Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Feb 15;88(4):1499–1503. doi: 10.1073/pnas.88.4.1499

Intracellular metabolism and mechanism of anti-retrovirus action of 9-(2-phosphonylmethoxyethyl)adenine, a potent anti-human immunodeficiency virus compound.

J Balzarini 1, Z Hao 1, P Herdewijn 1, D G Johns 1, E De Clercq 1
PMCID: PMC51046  PMID: 1705039

Abstract

9-(2-Phosphonylmethoxyethyl)adenine (PMEA) is a potent and selective inhibitor of retrovirus (i.e., human immunodeficiency virus) replication in vitro and in vivo. Uptake of PMEA by human MT-4 cells and subsequent conversion to the mono- and diphosphorylated metabolites (PMEAp and PMEApp) are dose-dependent and occur proportionally with the initial extracellular PMEA concentrations. Adenylate kinase is unable to phosphorylate PMEA. However, 5-phosphoribosyl-1-pyrophosphate synthetase directly converts PMEA to PMEApp with a Km of 1.47 mM and a Vmax that is 150-fold lower than the Vmax for AMP. ATPase, 5'-phosphodiesterase, and nucleoside diphosphate kinase are able to dephosphorylate PMEApp to PMEAp, albeit to a much lower extent than the dephosphorylation of ATP. PMEApp has a relatively long intracellular half-life (16-18 hr) and has a much higher affinity for the human immunodeficiency virus-specified reverse transcriptase than for the cellular DNA polymerase alpha (Ki/Km: 0.01 and 0.60, respectively). PMEApp is at least as potent an inhibitor of human immunodeficiency virus reverse transcriptase as 2',3'-dideoxyadenosine 5'-triphosphate. Being an alternative substrate to dATP, PMEApp acts as a potent DNA chain terminator, and this may explain its anti-retrovirus activity.

