Abstract
The mechanisms of early calcitriol (1 alpha,25-dihydroxycholecalciferol) effects, including its receptor activation process as well as its "nongenomic" effects, are poorly understood. Calcitriol causes a rapid accumulation of cGMP, dependent on the presence of normal vitamin D receptors (VDRs). We recently developed an immunocytology method based on rapid microwave fixation suitable to detect the locations of agonist-induced intracellular cGMP accumulation. With the same technique we found that calcitriol induces stepwise and rapid reorganization of VDRs. Here we used this technique to study the subcellular compartmentalization of cGMP accumulation after exposure of cells to various steroid-related agonists and to study the spatial relationship between cGMP accumulation and VDRs. Calcitriol (10 nM) within 15 sec caused clumping of VDRs and accumulation of cGMP around VDR clumps; thereafter (up to 5 min), the cGMP accumulation surrounded VDRs throughout their stepwise reorganization. In fibroblasts from subjects with mutations affecting VDR function, we found disruptions of the calcitriol-induced patterns of cGMP accumulation analogous to the disruptions of VDR reorganization. The colocalization of cGMP accumulation with reorganizing VDRs at early moments after calcitriol addition indicates transduction of the cGMP increase by VDRs inside the cell, rather than by components in the plasma membrane. Other steroid-related agonists caused compartmentalized and sequential changes in cGMP accumulation that seemed specific for each class of agonist. Our findings suggest that compartmentalized cGMP accumulation is an early and common step during activation of steroid-related receptors.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baran D. T., Kelly A. M. Lysophosphatidylinositol: a potential mediator of 1,25-dihydroxyvitamin D-induced increments in hepatocyte cytosolic calcium. Endocrinology. 1988 Mar;122(3):930–934. doi: 10.1210/endo-122-3-930. [DOI] [PubMed] [Google Scholar]
- Baran D. T., Sorensen A. M., Honeyman T. W., Ray R., Holick M. F. Rapid actions of 1 alpha,25-dihydroxyvitamin D3 on Ca2+ and phospholipids in isolated rat liver nuclei. FEBS Lett. 1989 Dec 18;259(1):205–208. doi: 10.1016/0014-5793(89)81529-7. [DOI] [PubMed] [Google Scholar]
- Barsony J., Marx S. J. Immunocytology on microwave-fixed cells reveals rapid and agonist-specific changes in subcellular accumulation patterns for cAMP or cGMP. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1188–1192. doi: 10.1073/pnas.87.3.1188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barsony J., Marx S. J. Ongoing protein synthesis needed for 1,25-(OH)2D3-mediated rapid increase of cyclic GMP in human skin fibroblasts. FEBS Lett. 1988 Aug 1;235(1-2):207–210. doi: 10.1016/0014-5793(88)81263-8. [DOI] [PubMed] [Google Scholar]
- Barsony J., Marx S. J. Receptor-mediated rapid action of 1 alpha,25-dihydroxycholecalciferol: increase of intracellular cGMP in human skin fibroblasts. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1223–1226. doi: 10.1073/pnas.85.4.1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barsony J., McKoy W., DeGrange D. A., Liberman U. A., Marx S. J. Selective expression of a normal action of the 1,25-dihydroxyvitamin D3 receptor in human skin fibroblasts with hereditary severe defects in multiple actions of that receptor. J Clin Invest. 1989 Jun;83(6):2093–2101. doi: 10.1172/JCI114122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barsony J., Pike J. W., DeLuca H. F., Marx S. J. Immunocytology with microwave-fixed fibroblasts shows 1 alpha,25-dihydroxyvitamin D3-dependent rapid and estrogen-dependent slow reorganization of vitamin D receptors. J Cell Biol. 1990 Dec;111(6 Pt 1):2385–2395. doi: 10.1083/jcb.111.6.2385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beato M. Gene regulation by steroid hormones. Cell. 1989 Feb 10;56(3):335–344. doi: 10.1016/0092-8674(89)90237-7. [DOI] [PubMed] [Google Scholar]
- Ben-Or S., Chrambach A. Transformation of the glucocorticoid receptor in the cell-free cytosol of the neural retina of the chick embryo: changes in the size and charge of the receptor complex during transformation suggest a multistage process. J Steroid Biochem. 1988 Jan;29(1):47–56. doi: 10.1016/0022-4731(88)90375-5. [DOI] [PubMed] [Google Scholar]
- Chandler J. S., Chandler S. K., Pike J. W., Haussler M. R. 1,25-Dihydroxyvitamin D3 induces 25-hydroxyvitamin D3-24-hydroxylase in a cultured monkey kidney cell line (LLC-MK2) apparently deficient in the high affinity receptor for the hormone. J Biol Chem. 1984 Feb 25;259(4):2214–2222. [PubMed] [Google Scholar]
- Duval D., Durant S., Homo-Delarche F. Non-genomic effects of steroids. Interactions of steroid molecules with membrane structures and functions. Biochim Biophys Acta. 1983 Aug 11;737(3-4):409–442. doi: 10.1016/0304-4157(83)90008-4. [DOI] [PubMed] [Google Scholar]
- Edelman A., Garabedian M., Anagnostopoulos T. Mechanisms of 1,25(OH)2D3-induced rapid changes of membrane potential in proximal tubule: role of Ca2+-dependent K+ channels. J Membr Biol. 1986;90(2):137–143. doi: 10.1007/BF01869931. [DOI] [PubMed] [Google Scholar]
- Garbers D. L. Guanylate cyclase, a cell surface receptor. J Biol Chem. 1989 Jun 5;264(16):9103–9106. [PubMed] [Google Scholar]
- Gillespie P. G., Beavo J. A. cGMP is tightly bound to bovine retinal rod phosphodiesterase. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4311–4315. doi: 10.1073/pnas.86.11.4311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haussler M. R., Mangelsdorf D. J., Komm B. S., Terpening C. M., Yamaoka K., Allegretto E. A., Baker A. R., Shine J., McDonnell D. P., Hughes M. Molecular biology of the vitamin D hormone. Recent Prog Horm Res. 1988;44:263–305. doi: 10.1016/b978-0-12-571144-9.50013-2. [DOI] [PubMed] [Google Scholar]
- Kawai S., Nieman L. K., Brandon D. D., Udelsman R., Loriaux D. L., Chrousos G. P. Pharmacokinetic properties of the antiglucocorticoid and antiprogesterone steroid RU 486 in man. J Pharmacol Exp Ther. 1987 May;241(2):401–406. [PubMed] [Google Scholar]
- Kost S. L., Smith D. F., Sullivan W. P., Welch W. J., Toft D. O. Binding of heat shock proteins to the avian progesterone receptor. Mol Cell Biol. 1989 Sep;9(9):3829–3838. doi: 10.1128/mcb.9.9.3829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumar V., Chambon P. The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell. 1988 Oct 7;55(1):145–156. doi: 10.1016/0092-8674(88)90017-7. [DOI] [PubMed] [Google Scholar]
- Lee K. L., Petkovich P. M., Heersche J. N. The effects of sodium butyrate on the retinoic acid-induced changes in 1,25-dihydroxyvitamin D3 receptors in tumorigenic and nontumorigenic bone derived cell lines. Endocrinology. 1988 Jun;122(6):2399–2406. doi: 10.1210/endo-122-6-2399. [DOI] [PubMed] [Google Scholar]
- Lieberherr M., Grosse B., Duchambon P., Drüeke T. A functional cell surface type receptor is required for the early action of 1,25-dihydroxyvitamin D3 on the phosphoinositide metabolism in rat enterocytes. J Biol Chem. 1989 Dec 5;264(34):20403–20406. [PubMed] [Google Scholar]
- Login G. R., Dvorak A. M. Microwave fixation provides excellent preservation of tissue, cells and antigens for light and electron microscopy. Histochem J. 1988 Jun-Jul;20(6-7):373–387. doi: 10.1007/BF01002732. [DOI] [PubMed] [Google Scholar]
- MacLaughlin J. A., Cantley L. C., Holick M. F. 1,25(OH)2D3 increases calcium and phosphatidylinositol metabolism in differentiating cultured human keratinocytes. J Nutr Biochem. 1990 Feb;1(2):81–87. doi: 10.1016/0955-2863(90)90054-o. [DOI] [PubMed] [Google Scholar]
- Ortí E., Mendel D. B., Smith L. I., Munck A. Agonist-dependent phosphorylation and nuclear dephosphorylation of glucocorticoid receptors in intact cells. J Biol Chem. 1989 Jun 15;264(17):9728–9731. [PubMed] [Google Scholar]
- Pike J. W., Sleator N. M. Hormone-dependent phosphorylation of the 1,25-dihydroxyvitamin D3 receptor in mouse fibroblasts. Biochem Biophys Res Commun. 1985 Aug 30;131(1):378–385. doi: 10.1016/0006-291x(85)91813-3. [DOI] [PubMed] [Google Scholar]
- Pratt W. B., Sanchez E. R., Bresnick E. H., Meshinchi S., Scherrer L. C., Dalman F. C., Welsh M. J. Interaction of the glucocorticoid receptor with the Mr 90,000 heat shock protein: an evolving model of ligand-mediated receptor transformation and translocation. Cancer Res. 1989 Apr 15;49(8 Suppl):2222s–2229s. [PubMed] [Google Scholar]
- Rossini G. P., Wikström A. C., Gustafsson J. A. Glucocorticoid-receptor complexes are associated with small RNA in vitro. J Steroid Biochem. 1989 May;32(5):633–642. doi: 10.1016/0022-4731(89)90507-4. [DOI] [PubMed] [Google Scholar]
- Rousseau G. G., Schmit J. P. Structure-activity relationships for glucocorticoids-I. Determination of receptor binding and biological activity. J Steroid Biochem. 1977 Sep;8(9):911–919. doi: 10.1016/0022-4731(77)90187-x. [DOI] [PubMed] [Google Scholar]
- Schwartz Z., Schlader D. L., Swain L. D., Boyan B. D. Direct effects of 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 on growth zone and resting zone chondrocyte membrane alkaline phosphatase and phospholipase-A2 specific activities. Endocrinology. 1988 Dec;123(6):2878–2884. doi: 10.1210/endo-123-6-2878. [DOI] [PubMed] [Google Scholar]
- Sone T., Marx S. J., Liberman U. A., Pike J. W. A unique point mutation in the human vitamin D receptor chromosomal gene confers hereditary resistance to 1,25-dihydroxyvitamin D3. Mol Endocrinol. 1990 Apr;4(4):623–631. doi: 10.1210/mend-4-4-623. [DOI] [PubMed] [Google Scholar]
- Sone T., Scott R. A., Hughes M. R., Malloy P. J., Feldman D., O'Malley B. W., Pike J. W. Mutant vitamin D receptors which confer hereditary resistance to 1,25-dihydroxyvitamin D3 in humans are transcriptionally inactive in vitro. J Biol Chem. 1989 Dec 5;264(34):20230–20234. [PubMed] [Google Scholar]
- Vesely D. L. On the mechanism of action of adrenocortical steroids: cortisol and aldosterone enhance guanylate cyclase activity. J Pharmacol Exp Ther. 1980 Sep;214(3):561–566. [PubMed] [Google Scholar]
- Wali R. K., Baum C. L., Sitrin M. D., Brasitus T. A. 1,25(OH)2 vitamin D3 stimulates membrane phosphoinositide turnover, activates protein kinase C, and increases cytosolic calcium in rat colonic epithelium. J Clin Invest. 1990 Apr;85(4):1296–1303. doi: 10.1172/JCI114567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Boland A. R., Nemere I., Norman A. W. Ca2(+)-channel agonist BAY K8644 mimics 1,25(OH)2-vitamin D3 rapid enhancement of Ca2+ transport in chick perfused duodenum. Biochem Biophys Res Commun. 1990 Jan 15;166(1):217–222. doi: 10.1016/0006-291x(90)91933-j. [DOI] [PubMed] [Google Scholar]