Abstract
During exercise, increased energy demands are met by increased glucose production that occurs simultaneously with the increased glucose uptake. We had previously observed that, during exercise, metabolic clearance rate of glucose (MCR) increases markedly in normal, but only marginally in poorly controlled diabetic dogs. We wished to determine (i) whether in a more general model of stress matched increases in rate of appearance of glucose and MCR also occur, or if MCR is suppressed, as during catecholamine infusion; and (ii) whether diabetes affects stress-induced changes in rate of glucose appearance and MCR. Therefore, we injected carbachol (27 nmol/50 microliters), an analog of acetylcholine, intracerebroventricularly in seven conscious dogs before and after induction of alloxan diabetes. In normal dogs, plasma epinephrine and cortisol increased 4- to 5-fold, whereas norepinephrine and glucagon doubled. Plasma insulin, however, remained unchanged. Tracer-determined hepatic glucose production increased rapidly, but transiently, by 2.5-fold. This increment can be fully explained by the observed increments in the counterregulatory hormones. Surprisingly, however, MCR also promptly increased, and therefore, plasma glucose changed only marginally. After induction of diabetes, the animals were given intracerebroventricular carbachol while plasma glucose was maintained at moderate hyperglycemia (9.0 +/- 0.4 mM). Increments in counterregulatory hormones were similar to those seen in normal dogs, except for exaggerated norepinephrine release. Peripheral insulin levels were higher in diabetic than in normal dogs; however, MCR was markedly reduced and the lipolytic response to stress increased, indicating insulin resistance. Interestingly, the hyperglycemic response to stress was 6-fold greater in diabetic than normal animals, relating mainly to the failure of MCR to rise. Plasma lactate increased equivalently in diabetic and normal animals despite suppression of MCR in the diabetics, indicating either greater muscle glycogenolysis and/or impairment in glucose oxidation. We conclude that in this stress model MCR increases as in exercise in normal but not in diabetic dogs. We speculate that glucose uptake in stress could be mediated through an insulin-dependent neural mechanism.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bjorkman O., Miles P., Wasserman D., Lickley L., Vranic M. Regulation of glucose turnover during exercise in pancreatectomized, totally insulin-deficient dogs. Effects of beta-adrenergic blockade. J Clin Invest. 1988 Jun;81(6):1759–1767. doi: 10.1172/JCI113517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown M. R., Fisher L. A. Brain peptide regulation of adrenal epinephrine secretion. Am J Physiol. 1984 Jul;247(1 Pt 1):E41–E46. doi: 10.1152/ajpendo.1984.247.1.E41. [DOI] [PubMed] [Google Scholar]
- Brown M. R., Fisher L. A. Central nervous system effects of corticotropin releasing factor in the dog. Brain Res. 1983 Nov 28;280(1):75–79. doi: 10.1016/0006-8993(83)91175-7. [DOI] [PubMed] [Google Scholar]
- Brown M. Neuropeptides: central nervous system effects on nutrient metabolism. Diabetologia. 1981 Mar;20 (Suppl):299–304. [PubMed] [Google Scholar]
- Brown M., Rivier J., Vale W. Somatostatin: central nervous system actions on glucoregulation. Endocrinology. 1979 Jun;104(6):1709–1715. doi: 10.1210/endo-104-6-1709. [DOI] [PubMed] [Google Scholar]
- Challiss R. A., Vranic M., Radda G. K. Bioenergetic changes during contraction and recovery in diabetic rat skeletal muscle. Am J Physiol. 1989 Jan;256(1 Pt 1):E129–E137. doi: 10.1152/ajpendo.1989.256.1.E129. [DOI] [PubMed] [Google Scholar]
- Christensen N. J., Videbaek J. Plasma catecholamines and carbohydrate metabolism in patients with acute myocardial infarction. J Clin Invest. 1974 Aug;54(2):278–286. doi: 10.1172/JCI107763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clifton G. L., Ziegler M. G., Grossman R. G. Circulating catecholamines and sympathetic activity after head injury. Neurosurgery. 1981 Jan;8(1):10–14. doi: 10.1227/00006123-198101000-00003. [DOI] [PubMed] [Google Scholar]
- Cryer P. E. Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. N Engl J Med. 1980 Aug 21;303(8):436–444. doi: 10.1056/NEJM198008213030806. [DOI] [PubMed] [Google Scholar]
- DaRif C. A., Rush H. G. Management of septicemia in rhesus monkeys with chronic indwelling venous catheters. Lab Anim Sci. 1983 Feb;33(1):90–94. [PubMed] [Google Scholar]
- Esler M., Jennings G., Leonard P., Sacharias N., Burke F., Johns J., Blombery P. Contribution of individual organs to total noradrenaline release in humans. Acta Physiol Scand Suppl. 1984;527:11–16. [PubMed] [Google Scholar]
- Finegood D. T., Bergman R. N. Optimal segments: a method for smoothing tracer data to calculate metabolic fluxes. Am J Physiol. 1983 May;244(5):E472–E479. doi: 10.1152/ajpendo.1983.244.5.E472. [DOI] [PubMed] [Google Scholar]
- Gauthier C., el-Tayeb K., Vranic M., Lickley H. L. Glucoregulatory role of cortisol and epinephrine interactions studied in adrenalectomized dogs. Am J Physiol. 1986 Apr;250(4 Pt 1):E393–E401. doi: 10.1152/ajpendo.1986.250.4.E393. [DOI] [PubMed] [Google Scholar]
- Gray D. E., Lickley H. L., Vranic M. Physiologic effects of epinephrine on glucose turnover and plasma free fatty acid concentrations mediated independently of glucagon. Diabetes. 1980 Aug;29(8):600–608. doi: 10.2337/diab.29.8.600. [DOI] [PubMed] [Google Scholar]
- Hagg S. A., Taylor S. I., Ruberman N. B. Glucose metabolism in perfused skeletal muscle. Pyruvate dehydrogenase activity in starvation, diabetes and exercise. Biochem J. 1976 Aug 15;158(2):203–210. doi: 10.1042/bj1580203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halter J. B., Pflug A. E., Porte D., Jr Mechanism of plasma catecholamine increases during surgical stress in man. J Clin Endocrinol Metab. 1977 Nov;45(5):936–944. doi: 10.1210/jcem-45-5-936. [DOI] [PubMed] [Google Scholar]
- Kemmer F. W., Bisping R., Steingrüber H. J., Baar H., Hardtmann F., Schlaghecke R., Berger M. Psychological stress and metabolic control in patients with type I diabetes mellitus. N Engl J Med. 1986 Apr 24;314(17):1078–1084. doi: 10.1056/NEJM198604243141704. [DOI] [PubMed] [Google Scholar]
- Kemmer F. W., Lickley H. L., Gray D. E., Perez G., Vranic M. State of metabolic control determines role of epinephrine-glucagon interaction in glucoregulation in diabetes. Am J Physiol. 1982 Jun;242(6):E428–E436. doi: 10.1152/ajpendo.1982.242.6.E428. [DOI] [PubMed] [Google Scholar]
- Perez G., Kemmer F. W., Lickley H. L., Vranic M. Importance of glucagon in mediating epinephrine-induced hyperglycemia in alloxan-diabetic dogs. Am J Physiol. 1981 Oct;241(4):E328–E335. doi: 10.1152/ajpendo.1981.241.4.E328. [DOI] [PubMed] [Google Scholar]
- Radosevich P. M., Lacy D. B., Brown L. L., Williams P. E., Abumrad N. N. Central effects of beta-endorphins on glucose homeostasis in the conscious dog. Am J Physiol. 1989 Feb;256(2 Pt 1):E322–E330. doi: 10.1152/ajpendo.1989.256.2.E322. [DOI] [PubMed] [Google Scholar]
- Radziuk J., Lickley H. L. The metabolic clearance of glucose: measurement and meaning. Diabetologia. 1985 Jun;28(6):315–322. doi: 10.1007/BF00283136. [DOI] [PubMed] [Google Scholar]
- Radziuk J., Norwich K. H., Vranic M. Experimental validation of measurements of glucose turnover in nonsteady state. Am J Physiol. 1978 Jan;234(1):E84–E93. doi: 10.1152/ajpendo.1978.234.1.E84. [DOI] [PubMed] [Google Scholar]
- Rizza R. A., Cryer P. E., Haymond M. W., Gerich J. E. Adrenergic mechanisms for the effects of epinephrine on glucose production and clearance in man. J Clin Invest. 1980 Mar;65(3):682–689. doi: 10.1172/JCI109714. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rizza R., Haymond M., Cryer P., Gerich J. Differential effects of epinephrine on glucose production and disposal in man. Am J Physiol. 1979 Oct;237(4):E356–E362. doi: 10.1152/ajpendo.1979.237.4.E356. [DOI] [PubMed] [Google Scholar]
- STEELE R. Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci. 1959 Sep 25;82:420–430. doi: 10.1111/j.1749-6632.1959.tb44923.x. [DOI] [PubMed] [Google Scholar]
- Vranic M., Kawamori R., Pek S., Kovacevic N., Wrenshall G. A. The essentiality of insulin and the role of glucagon in regulating glucose utilization and production during strenuous exercise in dogs. J Clin Invest. 1976 Feb;57(2):245–255. doi: 10.1172/JCI108275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vranic M., Wrenshall G. A. Exercise, insulin and glucose turnover in dogs. Endocrinology. 1969 Jul;85(1):165–171. doi: 10.1210/endo-85-1-165. [DOI] [PubMed] [Google Scholar]
- Wasserman D. H., Lickley H. L., Vranic M. Important role of glucagon during exercise in diabetic dogs. J Appl Physiol (1985) 1985 Oct;59(4):1272–1281. doi: 10.1152/jappl.1985.59.4.1272. [DOI] [PubMed] [Google Scholar]
- Wasserman D. H., Lickley H. L., Vranic M. Interactions between glucagon and other counterregulatory hormones during normoglycemic and hypoglycemic exercise in dogs. J Clin Invest. 1984 Oct;74(4):1404–1413. doi: 10.1172/JCI111551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wasserman D. H., Lickley H. L., Vranic M. Role of beta-adrenergic mechanisms during exercise in poorly controlled diabetes. J Appl Physiol (1985) 1985 Oct;59(4):1282–1289. doi: 10.1152/jappl.1985.59.4.1282. [DOI] [PubMed] [Google Scholar]
- Wolfe R. R., Durkot M. J., Allsop J. R., Burke J. F. Glucose metabolism in severely burned patients. Metabolism. 1979 Oct;28(10):1031–1039. doi: 10.1016/0026-0495(79)90007-6. [DOI] [PubMed] [Google Scholar]
- el-Tayeb K. M., Brubaker P. L., Lickley H. L., Cook E., Vranic M. Effect of opiate-receptor blockade on normoglycemic and hypoglycemic glucoregulation. Am J Physiol. 1986 Mar;250(3 Pt 1):E236–E242. doi: 10.1152/ajpendo.1986.250.3.E236. [DOI] [PubMed] [Google Scholar]