Full text

PDF
1499

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aduma P. J., Gupta S. V., De Clercq E. Antiherpes virus activity and effect on deoxyribonucleoside triphosphate pools of (E)-5-(2-bromovinyl)-2'-deoxycytidine in combination with deaminase inhibitors. Antiviral Res. 1990 Mar;13(3):111–125. doi: 10.1016/0166-3542(90)90027-5. [DOI] [PubMed] [Google Scholar]
  2. Ahluwalia G., Cooney D. A., Mitsuya H., Fridland A., Flora K. P., Hao Z., Dalal M., Broder S., Johns D. G. Initial studies on the cellular pharmacology of 2',3'-dideoxyinosine, an inhibitor of HIV infectivity. Biochem Pharmacol. 1987 Nov 15;36(22):3797–3800. doi: 10.1016/0006-2952(87)90440-0. [DOI] [PubMed] [Google Scholar]
  3. Balzarini J., Herdewijn P., De Clercq E. Differential patterns of intracellular metabolism of 2',3'-didehydro-2',3'-dideoxythymidine and 3'-azido-2',3'-dideoxythymidine, two potent anti-human immunodeficiency virus compounds. J Biol Chem. 1989 Apr 15;264(11):6127–6133. [PubMed] [Google Scholar]
  4. Balzarini J., Naesens L., De Clercq E. Anti-retrovirus activity of 9-(2-phosphonylmethoxyethyl)adenine (PMEA) in vivo increases when it is less frequently administered. Int J Cancer. 1990 Aug 15;46(2):337–340. doi: 10.1002/ijc.2910460233. [DOI] [PubMed] [Google Scholar]
  5. Balzarini J., Naesens L., Herdewijn P., Rosenberg I., Holy A., Pauwels R., Baba M., Johns D. G., De Clercq E. Marked in vivo antiretrovirus activity of 9-(2-phosphonylmethoxyethyl)adenine, a selective anti-human immunodeficiency virus agent. Proc Natl Acad Sci U S A. 1989 Jan;86(1):332–336. doi: 10.1073/pnas.86.1.332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Balzarini J., Naesens L., Slachmuylders J., Niphuis H., Rosenberg I., Holý A., Schellekens H., De Clercq E. 9-(2-Phosphonylmethoxyethyl)adenine (PMEA) effectively inhibits retrovirus replication in vitro and simian immunodeficiency virus infection in rhesus monkeys. AIDS. 1991 Jan;5(1):21–28. doi: 10.1097/00002030-199101000-00003. [DOI] [PubMed] [Google Scholar]
  7. Balzarini J., Sobis H., Naesens L., Vandeputte M., De Clercq E. Inhibitory effects of 9-(2-phosphonylmethoxyethyl)adenine and 3'-azido-2',3'-dideoxythymidine on tumor development in mice inoculated intracerebrally with Moloney murine sarcoma virus. Int J Cancer. 1990 Mar 15;45(3):486–489. doi: 10.1002/ijc.2910450319. [DOI] [PubMed] [Google Scholar]
  8. Cooney D. A., Ahluwalia G., Mitsuya H., Fridland A., Johnson M., Hao Z., Dalal M., Balzarini J., Broder S., Johns D. G. Initial studies on the cellular pharmacology of 2',3'-dideoxyadenosine, an inhibitor of HTLV-III infectivity. Biochem Pharmacol. 1987 Jun 1;36(11):1765–1768. doi: 10.1016/0006-2952(87)90235-8. [DOI] [PubMed] [Google Scholar]
  9. De Clercq E., Holý A., Rosenberg I. Efficacy of phosphonylmethoxyalkyl derivatives of adenine in experimental herpes simplex virus and vaccinia virus infections in vivo. Antimicrob Agents Chemother. 1989 Feb;33(2):185–191. doi: 10.1128/aac.33.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Egberink H., Borst M., Niphuis H., Balzarini J., Neu H., Schellekens H., De Clercq E., Horzinek M., Koolen M. Suppression of feline immunodeficiency virus infection in vivo by 9-(2-phosphonomethoxyethyl)adenine. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3087–3091. doi: 10.1073/pnas.87.8.3087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Field H. J., Awan A. R. Effective chemotherapy of equine herpesvirus 1 by phosphonylmethoxyalkyl derivatives of adenine demonstrated in a novel murine model for the disease. Antimicrob Agents Chemother. 1990 May;34(5):709–717. doi: 10.1128/aac.34.5.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gangemi J. D., Cozens R. M., De Clercq E., Balzarini J., Hochkeppel H. K. 9-(2-Phosphonylmethoxyethyl)adenine in the treatment of murine acquired immunodeficiency disease and opportunistic herpes simplex virus infections. Antimicrob Agents Chemother. 1989 Nov;33(11):1864–1868. doi: 10.1128/aac.33.11.1864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HOARD D. E., OTT D. G. CONVERSION OF MONO- AND OLIGODEOXYRIBONUCLEOTIDES TO 5-TRIPHOSPHATES. J Am Chem Soc. 1965 Apr 20;87:1785–1788. doi: 10.1021/ja01086a031. [DOI] [PubMed] [Google Scholar]
  14. Harada S., Koyanagi Y., Yamamoto N. Infection of HTLV-III/LAV in HTLV-I-carrying cells MT-2 and MT-4 and application in a plaque assay. Science. 1985 Aug 9;229(4713):563–566. doi: 10.1126/science.2992081. [DOI] [PubMed] [Google Scholar]
  15. Ho H. T., Hitchcock M. J. Cellular pharmacology of 2',3'-dideoxy-2',3'-didehydrothymidine, a nucleoside analog active against human immunodeficiency virus. Antimicrob Agents Chemother. 1989 Jun;33(6):844–849. doi: 10.1128/aac.33.6.844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Johnson M. A., Ahluwalia G., Connelly M. C., Cooney D. A., Broder S., Johns D. G., Fridland A. Metabolic pathways for the activation of the antiretroviral agent 2',3'-dideoxyadenosine in human lymphoid cells. J Biol Chem. 1988 Oct 25;263(30):15354–15357. [PubMed] [Google Scholar]
  17. Pauwels R., Balzarini J., Schols D., Baba M., Desmyter J., Rosenberg I., Holy A., De Clercq E. Phosphonylmethoxyethyl purine derivatives, a new class of anti-human immunodeficiency virus agents. Antimicrob Agents Chemother. 1988 Jul;32(7):1025–1030. doi: 10.1128/aac.32.7.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sabina R. L., Holmes E. W., Becker M. A. The enzymatic synthesis of 5-amino-4-imidazolecarboxamide riboside triphosphate (ZTP). Science. 1984 Mar 16;223(4641):1193–1195. doi: 10.1126/science.6199843. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES