cisplatin), CBDCA (carboplatin); DTX (docetaxel); OSI-774 (Erlotinib); chemoregimens: PTX (paclitaxel), 5-FU plus irinotecan (FOLFIRI), or CP (carboplatin plus paclitaxel).

Each status of development phases results from https://www.clinicaltrials.gov/.

The interaction between Notch receptor(s) and ligand(s) takes place within a tight cell-to-cell compartment. Following ligand-receptor association, the sequential two-steps cleavage by the ADAM/TACE proteinase and γ-secretase, respectively, culminates in the functional activation of Notch signaling. Numerous preclinical models have documented so far the anticancer effects of different classes of compounds inhibiting Notch signaling activation such as siRNAs, GSIs, and mAbs [145], with encouraging results for clinical implementation in combination with either chemotherapy or targeted agents [146]. Among these, the oral GSI PF-0308414 showed clinical activity in a phase I study in patients with advanced stage solid tumors [147].

In this context, Notch pathway inhibition is currently under investigation as novel therapeutic option of SCLC. For instance, the fully human IgG2 antibody Tarextumab (TRXT, OMP59R5) combined with chemotherapy has been shown to significantly reduce tumor recurrence in patient-derived SCLC xenografts, by targeting Notch2/Notch3 [148]. On the strength of these results, a phase I/II study of Tarextumab in combination with six cycles of cisplatin and etoposide in ES-SCLC, followed by Tarextumab maintenance (PINNACLE, NCT01859741), is currently ongoing [149].

Alternative approaches for targeting Notch signaling in lung cancer may include several natural agents, such as curcumin (3,3′-diindolylmethane, DIM), resveratrol 3,5-bis (2,4-difluorobenzylidene)-4-piperidone (DiFiD), and epigallocatechin-3-gallate (EGCG) [150], whose anticancer activity has been demonstrated in both in vitro and in vivo models of other solid tumors [151, 152].

Similarly, the pharmacological inhibition of Nrf2 signaling may represent a further therapeutic strategy for cancer treatment, especially in those patients carrying increased levels of Nrf2 (Table 2). Indeed, recent reports have demonstrated that the high levels of Nrf2 are significantly associated to chemo- and radioresistance, rendering the development of novel Nrf2 inhibitors particularly intriguing [153]. For example, it has been demonstrated that all-trans retinoic acid (ATRA) and retinoic acid receptor-α (RARα) agonists can directly sequester Nrf2 and prevent its binding to the ARE, leading to the global downregulation of Nrf2-dependent gene expression [154]. Similar outcomes have been reported as a result of the physical blocking of Nrf2 operated by other nuclear receptors, such as peroxisome proliferator-activated receptor-γ (PPARγ), estrogen receptor-α (ERα), estrogen-related receptor-β (ERRβ), and glucocorticoid receptor (GR) [155].

Table 2.

Details of selected trials or scientific reports on therapeutic Nrf2-inhibition for lung cancer treatment.

Class Mechanism Drug Target Condition Development phase Trial status/ID or scientific reports
Vitamin A metabolite All-trans retinoic inhibits the basal and inducible activity of Nrf2 13-CRA + IFN-A+ Retinoid X receptor alpha binding to Neh7 domain of Nrf2 Recurrent Squamous Cell Lung Cancer (SqCC) II Completed/NCT00002506
RAR-alpha complex (with Nrf2) is not able to bind to ARE and decreases the Nrf2 ability to activate ARE-driven genes ATRA + CDDP + MTC + NVB Stage IIIB or IV NSCLC II Unknown/NCT00005825
13-CRA + IFN-A+ + PTX Recurrent Small Cell Lung Cancer (SCLC) II Completed/NCT00062010
ATRA + PCB∗∗∗ Stage IIIB or IV NSCLC∗∗ II Completed/NCT01048645

Quinoid diterpene Inducing apoptosis by sensitizing A549/DDP cell and inhibiting Nrf2 pathway in chemoresistant lung carcinoma CTS + CDDP Inhibitor of STAT3 and AChE A549/DDP cell line In vitro and in vivo Xia et al., 2015 [124], Cell PhysiolBiochem
Flavonoid Inhibiting ARE-driven gene expression redox-independently, leading to a dramatic decrease in Nrf2 protein levels with depletion of reduced glutathione LUT SRC tyrosine kinase A549 adenocarcinoma cell line In vitro and in vivo Tang et al., 2011 [125], Free Radical Biology & Medicine
Cell proliferation, the expression of Nrf2, and antioxidant enzyme were all reduced in tumor xenograft tissues after cotreatment and inhibiting tumor cell growth LUT + CDDP A549 cell line in athymic nude mice In vitro and in vivo Chian et al., 2014 [126], Biochemical and Biophysical Research Communication

Glycopeptide antibiotic Involveing suppression of Nrf2 activation, inhibiting the incorporation of thymidine into DNA strand, and causing cell cycle arrest in G2 and in mitosis BLM + CDDP + 5-FU + Synthesis of nucleic acid A549 adenocarcinoma cell line LC-AI squamous cell line NCI-H292 mucoepidermoid cell line In vitro Homma et al., 2009 [127], Clin Cancer Res

Quassinoids Inhibiting the Nrf2-mediated protective response at subnanomolar concentration, increase ubiquitination, enhancing Nrf2 degradation, and reducing Nrf2 protein levels Brusatol Formation of the first peptide bond between puromycin and methionyl-transfer RNA A549 cell line In vitro and in vivo Vartanian et al., 2016 [128], Molecular & Cellular Proteomics
Cotreatment inhibits the Nrf2 protective mechanism, leads to decreases cell proliferation, enhances oxidative DNA damage, and reduces apoptosis Brusatol + CDDP Cell culture and murine A549 xenograft models In vitro and in vivo Tao et al. [95], Cancer Res

AA panel of Nrf2 inhibitor cited in the table as follows: 13-CRA (13-cis-retinoic acid), ATRA (all-trans retinoic acid); CTS (cryptotanshinone); LUT (luteolin); BLM (bleomycin); brusatol.

+Biological agent: IFN-A (interferon alpha).

Chemotherapy agent: CDDP (cisplatin), MTC (mitomycin C), NVB (vinorelbine tartrate); PTX (paclitaxel); 5-FU (fluorouracil).

∗∗ In this study patients that have already received paclitaxel and cisplatin (PC) were recruited.

∗∗∗PCB (placebo) means an innocuous medication given to the control group in experiments on the efficacy of a drug.

Each status of development phases results from https://www.clinicaltrials.gov/.

An increasing number of natural compounds are known to also exert a strong effect on Nrf2, thus corroborating the idea of a cross-link with Notch pathway. Among these, sulforaphane thereby induces an activation of the Nrf2/Keap1 cellular detoxification cascade by reacting with thiols of Keap1 DGR domain [156, 157], whereas benzo(a)pyrene(B(a)P) has been shown to inhibits carcinogenesis process in lung mouse model by promoting ROS-mediated apoptosis [158, 159]. Similar mechanism of action has been observed with Oltiplraz, known as a dithiolthione substitute able to induce phase II enzymes, which exhibited a chemoprevention effect in mouse lung adenocarcinoma [160, 161]. Resveratrol restored cigarette smoke exposure- (CSE-) depleted GSS (glutathione synthetase) levels by upregulating GCL (γ-glutamate cysteine ligase) by reducing CSE-mediated Nrf2 modifications [162]. Intriguingly, many studies has shown that curcumin, a natural phenolic compound, which is extracted from a member of the ginger family, has a dually role as inhibitor of Notch1 in osteosarcoma cells and a Nrf2 activator in normal tissues [163, 164].

In conclusion, the therapeutic Nrf2 targeting holds great promise for the treatment of lung cancers especially because it has documented a beneficial adjuvant effect in combination with any category of chemotherapeutics, both ROS generating and non-ROS generating agents. To date, one limitation is represented by the lack of few selective inhibitors for Nrf2 and related pathway. Another limitation is represented by the high risk of off-target toxic effects that most of the Nrf2-targeting drugs may generate due to unspecific interactions with other proteins by their electrophilic surface [165]. Nevertheless, the rational design of nonreactive small molecules directly targeting the Keap1-Nrf2 pathway appears to be the most promising strategy to limit the toxic effects often related to indirect inhibitors and increases stability and bioavailability, as compared with peptide inhibitors [166, 167].

8. Concluding Remarks

There are compelling evidences that developmental pathways, including Notch, act in concert with other pathways such as Nrf2 pathway involved in resistance to therapy, rather than as a simple on-off switch. Notch can play as tumor suppressor or oncogene depending on the cell type [168] and interestingly, Nrf2 likely functions in a similar fashion [169]. Nrf2 acts as a prosurvival factor through the expression of its cytoprotective target genes, and molecular deregulation of either Nrf2 or Keap1 is widely described in lung cancer, such as Notch family impairment. In tumors, Nrf2 and Notch signaling pathways appear to mutually regulate each other in which Notch1 is an Nrf2 target gene and Nrf2 is a RBPjk target gene. The roles of the Nrf2-Notch bidirectional interaction in driving or impeding a tumor lung phenotype are still unclear mainly in the context of stem cell renewal and cell proliferation and differentiation. Pharmacological interventions based on these transcription factors collaboration are demanded close with a further explorations of the regulation of this crosstalk in cellular and lung tissue context.

Acknowledgments

This work was supported by the Italian Ministry of Health Ricerca Corrente RC1503LO51 and GR Program 2010-2316264 to Lucia Anna Muscarella and by the AIRC/MGAF Grant 12983 (to Lucia Anna Muscarella). The authors thank Dr. Andreina Guarnieri for the English revision and Barbara Pasculli for the assistance in rewriting the paragraph “targeting Notch and Nrf2 pathways” and professional English editing.

Competing Interests

The authors declare that they have no competing financial interests.

References

  • 1.de la Pompa J. L., Wakeham A., Correia K. M., et al. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development. 1997;124(6):1139–1148. doi: 10.1242/dev.124.6.1139. [DOI] [PubMed] [Google Scholar]
  • 2.Andersson E. R., Lendahl U. Therapeutic modulation of Notch signalling-are we there yet? Nature Reviews Drug Discovery. 2014;13(5):357–378. doi: 10.1038/nrd4252. [DOI] [PubMed] [Google Scholar]
  • 3.Yamamoto S., Schulze K. L., Bellen H. J. Introduction to notch signaling. Methods in Molecular Biology. 2014;1187:1–14. doi: 10.1007/978-1-4939-1139-4_1. [DOI] [PubMed] [Google Scholar]
  • 4.Wakabayashi N., Chartoumpekis D. V., Kensler T. W. Crosstalk between Nrf2 and Notch signaling. Free Radical Biology and Medicine. 2015;88:158–167. doi: 10.1016/j.freeradbiomed.2015.05.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Artavanis-Tsakonas S., Rand M. D., Lake R. J. Notch signaling: cell fate control and signal integration in development. Science. 1999;284(5415):770–776. doi: 10.1126/science.284.5415.770. [DOI] [PubMed] [Google Scholar]
  • 6.Takebe N., Miele L., Harris P. J., et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nature Reviews Clinical Oncology. 2015;12(8):445–464. doi: 10.1038/nrclinonc.2015.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Espinoza I., Miele L. Notch inhibitors for cancer treatment. Pharmacology and Therapeutics. 2013;139(2):95–110. doi: 10.1016/j.pharmthera.2013.02.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Borggrefe T., Oswald F. The Notch signaling pathway: transcriptional regulation at Notch target genes. Cellular and Molecular Life Sciences. 2009;66(10):1631–1646. doi: 10.1007/s00018-009-8668-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Bozkulak E. C., Weinmaster G. Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling. Molecular and Cellular Biology. 2009;29(21):5679–5695. doi: 10.1128/MCB.00406-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Sahlgren C., Gustafsson M. V., Jin S., Poellinger L., Lendahl U. Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(17):6392–6397. doi: 10.1073/pnas.0802047105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Gustafsson M. V., Zheng X., Pereira T., et al. Hypoxia requires Notch signaling to maintain the undifferentiated cell state. Developmental Cell. 2005;9(5):617–628. doi: 10.1016/j.devcel.2005.09.010. [DOI] [PubMed] [Google Scholar]
  • 12.Hao L., Rizzo P., Osipo C., et al. Notch-1 activates estrogen receptor-α-dependent transcription via IKKα in breast cancer cells. Oncogene. 2010;29(2):201–213. doi: 10.1038/onc.2009.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Hayward P., Kalmar T., Arias A. M. Wnt/Notch signalling and information processing during development. Development. 2008;135(3):411–424. doi: 10.1242/dev.000505. [DOI] [PubMed] [Google Scholar]
  • 14.Andersen P., Uosaki H., Shenje L. T., Kwon C. Non-canonical Notch signaling: emerging role and mechanism. Trends in Cell Biology. 2012;22(5):257–265. doi: 10.1016/j.tcb.2012.02.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Baker A. T., Zlobin A., Osipo C. Notch-EGFR/HER2 bidirectional crosstalk in breast cancer. Frontiers in Oncology. 2014;4, article 360 doi: 10.3389/fonc.2014.00360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Connolly K., Manders P., Earls P., Epstein R. J. Papillomavirus-associated squamous skin cancers following transplant immunosuppression: one Notch closer to control. Cancer Treatment Reviews. 2014;40(2):205–214. doi: 10.1016/j.ctrv.2013.08.005. [DOI] [PubMed] [Google Scholar]
  • 17.Knudsen E. S., O'Reilly E. M., Brody J. R., Witkiewicz A. K. Genetic diversity of pancreatic ductal adenocarcinoma and opportunities for precision medicine. Gastroenterology. 2016;150(1):48–63. doi: 10.1053/j.gastro.2015.08.056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Damaskos C., Karatzas T., Kostakis I. D., Nikolidakis L., Kostakis A., Kouraklis G. Nuclear receptors in pancreatic tumor cells. Anticancer Research. 2014;34(12):6897–6911. [PubMed] [Google Scholar]
  • 19.Bertrand F. E., Angus C. W., Partis W. J., Sigounas G. Developmental pathways in colon cancer: crosstalk between WNT, BMP, Hedgehog and Notch. Cell Cycle. 2012;11(23):4344–4351. doi: 10.4161/cc.22134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Tan X., Apte U., Micsenyi A., et al. Epidermal growth factor receptor: a novel target of the Wnt/β-catenin pathway in liver. Gastroenterology. 2005;129(1):285–302. doi: 10.1053/j.gastro.2005.04.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Li Y., Burns J. A., Cheney C. A., et al. Distinct expression profiles of Notch-1 protein in human solid tumors: Implications for development of targeted therapeutic monoclonal antibodies. Biologics. 2010;4:163–171. doi: 10.2147/btt.s11021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Talora C., Sgroi D. C., Crum C. P., Paolo Dotto G. Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes and Development. 2002;16(17):2252–2263. doi: 10.1101/gad.988902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Allen T. D., Rodriguez E. M., Jones K. D., Bishop J. M. Activated Notch1 induces lung adenomas in mice and cooperates with Myc in the generation of lung adenocarcinoma. Cancer Research. 2011;71(18):6010–6018. doi: 10.1158/0008-5472.CAN-11-0595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Sriuranpong V., Borges M. W., Ravi R. K., et al. Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Research. 2001;61(7):3200–3205. [PubMed] [Google Scholar]
  • 25.Baumgart A., Seidl S., Vlachou P., et al. ADAM17 regulates epidermal growth factor receptor expression through the activation of Notch1 in non-small cell lung cancer. Cancer Research. 2010;70(13):5368–5378. doi: 10.1158/0008-5472.CAN-09-3763. [DOI] [PubMed] [Google Scholar]
  • 26.Zheng Y., de la Cruz C. C., Sayles L. C., et al. A rare population of CD24+ITGB4+Notchhi cells drives tumor propagation in NSCLC and requires Notch3 for self-renewal. Cancer Cell. 2013;24(1):59–74. doi: 10.1016/j.ccr.2013.05.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Zheng Q., Qin H., Zhang H., et al. Notch signaling inhibits growth of the human lung adenocarcinoma cell line A549. Oncology Reports. 2007;17(4):847–852. [PubMed] [Google Scholar]
  • 28.Jin M.-M., Ye Y.-Z., Qian Z.-D., Zhang Y.-B. Notch signaling molecules as prognostic biomarkers for non-small cell lung cancer. Oncology Letters. 2015;10(5):3252–3260. doi: 10.3892/ol.2015.3662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Di Cristofano A., Pandolfi P. P. The multiple roles of PTEN in tumor suppression. Cell. 2000;100(4):387–390. doi: 10.1016/S0092-8674(00)80674-1. [DOI] [PubMed] [Google Scholar]
  • 30.Palomero T., Sulis M. L., Cortina M., et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nature Medicine. 2007;13(10):1203–1210. doi: 10.1038/nm1636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Chappell W. H., Green T. D., Spengeman J. D., McCubrey J. A., Akula S. M., Bertrand F. E. Increased protein expression of the PTEN tumor suppressor in the presence of constitutively active Notch-1. Cell Cycle. 2005;4(10):1389–1395. doi: 10.4161/cc.4.10.2028. [DOI] [PubMed] [Google Scholar]
  • 32.Whelan J. T., Forbes S. L., Bertrand F. E. CBF-1 (RBP-Jκ) binds to the PTEN promoter and regulates PTEN gene expression. Cell Cycle. 2007;6(1):80–84. doi: 10.4161/cc.6.1.3648. [DOI] [PubMed] [Google Scholar]
  • 33.Licciulli S., Avila J. L., Hanlon L., et al. Notch1 is required for Kras-induced lung adenocarcinoma and controls tumor cell survival via p53. Cancer Research. 2013;73(19):5974–5984. doi: 10.1158/0008-5472.CAN-13-1384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Baumgart A., Mazur P. K., Anton M., et al. Opposing role of Notch1 and Notch2 in a Kras(G12D)-driven murine non-small cell lung cancer model. Oncogene. 2015;34(5):578–588. doi: 10.1038/onc.2013.592. [DOI] [PubMed] [Google Scholar]
  • 35.Graziani I., Eliasz S., De Marco M. A., et al. Opposite effects of Notch-1 and Notch-2 on mesothelioma cell survival under hypoxia are exerted through the Akt pathway. Cancer Research. 2008;68(23):9678–9685. doi: 10.1158/0008-5472.CAN-08-0969. [DOI] [PubMed] [Google Scholar]
  • 36.Hassan W. A., Yoshida R., Kudoh S., Motooka Y., Ito T. Evaluation of role of Notch3 signaling pathway in human lung cancer cells. Journal of Cancer Research and Clinical Oncology. 2016;142(5):981–993. doi: 10.1007/s00432-016-2117-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Zhou L., Wu S., Yu L., Gong X., Song W., Cheng Z. Expression of CD133 and Notch1 in non-small cell lung cancer and the clinicopathological significance. Nan Fang Yi Ke Da Xue Xue Bao. 2015;35(2):196–201. [PubMed] [Google Scholar]
  • 38.Donnem T., Andersen S., Al-Shibli K., Al-Saad S., Busund L.-T., Bremnes R. M. Prognostic impact of Notch ligands and receptors in nonsmall cell lung cancer: coexpression of Notch-1 and vascular endothelial growth factor-A predicts poor survival. Cancer. 2010;116(24):5676–5685. doi: 10.1002/cncr.25551. [DOI] [PubMed] [Google Scholar]
  • 39.Yuan X., Wu H., Xu H., et al. Meta-analysis reveals the correlation of Notch signaling with non-small cell lung cancer progression and prognosis. Scientific Reports. 2015;5, article 10338 doi: 10.1038/srep10338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Hassan W. A., Yoshida R., Kudoh S., et al. Notch1 controls cell chemoresistance in small cell lung carcinoma cells. Thoracic Cancer. 2016;7(1):123–128. doi: 10.1111/1759-7714.12297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Wagner P. L., Kitabayashi N., Yao-Tseng C., Saqi A. Combined small cell lung carcinomas: genotypic and immunophenotypic analysis of the separate morphologic components. American Journal of Clinical Pathology. 2009;131(3):376–382. doi: 10.1309/ajcpynpfl56pozqy. [DOI] [PubMed] [Google Scholar]
  • 42.Hassan W. A., Yoshida R., Kudoh S., Hasegawa K., Niimori-Kita K., Ito T. Notch1 controls cell invasion and metastasis in small cell lung carcinoma cell lines. Lung Cancer. 2014;86(3):304–310. doi: 10.1016/j.lungcan.2014.10.007. [DOI] [PubMed] [Google Scholar]
  • 43.Wael H., Yoshida R., Kudoh S., Hasegawa K., Niimori-Kita K., Ito T. Notch1 signaling controls cell proliferation, apoptosis and differentiation in lung carcinoma. Lung Cancer. 2014;85(2):131–140. doi: 10.1016/j.lungcan.2014.05.001. [DOI] [PubMed] [Google Scholar]
  • 44.Singh A., Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. 2010;29(34):4741–4751. doi: 10.1038/onc.2010.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Wang Z., Li Y., Kong D., et al. Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Research. 2009;69(6):2400–2407. doi: 10.1158/0008-5472.CAN-08-4312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Xie M., Zhang L., He C.-S., et al. Activation of Notch-1 enhances epithelial-mesenchymal transition in gefitinib-acquired resistant lung cancer cells. Journal of Cellular Biochemistry. 2012;113(5):1501–1513. doi: 10.1002/jcb.24019. [DOI] [PubMed] [Google Scholar]
  • 47.Espinoza I., Miele L. Deadly crosstalk: Notch signaling at the intersection of EMT and cancer stem cells. Cancer Letters. 2013;341(1):41–45. doi: 10.1016/j.canlet.2013.08.027. [DOI] [PubMed] [Google Scholar]
  • 48.Yuan X., Wu H., Han N., et al. Notch signaling and EMT in non-small cell lung cancer: biological significance and therapeutic application. Journal of Hematology and Oncology. 2014;5(7, article 87) doi: 10.1186/s13045-014-0087-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Schwanbeck R. The role of epigenetic mechanisms in notch signaling during development. Journal of Cellular Physiology. 2015;230(5):969–981. doi: 10.1002/jcp.24851. [DOI] [PubMed] [Google Scholar]
  • 50.Ding X.-Y., Ding J., Wu K., et al. Cross-talk between endothelial cells and tumor via delta-like ligand 4/Notch/PTEN signaling inhibits lung cancer growth. Oncogene. 2012;31(23):2899–2906. doi: 10.1038/onc.2011.467. [DOI] [PubMed] [Google Scholar]
  • 51.Egloff A. M., Grandis J. R. Molecular pathways: context-dependent approaches to Notch targeting as cancer therapy. Clinical Cancer Research. 2012;18(19):5188–5195. doi: 10.1158/1078-0432.ccr-11-2258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Westhoff B., Colalucaa I. N., D'Ario G., et al. Alterations of the Notch pathway in lung cancer. Proceedings of the National Academy of Sciences of the United States. 2009;106(52):22293–22298. doi: 10.1073/pnas.0907781106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Ding L., Getz G., Wheeler D. A., et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008;455(7216):1069–1075. doi: 10.1038/nature07423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Meder L., König K., Ozretic L., et al. NOTCH, ASCL1, p53 and RB alterations define an alternative pathway driving neuroendocrine and small cell lung carcinomas. International Journal of Cancer. 2016;138(4):927–938. doi: 10.1002/ijc.29835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.George J., Lim J. S., Jang S. J., et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524(7563):47–53. doi: 10.1038/nature14664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Kunnimalaiyaan M., Chen H. Tumor suppressor role of Notch-1 signaling in neuroendocrine tumors. Oncologist. 2007;12(5):535–542. doi: 10.1634/theoncologist.12-5-535. [DOI] [PubMed] [Google Scholar]
  • 57.Ball D. W. Achaete-scute homolog-1 and Notch in lung neuroendocrine development and cancer. Cancer Letters. 2004;204(2):159–169. doi: 10.1016/S0304-3835(03)00452-X. [DOI] [PubMed] [Google Scholar]
  • 58.Misquitta-Ali C. M., Cheng E., O'Hanlon D., et al. Global profiling and molecular characterization of alternative splicing events misregulated in lung cancer. Molecular and Cellular Biology. 2011;31(1):138–150. doi: 10.1128/MCB.00709-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Mo Y.-Y., Tang H., Miele L. Notch-associated microRNAs in cancer. Current Drug Targets. 2013;14(10):1157–1166. doi: 10.2174/13894501113149990188. [DOI] [PubMed] [Google Scholar]
  • 60.Lai E. C., Tam B., Rubin G. M. Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes & Development. 2005;19(9):1067–1080. doi: 10.1101/gad.1291905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Ji X., Wang Z., Geamanu A., Goja A., Sarkar F. H., Gupta S. V. Delta-tocotrienol suppresses Notch-1 pathway by upregulating miR-34a in nonsmall cell lung cancer cells. International Journal of Cancer. 2012;131(11):2668–2677. doi: 10.1002/ijc.27549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Motohashi H., Yakamoto M. Carcinogenesis and transcriptional regulation through Maf recognition elements. Cancer Science. 2007;98(2):135–139. doi: 10.1111/j.1349-7006.2006.00358.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Kobayashi A., Kang M.-I., Okawa H., et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Molecular and Cellular Biology. 2004;24(16):7130–7139. doi: 10.1128/MCB.24.16.7130-7139.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Canning P., Sorrell F. J., Bullock A. N. Structural basis of Keap1 interactions with Nrf2. Free Radical Biology and Medicine. 2015;88:101–107. doi: 10.1016/j.freeradbiomed.2015.05.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Canning P., Cooper C. D. O., Krojer T., et al. Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. Journal of Biological Chemistry. 2013;288(11):7803–7814. doi: 10.1074/jbc.M112.437996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Sekhar K. R., Rachakonda G., Freeman M. L. Cysteine-based regulation of the CUL3 adaptor protein Keap1. Toxicology and Applied Pharmacology. 2010;244(1):21–26. doi: 10.1016/j.taap.2009.06.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Tong K. I., Katoh Y., Kusunoki H., Itoh K., Tanaka T., Yamamoto M. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Molecular and Cellular Biology. 2006;26(8):2887–2900. doi: 10.1128/mcb.26.8.2887-2900.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Rushmore T. H., Morton M. R., Pickett C. B. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. The Journal of Biological Chemistry. 1991;266(18):11632–11639. [PubMed] [Google Scholar]
  • 69.Hybertson B. M., Gao B. Role of the Nrf2 signaling system in health and disease. Clinical Genetics. 2014;86(5):447–452. doi: 10.1111/cge.12474. [DOI] [PubMed] [Google Scholar]
  • 70.Malhotra D., Portales-Casamar E., Singh A., et al. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through chip-seq profiling and network analysis. Nucleic Acids Research. 2010;38(17):5718–5734. doi: 10.1093/nar/gkq212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Gañán-Gómez I., Wei Y., Yang H., Boyano-Adánez M. C., García-Manero G. Oncogenic functions of the transcription factor Nrf2. Free Radical Biology and Medicine. 2013;65:750–764. doi: 10.1016/j.freeradbiomed.2013.06.041. [DOI] [PubMed] [Google Scholar]
  • 72.Mitsuishi Y., Taguchi K., Kawatani Y., et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell. 2012;22(1):66–79. doi: 10.1016/j.ccr.2012.05.016. [DOI] [PubMed] [Google Scholar]
  • 73.Niture S. K., Jaiswal A. K. Nrf2-induced antiapoptotic Bcl-xL protein enhances cell survival and drug resistance. Free Radical Biology and Medicine. 2013;57:119–131. doi: 10.1016/j.freeradbiomed.2012.12.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Niture S. K., Jaiswal A. K. Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis. The Journal of Biological Chemistry. 2012;287(13):9873–9886. doi: 10.1074/jbc.m111.312694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Taguchi K., Motohashi H., Yamamoto M. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes to Cells. 2011;16(2):123–140. doi: 10.1111/j.1365-2443.2010.01473.x. [DOI] [PubMed] [Google Scholar]
  • 76.Landi M. T., Dracheva T., Rotunno M., et al. Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival. PLoS ONE. 2008;3(2) doi: 10.1371/journal.pone.0001651.e1651 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.The Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519–525. doi: 10.1038/nature11404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Rekhtman N., Pietanza M. C., Hellmann M. D., et al. Next-generation sequencing of pulmonary large cell neuroendocrine carcinoma reveals small cell carcinoma-like and non-small cell carcinoma-like subsets. Clinical Cancer Research. 2016;22(14):3618–3629. doi: 10.1158/1078-0432.ccr-15-2946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Satoh H., Moriguchi T., Takai J., Ebina M., Yamamoto M. Nrf2 prevents initiation but accelerates progression through the kras signaling pathway during lung carcinogenesis. Cancer Research. 2013;73(13):4158–4168. doi: 10.1158/0008-5472.CAN-12-4499. [DOI] [PubMed] [Google Scholar]
  • 80.Leinonen H. M., Kansanen E., Pölönen P., Heinäniemi M., Levonen A.-L. Dysregulation of the Keap1-Nrf2 pathway in cancer. Biochemical Society Transactions. 2015;43(4):645–649. doi: 10.1042/bst20150048. [DOI] [PubMed] [Google Scholar]
  • 81.Huang Y., Li W., Su Z.-Y., Kong A.-N. T. The complexity of the Nrf2 pathway: beyond the antioxidant response. Journal of Nutritional Biochemistry. 2015;26(12):1401–1413. doi: 10.1016/j.jnutbio.2015.08.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Murakami S., Motohashi H. Roles of Nrf2 in cell proliferation and differentiation. Free Radical Biology and Medicine B. 2015;88:168–178. doi: 10.1016/j.freeradbiomed.2015.06.030. [DOI] [PubMed] [Google Scholar]
  • 83.Yang H., Wang W., Zhang Y., et al. The role of NF-E2-related factor 2 in predicting chemoresistance and prognosis in advanced non-small-cell lung cancer. Clinical Lung Cancer. 2011;12(3):166–171. doi: 10.1016/j.cllc.2011.03.012. [DOI] [PubMed] [Google Scholar]
  • 84.Solis L. M., Behrens C., Dong W., et al. Nrf2 and Keap1 abnormalities in non-small cell lung carcinoma and association with clinicopathologic features. Clinical Cancer Research. 2010;16(14):3743–3753. doi: 10.1158/1078-0432.CCR-09-3352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Cescon D. W., She D., Sakashita S., et al. NRF2 pathway activation and adjuvant chemotherapy benefit in lung squamous cell carcinoma. Clinical Cancer Research. 2015;21(11):2499–2505. doi: 10.1158/1078-0432.ccr-14-2206. [DOI] [PubMed] [Google Scholar]
  • 86.Muscarella L. A., Parrella P., D'Alessandro V., et al. Frequent epigenetics inactivation of KEAP1 gene in non-small cell lung cancer. Epigenetics. 2011;6(6):710–719. doi: 10.4161/epi.6.6.15773. [DOI] [PubMed] [Google Scholar]
  • 87.Takahashi T., Sonobe M., Menju T., et al. Mutations in Keap1 are a potential prognostic factor in resected non-small cell lung cancer. Journal of Surgical Oncology. 2010;101(6):500–506. doi: 10.1002/jso.21520. [DOI] [PubMed] [Google Scholar]
  • 88.Degese M. S., Mendizabal J. E., Gandini N. A., et al. Expression of heme oxygenase-1 in non-small cell lung cancer (NSCLC) and its correlation with clinical data. Lung Cancer. 2012;77(1):168–175. doi: 10.1016/j.lungcan.2012.02.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Tsai J.-R., Wang H.-M., Liu P.-L., et al. High expression of heme oxygenase-1 is associated with tumor invasiveness and poor clinical outcome in non-small cell lung cancer patients. Cellular Oncology. 2012;35(6):461–471. doi: 10.1007/s13402-012-0105-5. [DOI] [PubMed] [Google Scholar]
  • 90.Kolesar J. M., Pritchard S. C., Kerr K. M., Kim K., Nicolson M. C., McLeod H. Evaluation of NQO1 gene expression and variant allele in human NSCLC tumors and matched normal lung tissue. International Journal of Oncology. 2002;21(5):1119–1124. doi: 10.3892/ijo.21.5.1119. [DOI] [PubMed] [Google Scholar]
  • 91.Kolesar J. M., Dahlberg S. E., Marsh S., et al. The NQO1∗2/∗2 polymorphism is associated with poor overall survival in patients following resection of stages II and IIIa non-small cell lung cancer. Oncology Reports. 2011;25(6):1765–1772. doi: 10.3892/or.2011.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Li Z., Zhang Y., Jin T., et al. NQO1 protein expression predicts poor prognosis of non-small cell lung cancers. BMC Cancer. 2015;15(1, article 207) doi: 10.1186/s12885-015-1227-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Qian Z., Zhou T., Gurguis C. I., et al. Nuclear factor, erythroid 2-like 2-associated molecular signature predicts lung cancer survival. Scientific Reports. 2015;5, article 16889 doi: 10.1038/srep16889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Abazeed M. E., Adams D. J., Hurov K. E., et al. Integrative radiogenomic profiling of squamous cell lung cancer. Cancer Research. 2013;73(20):6289–6298. doi: 10.1158/0008-5472.can-13-1616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Tao S., Wang S., Moghaddam S. J., et al. Oncogenic KRAS confers chemoresistance by upregulating NRF2. Cancer Research. 2014;74(24):7430–7441. doi: 10.1158/0008-5472.can-14-1439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Yip P. Y. Phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin (PI3K-Akt-mTOR) signaling pathway in non-small cell lung cancer. Translational Lung Cancer Research. 2015;4(2):165–176. doi: 10.3978/j.issn.2218-6751.2015.01.04. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Lee S., Lim M.-J., Kim M.-H., et al. An effective strategy for increasing the radiosensitivity of Human lung Cancer cells by blocking Nrf2-dependent antioxidant responses. Free Radical Biology and Medicine. 2012;53(4):807–816. doi: 10.1016/j.freeradbiomed.2012.05.038. [DOI] [PubMed] [Google Scholar]
  • 98.Clay T. D., Russell P. A., Do H., et al. Associations between the IASLC/ATS/ERS lung adenocarcinoma classification and EGFR and KRAS mutations. Pathology. 2016;48(1):17–24. doi: 10.1016/j.pathol.2015.11.002. [DOI] [PubMed] [Google Scholar]
  • 99.Lee B., Lee T., Lee S. H., Choi Y. L., Han J. Clinicopathologic characteristics of EGFR, KRAS, and ALK alterations in 6,595 lung cancers. Oncotarget. 2016;7(17):23874–23884. doi: 10.18632/oncotarget.8074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.DeNicola G. M., Karreth F. A., Humpton T. J., et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 2011;475(7354):106–110. doi: 10.1038/nature10189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Singh A., Misra V., Thimmulappa R. K., et al. Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Medicine. 2006;3(10, article e420) doi: 10.1371/journal.pmed.0030420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Niture S. K., Jaiswal A. K. Prothymosin-α mediates nuclear import of the INrf2/ Cul3·Rbx1 complex to degrade nuclear Nrf2. The Journal of Biological Chemistry. 2009;284(20):13856–13868. doi: 10.1074/jbc.m808084200. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 103.Lee O.-H., Jain A. K., Papusha V., Jaiswal A. K. An auto-regulatory loop between stress sensors INrf2 and Nrf2 controls their cellular abundance. Journal of Biological Chemistry. 2007;282(50):36412–36420. doi: 10.1074/jbc.M706517200. [DOI] [PubMed] [Google Scholar]
  • 104.Sun Z., Zhang S., Chan J. Y., Zhang D. D. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2. Molecular and Cellular Biology. 2007;27(18):6334–6349. doi: 10.1128/MCB.00630-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Mitsuishi Y., Motohashi H., Yamamoto M. The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism. Frontiers in Oncology. 2012;2, article 200 doi: 10.3389/fonc.2012.00200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Shibata T., Ohta T., Tong K. I., et al. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(36):13568–13573. doi: 10.1073/pnas.0806268105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Kim Y. R., Oh J. E., Kim M. S., et al. Oncogenic NRF2 mutations in squamous cell carcinomas of oesophagus and skin. Journal of Pathology. 2010;220(4):446–451. doi: 10.1002/path.2653. [DOI] [PubMed] [Google Scholar]
  • 108.Clinical Lung Cancer Genome Project (CLCGP) A genomics-based classification of human lung tumors. Science Translational Medicine. 2013;5(209):p. 209ra153. doi: 10.1126/scitranslmed.3006802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Kim Y., Hammerman P. S., Kim J., et al. Integrative and comparative genomic analysis of lung squamous cell carcinomas in East Asian patients. Journal of Clinical Oncology. 2014;32(2):121–128. doi: 10.1200/jco.2013.50.8556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Li Q. K., Singh A., Biswal S., Askin F., Gabrielson E. KEAP1 gene mutations and NRF2 activation are common in pulmonary papillary adenocarcinoma. Journal of Human Genetics. 2011;56(3):230–234. doi: 10.1038/jhg.2010.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Kaufman J. M., Amann J. M., Park K., et al. LKB1 loss induces characteristic patterns of gene expression in human tumors associated with NRF2 activation and attenuation of PI3K-AKT. Journal of Thoracic Oncology. 2014;9(6):794–804. doi: 10.1097/JTO.0000000000000173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Fernandez-Cuesta L., Peifer M., Lu X., et al. Abstract 1531: cross-entity mutation analysis of lung neuroendocrine tumors sheds light into their molecular origin and identifies new therapeutic targets. Cancer Research. 2014;74(19, supplement) doi: 10.1158/1538-7445.AM2014-1531. [DOI] [Google Scholar]
  • 113.Li Z., Xu L., Tang N., et al. The polycomb group protein EZH2 inhibits lung cancer cell growth by repressing the transcription factor Nrf2. FEBS Letters. 2014;588(17):3000–3007. doi: 10.1016/j.febslet.2014.05.057. [DOI] [PubMed] [Google Scholar]
  • 114.Van Jaarsveld M. T. M., Helleman J., Boersma A. W. M., et al. miR-141 regulates KEAP1 and modulates cisplatin sensitivity in ovarian cancer cells. Oncogene. 2013;32(36):4284–4293. doi: 10.1038/onc.2012.433. [DOI] [PubMed] [Google Scholar]
  • 115.Chorley B. N., Campbell M. R., Wang X., et al. Identification of novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor alpha. Nucleic Acids Research. 2012;40(15):7416–7429. doi: 10.1093/nar/gks409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Shah N. M., Rushworth S. A., Murray M. Y., Bowles K. M., MacEwan D. J. Understanding the role of NRF2-regulated miRNAs in human malignancies. Oncotarget. 2013;4(8):1130–1142. doi: 10.18632/oncotarget.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Duru N., Gernapudi R., Zhang Y., et al. NRF2/miR-140 signaling confers radioprotection to human lung fibroblasts. Cancer Letters. 2015;369(1):184–191. doi: 10.1016/j.canlet.2015.08.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Murray-Stewart T., Hanigan C. L., Woster P. M., Marton L. J., Casero R. A., Jr. Histone deacetylase inhibition overcomes drug resistance through a miRNA-dependent mechanism. Molecular Cancer Therapeutics. 2013;12(10):2088–2099. doi: 10.1158/1535-7163.MCT-13-0418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Guo Y., Yu S., Zhang C., Kong A. N. Epigenetic regulation of Keap1-Nrf2 signaling. Free Radical Biology & Medicine. 2015;88(part B):337–349. doi: 10.1016/j.freeradbiomed.2015.06.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Wang R., An J., Ji F., Jiao H., Sun H., Zhou D. Hypermethylation of the Keap1 gene in human lung cancer cell lines and lung cancer tissues. Biochemical and Biophysical Research Communications. 2008;373(1):151–154. doi: 10.1016/j.bbrc.2008.06.004. [DOI] [PubMed] [Google Scholar]
  • 121.Liu X., Sun C., Liu B., et al. Genistein mediates the selective radiosensitizing effect in NSCLC A549 cells via inhibiting methylation of the keap1 gene promoter region. Oncotarget. 2016;7(19):27267–27279. doi: 10.18632/oncotarget.8403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Chen Z., Ye X., Tang N., et al. The histone acetylranseferase hMOF acetylates Nrf2 and regulates anti-drug responses in human non-small cell lung cancer. British Journal of Pharmacology. 2014;171(13):3196–3211. doi: 10.1111/bph.12661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Singh A., Happel C., Manna S. K., et al. Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis. The Journal of Clinical Investigation. 2013;123(7):2921–2934. doi: 10.1172/jci66353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Xia C., Bai X., Hou X., et al. Cryptotanshinone reverses cisplatin resistance of human lung carcinoma A549 cells through down-regulating Nrf2 pathway. Cellular Physiology and Biochemistry. 2015;37(2):816–824. doi: 10.1159/000430398. [DOI] [PubMed] [Google Scholar]
  • 125.Tang X., Wang H., Fan L., et al. Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Radical Biology and Medicine. 2011;50(11):1599–1609. doi: 10.1016/j.freeradbiomed.2011.03.008. [DOI] [PubMed] [Google Scholar]
  • 126.Chian S., Thapa R., Chi Z., Wang X. J., Tang X. Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo . Biochemical and Biophysical Research Communications. 2014;447(4):602–608. doi: 10.1016/j.bbrc.2014.04.039. [DOI] [PubMed] [Google Scholar]
  • 127.Homma S., Ishii Y., Morishima Y., et al. Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer. Clinical Cancer Research. 2009;15(10):3423–3432. doi: 10.1158/1078-0432.ccr-08-2822. [DOI] [PubMed] [Google Scholar]
  • 128.Vartanian S., Ma T. P., Lee J., et al. Application of mass spectrometry profiling to establish brusatol as an inhibitor of global protein synthesis. Molecular & Cellular Proteomics. 2016;15(4):1220–1231. doi: 10.1074/mcp.m115.055509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Wang K., Zhang T., Dong Q., Nice E. C., Huang C., Wei Y. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation. Cell Death and Disease. 2013;4(3, article e537) doi: 10.1038/cddis.2013.50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Hochmuth C. E., Biteau B., Bohmann D., Jasper H. Redox regulation by keap1 and Nrf2 controls intestinal stem cell proliferation in drosophila. Cell Stem Cell. 2011;8(2):188–199. doi: 10.1016/j.stem.2010.12.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Jang Y.-Y., Sharkis S. J. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood. 2007;110(8):3056–3063. doi: 10.1182/blood-2007-05-087759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Le Belle J. E., Orozco N. M., Paucar A. A., et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell. 2011;8(1):59–71. doi: 10.1016/j.stem.2010.11.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Tsai J. J., Dudakov J. A., Takahashi K., et al. Nrf2 regulates haematopoietic stem cell function. Nature Cell Biology. 2013;15(3):309–316. doi: 10.1038/ncb2699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Wakabayashi N., Shin S., Slocum S. L., et al. Regulation of Notch1 signaling by Nrf2: implications for tissue regeneration. Science Signaling. 2010;3(130, article ra52) doi: 10.1126/scisignal.2000762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Zong Y., Panikkar A., Xu J., et al. Notch signaling controls liver development by regulating biliary differentiation. Development. 2009;136(10):1727–1739. doi: 10.1242/dev.029140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Wakabayashi N., Skoko J. J., Chartoumpekis D. V., et al. Notch-Nrf2 axis: regulation of Nrf2 gene expression and cytoprotection by notch signaling. Molecular and Cellular Biology. 2014;34(4):653–663. doi: 10.1128/mcb.01408-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Barreiro E., Peinado V. I., Galdiz J. B., et al. Cigarette smoke-induced oxidative stress: a role in chronic obstructive pulmonary disease skeletal muscle dysfunction. American Journal of Respiratory and Critical Care Medicine. 2010;182(4):477–488. doi: 10.1164/rccm.200908-1220oc. [DOI] [PubMed] [Google Scholar]
  • 138.Paul M. K., Bisht B., Darmawan D. O., et al. Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2-dependent notch signaling. Cell Stem Cell. 2014;15(2):199–214. doi: 10.1016/j.stem.2014.05.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Peacock C. D., Watkins D. N. Cancer stem cells and the ontogeny of lung cancer. Journal of Clinical Oncology. 2008;26(17):2883–2889. doi: 10.1200/JCO.2007.15.2702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Wakabayashi N., Slocum S. L., Skoko J. J., Shin S., Kensler T. W. When NRF2 talks, who's listening? Antioxidants & Redox Signaling. 2010;13(11):1649–1663. doi: 10.1089/ars.2010.3216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Zhao Q., Mao A., Yan J., et al. Downregulation of Nrf2 promotes radiation-induced apoptosis through Nrf2 mediated Notch signaling in non-small cell lung cancer cells. International Journal of Oncology. 2016;48(2):765–773. doi: 10.3892/ijo.2015.3301. [DOI] [PubMed] [Google Scholar]
  • 142.Lawrence M. S., Stojanov P., Mermel C. H., et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505(7484):495–501. doi: 10.1038/nature12912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Takebe N., Nguyen D., Yang S. X. Targeting Notch signaling pathway in cancer: clinical development advances and challenges. Pharmacology and Therapeutics. 2014;141(2):140–149. doi: 10.1016/j.pharmthera.2013.09.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Yuan X., Wu H., Xu H., et al. Notch signaling: an emerging therapeutic target for cancer treatment. Cancer Letters. 2015;369(1):20–27. doi: 10.1016/j.canlet.2015.07.048. [DOI] [PubMed] [Google Scholar]
  • 145.Wu Y., Cain-Hom C., Choy L., et al. Therapeutic antibody targeting of individual Notch receptors. Nature. 2010;464(7291):1052–1057. doi: 10.1038/nature08878. [DOI] [PubMed] [Google Scholar]
  • 146.Olsauskas-Kuprys R., Zlobin A., Osipo C. Gamma secretase inhibitors of Notch signaling. OncoTargets and Therapy. 2013;6:943–955. doi: 10.2147/OTT.S33766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Messersmith W. A., Shapiro G. I., Cleary J. M., et al. A phase I, dose-finding study in patients with advanced solid malignancies of the oral γ-secretase inhibitor PF-03084014. Clinical Cancer Research. 2015;21(1):60–67. doi: 10.1158/1078-0432.ccr-14-0607. [DOI] [PubMed] [Google Scholar]
  • 148.Yen W.-C., Fischer M. M., Axelrod F., et al. Targeting notch signaling with a Notch2/Notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clinical Cancer Research. 2015;21(9):2084–2095. doi: 10.1158/1078-0432.ccr-14-2808. [DOI] [PubMed] [Google Scholar]
  • 149.Pietanza M. C., Byers L. A., Minna J. D., Rudin C. M. Small cell lung cancer: will recent progress lead to improved outcomes? Clinical Cancer Research. 2015;21(10):2244–2255. doi: 10.1158/1078-0432.ccr-14-2958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Ahmad A., Sakr W. A., Rahman K. M. Novel targets for detection of cancer and their modulation by chemopreventive natural compounds. Frontiers in Bioscience. 2012;4:410–425. doi: 10.2741/e388. [DOI] [PubMed] [Google Scholar]
  • 151.Pinchot S. N., Jaskula-Sztul R., Ning L., et al. Identification and validation of Notch pathway activating compounds through a novel high-throughput screening method. Cancer. 2011;117(7):1386–1398. doi: 10.1002/cncr.25652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Subramaniam D., Nicholes N. D., Dhar A., et al. 3,5-bis(2,4-difluorobenzylidene)-4-piperidone, a novel compound that affects pancreatic cancer growth and angiogenesis. Molecular Cancer Therapeutics. 2011;10(11):2146–2156. doi: 10.1158/1535-7163.MCT-11-0399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153.Jaramillo M. C., Zhang D. D. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes & Development. 2013;27(20):2179–2191. doi: 10.1101/gad.225680.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Xiu J. W., Hayes J. D., Henderson C. J., Wolf C. R. Identification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(49):19589–19594. doi: 10.1073/pnas.0709483104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.Ki S. H., Cho I. J., Choi D. W., Kim S. G. Glucocorticoid Receptor (GR)-associated SMRT binding to C/EBPβ TAD and Nrf2 Neh4/5: role of SMRT recruited to GR in GSTA2 gene repression. Molecular and Cellular Biology. 2005;25(10):4150–4165. doi: 10.1128/mcb.25.10.4150-4165.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156.Yang L., Palliyaguru D. L., Kensler T. W. Frugal chemoprevention: targeting Nrf2 with foods rich in sulforaphane. Seminars in Oncology. 2016;43(1):146–153. doi: 10.1053/j.seminoncol.2015.09.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.Hong F., Freeman M. L., Liebler D. C. Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane. Chemical Research in Toxicology. 2005;18(12):1917–1926. doi: 10.1021/tx0502138. [DOI] [PubMed] [Google Scholar]
  • 158.Kalpana Deepa Priya D., Gayathri R., Sakthisekaran D. Role of sulforaphane in the anti-initiating mechanism of lung carcinogenesis in vivo by modulating the metabolic activation and detoxification of benzo(a)pyrene. Biomedicine and Pharmacotherapy. 2011;65(1):9–16. doi: 10.1016/j.biopha.2010.08.009. [DOI] [PubMed] [Google Scholar]
  • 159.Jo G. H., Kim G.-Y., Kim W.-J., Park K. Y., Choi Y. H. Sulforaphane induces apoptosis in T24 human urinary bladder cancer cells through a reactive oxygen species-mediated mitochondrial pathway: the involvement of endoplasmic reticulum stress and the Nrf2 signaling pathway. International Journal of Oncology. 2014;45(4):1497–1506. doi: 10.3892/ijo.2014.2536. [DOI] [PubMed] [Google Scholar]
  • 160.Choi S. H., Kim Y. M., Lee J. M., Kim S. G. Antioxidant and mitochondrial protective effects of oxidized metabolites of oltipraz. Expert Opinion on Drug Metabolism and Toxicology. 2010;6(2):213–224. doi: 10.1517/17425250903427972. [DOI] [PubMed] [Google Scholar]
  • 161.Sharma S., Gao P., Steele V. E. The chemopreventive efficacy of inhaled oltipraz particulates in the B[a]P-induced A/J mouse lung adenoma model. Carcinogenesis. 2006;27(8):1721–1727. doi: 10.1093/carcin/bgl052. [DOI] [PubMed] [Google Scholar]
  • 162.Kode A., Rajendrasozhan S., Caito S., Yang S.-R., Megson I. L., Rahman I. Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smoke-mediated oxidative stress in human lung epithelial cells. American Journal of Physiology—Lung Cellular and Molecular Physiology. 2008;294(3):L478–L488. doi: 10.1152/ajplung.00361.2007. [DOI] [PubMed] [Google Scholar]
  • 163.Garg R., Gupta S., Maru G. B. Dietary curcumin modulates transcriptional regulators of phase I and phase II enzymes in benzo[a]pyrene-treated mice: mechanism of its anti-initiating action. Carcinogenesis. 2008;29(5):1022–1032. doi: 10.1093/carcin/bgn064. [DOI] [PubMed] [Google Scholar]
  • 164.Li Y., Zhang J., Ma D., et al. Curcumin inhibits proliferation and invasion of osteosarcoma cells through inactivation of Notch-1 signaling. The FEBS Journal. 2012;279(12):2247–2259. doi: 10.1111/j.1742-4658.2012.08607.x. [DOI] [PubMed] [Google Scholar]
  • 165.Magesh S., Chen Y., Hu L. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents. Medicinal Research Reviews. 2012;32(4):687–726. doi: 10.1002/med.21257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166.Hu L., Magesh S., Chen L., et al. Discovery of a small-molecule inhibitor and cellular probe of Keap1-Nrf2 protein-protein interaction. Bioorganic and Medicinal Chemistry Letters. 2013;23(10):3039–3043. doi: 10.1016/j.bmcl.2013.03.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167.Jiang Z.-Y., Lu M.-C., Xu L.-L., et al. Discovery of potent Keap1-Nrf2 protein-protein interaction inhibitor based on molecular binding determinants analysis. Journal of Medicinal Chemistry. 2014;57(6):2736–2745. doi: 10.1021/jm5000529. [DOI] [PubMed] [Google Scholar]
  • 168.Radtke F., Raj K. The role of Notch in tumorigenesis: oncogene or tumour suppressor. Nature Reviews Cancer. 2003;3(10):756–767. doi: 10.1038/nrc1186. [DOI] [PubMed] [Google Scholar]
  • 169.Lau A., Villeneuve N. F., Sun Z., Wong P. K., Zhang D. D. Dual roles of Nrf2 in cancer. Pharmacological Research. 2008;58(5-6):262–270. doi: 10.1016/j.phrs.2008.09.003. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Oxidative Medicine and Cellular Longevity are provided here courtesy of Wiley

RESOURCES