Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Mar 1;88(5):1611–1615. doi: 10.1073/pnas.88.5.1611

Concerted evolution of duplicated protein-coding genes in Drosophila.

D A Hickey 1, L Bally-Cuif 1, S Abukashawa 1, V Payant 1, B F Benkel 1
PMCID: PMC51074  PMID: 1900365

Abstract

Very rapid rates of gene conversion were observed between duplicated alpha-amylase-coding sequences in Drosophila melanogaster. This gene conversion process was also seen in the related species Drosophila erecta. Specifically, there is virtual sequence identity between the coding regions of the two genes within each species, while the sequence divergence between species is close to that expected based on their phylogenetic relationship. The flanking, noncoding regions are much more highly diverged and do not appear to be subject to gene conversion. Comparison of amylase sequences between the two species provides a clear demonstration that recurrent gene conversion does indeed lead to the concerted evolution of the gene pair.

Full text

PDF
1611

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnheim N., Krystal M., Schmickel R., Wilson G., Ryder O., Zimmer E. Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7323–7327. doi: 10.1073/pnas.77.12.7323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benkel B. F., Abukashawa S., Boer P. H., Hickey D. A. Molecular cloning of DNA complementary to Drosophila melanogaster alpha-amylase mRNA. Genome. 1987 Jun;29(3):510–515. doi: 10.1139/g87-087. [DOI] [PubMed] [Google Scholar]
  3. Benkel B. F., Hickey D. A. A Drosophila gene is subject to glucose repression. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1337–1339. doi: 10.1073/pnas.84.5.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boer P. H., Hickey D. A. The alpha-amylase gene in Drosophila melanogaster: nucleotide sequence, gene structure and expression motifs. Nucleic Acids Res. 1986 Nov 11;14(21):8399–8411. doi: 10.1093/nar/14.21.8399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown D. D., Sugimoto K. The structure and evolution of ribosomal and 5S DNAs in Xenopus laevis and Xenopus mulleri. Cold Spring Harb Symp Quant Biol. 1974;38:501–505. doi: 10.1101/sqb.1974.038.01.054. [DOI] [PubMed] [Google Scholar]
  6. Brown T. C., Jiricny J. Different base/base mispairs are corrected with different efficiencies and specificities in monkey kidney cells. Cell. 1988 Aug 26;54(5):705–711. doi: 10.1016/s0092-8674(88)80015-1. [DOI] [PubMed] [Google Scholar]
  7. Coen E., Strachan T., Dover G. Dynamics of concerted evolution of ribosomal DNA and histone gene families in the melanogaster species subgroup of Drosophila. J Mol Biol. 1982 Jun 15;158(1):17–35. doi: 10.1016/0022-2836(82)90448-x. [DOI] [PubMed] [Google Scholar]
  8. Daïnou O., Cariou M. L., David J. R., Hickey D. Amylase gene duplication: an ancestral trait in the Drosophila melanogaster species subgroup. Heredity (Edinb) 1987 Oct;59(Pt 2):245–251. doi: 10.1038/hdy.1987.119. [DOI] [PubMed] [Google Scholar]
  9. Doane W. W., Gemmill R. M., Schwartz P. E., Hawley S. A., Norman R. A. Structural organization of the alpha-amylase gene locus in Drosophila melanogaster and Drosophila miranda. Isozymes Curr Top Biol Med Res. 1987;14:229–266. [PubMed] [Google Scholar]
  10. Doolittle W. F., Sapienza C. Selfish genes, the phenotype paradigm and genome evolution. Nature. 1980 Apr 17;284(5757):601–603. doi: 10.1038/284601a0. [DOI] [PubMed] [Google Scholar]
  11. Dover G. Molecular drive: a cohesive mode of species evolution. Nature. 1982 Sep 9;299(5879):111–117. doi: 10.1038/299111a0. [DOI] [PubMed] [Google Scholar]
  12. Gemmill R. M., Schwartz P. E., Doane W. W. Structural organization of the Amy locus in seven strains of Drosophila melanogaster. Nucleic Acids Res. 1986 Jul 11;14(13):5337–5352. doi: 10.1093/nar/14.13.5337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gumucio D. L., Wiebauer K., Caldwell R. M., Samuelson L. C., Meisler M. H. Concerted evolution of human amylase genes. Mol Cell Biol. 1988 Mar;8(3):1197–1205. doi: 10.1128/mcb.8.3.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hickey D. A., Benkel B. F., Abukashawa S., Haus S. DNA rearrangement causes multiple changes in gene expression at the amylase locus in Drosophila melanogaster. Biochem Genet. 1988 Dec;26(11-12):757–768. doi: 10.1007/BF02395521. [DOI] [PubMed] [Google Scholar]
  15. Hickey D. A., Benkel B. F., Boer P. H., Genest Y., Abukashawa S., Ben-David G. Enzyme-coding genes as molecular clocks: the molecular evolution of animal alpha-amylases. J Mol Evol. 1987;26(3):252–256. doi: 10.1007/BF02099856. [DOI] [PubMed] [Google Scholar]
  16. Hickey D. A., Benkel B. F., Magoulas C. Molecular biology of enzyme adaptations in higher eukaryotes. Genome. 1989;31(1):272–283. doi: 10.1139/g89-045. [DOI] [PubMed] [Google Scholar]
  17. Hickey D. A. Selfish DNA: a sexually-transmitted nuclear parasite. Genetics. 1982 Jul-Aug;101(3-4):519–531. doi: 10.1093/genetics/101.3-4.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hood L., Campbell J. H., Elgin S. C. The organization, expression, and evolution of antibody genes and other multigene families. Annu Rev Genet. 1975;9:305–353. doi: 10.1146/annurev.ge.09.120175.001513. [DOI] [PubMed] [Google Scholar]
  19. Klein H. L., Petes T. D. Intrachromosomal gene conversion in yeast. Nature. 1981 Jan 15;289(5794):144–148. doi: 10.1038/289144a0. [DOI] [PubMed] [Google Scholar]
  20. Langley C. H., Shrimpton A. E., Yamazaki T., Miyashita N., Matsuo Y., Aquadro C. F. Naturally occurring variation in the restriction map of the amy region of Drosophila melanogaster. Genetics. 1988 Jul;119(3):619–629. doi: 10.1093/genetics/119.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Leigh Brown A. J., Ish-Horowicz D. Evolution of the 87A and 87C heat-shock loci in Drosophila. Nature. 1981 Apr 23;290(5808):677–682. doi: 10.1038/290677a0. [DOI] [PubMed] [Google Scholar]
  22. Letsou A., Liskay R. M. Effect of the molecular nature of mutation on the efficiency of intrachromosomal gene conversion in mouse cells. Genetics. 1987 Dec;117(4):759–769. doi: 10.1093/genetics/117.4.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Maizels N. Diversity achieved by diverse mechanisms: gene conversion in developing B cells of the chicken. Cell. 1987 Feb 13;48(3):359–360. doi: 10.1016/0092-8674(87)90439-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Matsuo Y., Yamazaki T. Nucleotide variation and divergence in the histone multigene family in Drosophila melanogaster. Genetics. 1989 May;122(1):87–97. doi: 10.1093/genetics/122.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nagylaki T. Gene conversion, linkage, and the evolution of multigene families. Genetics. 1988 Sep;120(1):291–301. doi: 10.1093/genetics/120.1.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ohta T., Dover G. A. Population genetics of multigene families that are dispersed into two or more chromosomes. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4079–4083. doi: 10.1073/pnas.80.13.4079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ohta T. On the evolution of multigene families. Theor Popul Biol. 1983 Apr;23(2):216–240. doi: 10.1016/0040-5809(83)90015-1. [DOI] [PubMed] [Google Scholar]
  28. Orgel L. E., Crick F. H. Selfish DNA: the ultimate parasite. Nature. 1980 Apr 17;284(5757):604–607. doi: 10.1038/284604a0. [DOI] [PubMed] [Google Scholar]
  29. Payant V., Abukashawa S., Sasseville M., Benkel B. F., Hickey D. A., David J. Evolutionary conservation of the chromosomal configuration and regulation of amylase genes among eight species of the Drosophila melanogaster species subgroup. Mol Biol Evol. 1988 Sep;5(5):560–567. doi: 10.1093/oxfordjournals.molbev.a040509. [DOI] [PubMed] [Google Scholar]
  30. Petes T., Fink G. R. Gene conversion between repeated genes. Nature. 1982 Nov 18;300(5889):216–217. doi: 10.1038/300216a0. [DOI] [PubMed] [Google Scholar]
  31. Queen C., Korn L. J. A comprehensive sequence analysis program for the IBM personal computer. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 2):581–599. doi: 10.1093/nar/12.1part2.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schoofs M., Amarante J., Cariou J. L., Bovet J. L., Baudet J. Etude expérimentale de l'homotransplantation du péroné par microchirurgie chez le chien beagle. Ann Chir Plast Esthet. 1987;32(2):181–186. [PubMed] [Google Scholar]
  34. Schwartz P. E., Doane W. W. Molecular cloning of alpha-amylase genes from Drosophila melanogaster. III. An inversion at the Amy locus in an amylase-null strain. Biochem Genet. 1989 Feb;27(1-2):31–46. doi: 10.1007/BF00563016. [DOI] [PubMed] [Google Scholar]
  35. Singh R. S., Hickey D. A., David J. Genetic Differentiation between Geographically Distant Populations of DROSOPHILA MELANOGASTER. Genetics. 1982 Jun;101(2):235–256. doi: 10.1093/genetics/101.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Slatkin M. Interchromosomal biased gene conversion, mutation and selection in a multigene family. Genetics. 1986 Mar;112(3):681–698. doi: 10.1093/genetics/112.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Slightom J. L., Blechl A. E., Smithies O. Human fetal G gamma- and A gamma-globin genes: complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell. 1980 Oct;21(3):627–638. doi: 10.1016/0092-8674(80)90426-2. [DOI] [PubMed] [Google Scholar]
  38. Smith G. P. Evolution of repeated DNA sequences by unequal crossover. Science. 1976 Feb 13;191(4227):528–535. doi: 10.1126/science.1251186. [DOI] [PubMed] [Google Scholar]
  39. Szostak J. W., Wu R. Unequal crossing over in the ribosomal DNA of Saccharomyces cerevisiae. Nature. 1980 Apr 3;284(5755):426–430. doi: 10.1038/284426a0. [DOI] [PubMed] [Google Scholar]
  40. Tautz D., Tautz C., Webb D., Dover G. A. Evolutionary divergence of promoters and spacers in the rDNA family of four Drosophila species. Implications for molecular coevolution in multigene families. J Mol Biol. 1987 Jun 5;195(3):525–542. doi: 10.1016/0022-2836(87)90181-1. [DOI] [PubMed] [Google Scholar]
  41. Walsh J. B. Selection and biased gene conversion in a multigene family: consequences of interallelic bias and threshold selection. Genetics. 1986 Mar;112(3):699–716. doi: 10.1093/genetics/112.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Walsh J. B. Sequence-dependent gene conversion: can duplicated genes diverge fast enough to escape conversion? Genetics. 1987 Nov;117(3):543–557. doi: 10.1093/genetics/117.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Willis K. K., Klein H. L. Intrachromosomal recombination in Saccharomyces cerevisiae: reciprocal exchange in an inverted repeat and associated gene conversion. Genetics. 1987 Dec;117(4):633–643. doi: 10.1093/genetics/117.4.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yue X. N., Sakaguchi B., Eickbush T. H. Gene conversions can generate sequence variants in the late chorion multigene families of Bombyx mori. Genetics. 1988 Sep;120(1):221–231. doi: 10.1093/genetics/120.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES