Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Mar 1;88(5):1696–1700. doi: 10.1073/pnas.88.5.1696

High-level synthesis of a heterologous milk protein in the mammary glands of transgenic swine.

R J Wall 1, V G Pursel 1, A Shamay 1, R A McKnight 1, C W Pittius 1, L Hennighausen 1
PMCID: PMC51091  PMID: 1705703

Abstract

The whey acidic protein (WAP) is a major milk protein in mice, rats, and rabbits but has not been found in milk of livestock including swine. To determine whether mammary gland regulatory elements from the WAP gene function across species boundaries and whether it is possible to qualitatively alter milk protein composition, we introduced the mouse WAP gene into the genome of swine. Three lines of transgenic swine were analyzed, and mouse WAP was detected in milk from all lactating females at concentrations of about 1 g/liter; these levels are similar to those found in mouse milk. Expression of the corresponding RNA was specific to the mammary gland. Our results suggest that the molecular basis of mammary-specific gene expression is conserved between swine and mouse. In addition the WAP gene must share, with other milk protein genes, elements that target gene expression to the mammary gland. Mouse WAP accounted for about 3% of the total milk proteins in transgenic pigs, thus demonstrating that it is possible to produce high levels of a foreign protein in milk of farm animals. that it is possible to produce high levels of a foreign protein in

Full text

PDF
1696

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andres A. C., Schönenberger C. A., Groner B., Hennighausen L., LeMeur M., Gerlinger P. Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic mice. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1299–1303. doi: 10.1073/pnas.84.5.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Archibald A. L., McClenaghan M., Hornsey V., Simons J. P., Clark A. J. High-level expression of biologically active human alpha 1-antitrypsin in the milk of transgenic mice. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5178–5182. doi: 10.1073/pnas.87.13.5178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bayna E. M., Rosen J. M. Tissue-specific, high level expression of the rat whey acidic protein gene in transgenic mice. Nucleic Acids Res. 1990 May 25;18(10):2977–2985. doi: 10.1093/nar/18.10.2977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bühler T. A., Bruyère T., Went D. F., Stranzinger G., Bürki K. Rabbit beta-casein promoter directs secretion of human interleukin-2 into the milk of transgenic rabbits. Biotechnology (N Y) 1990 Feb;8(2):140–143. doi: 10.1038/nbt0290-140. [DOI] [PubMed] [Google Scholar]
  5. Campbell S. M., Rosen J. M., Hennighausen L. G., Strech-Jurk U., Sippel A. E. Comparison of the whey acidic protein genes of the rat and mouse. Nucleic Acids Res. 1984 Nov 26;12(22):8685–8697. doi: 10.1093/nar/12.22.8685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. DULBECCO R., VOGT M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med. 1954 Feb;99(2):167–182. doi: 10.1084/jem.99.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gordon J. W., Scangos G. A., Plotkin D. J., Barbosa J. A., Ruddle F. H. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7380–7384. doi: 10.1073/pnas.77.12.7380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harkins M., Boyd R. D., Bauman D. E. Effect of recombinant porcine somatotropin on lactational performance and metabolite patterns in sows and growth of nursing pigs. J Anim Sci. 1989 Aug;67(8):1997–2008. doi: 10.2527/jas1989.6781997x. [DOI] [PubMed] [Google Scholar]
  10. Hennighausen L. G., Sippel A. E. Characterization and cloning of the mRNAs specific for the lactating mouse mammary gland. Eur J Biochem. 1982 Jun 15;125(1):131–141. doi: 10.1111/j.1432-1033.1982.tb06660.x. [DOI] [PubMed] [Google Scholar]
  11. Hennighausen L. G., Sippel A. E. Mouse whey acidic protein is a novel member of the family of 'four-disulfide core' proteins. Nucleic Acids Res. 1982 Apr 24;10(8):2677–2684. doi: 10.1093/nar/10.8.2677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hennighausen L., Ruiz L., Wall R. Transgenic animals--production of foreign proteins in milk. Curr Opin Biotechnol. 1990 Oct;1(1):74–78. doi: 10.1016/0958-1669(90)90013-b. [DOI] [PubMed] [Google Scholar]
  13. Hennighausen L. The mammary gland as a bioreactor: production of foreign proteins in milk. Protein Expr Purif. 1990 Sep;1(1):3–8. doi: 10.1016/1046-5928(90)90037-y. [DOI] [PubMed] [Google Scholar]
  14. Hobbs A. A., Richards D. A., Kessler D. J., Rosen J. M. Complex hormonal regulation of rat casein gene expression. J Biol Chem. 1982 Apr 10;257(7):3598–3605. [PubMed] [Google Scholar]
  15. Lee K. F., Atiee S. H., Rosen J. M. Differential regulation of rat beta-casein-chloramphenicol acetyltransferase fusion gene expression in transgenic mice. Mol Cell Biol. 1989 Feb;9(2):560–565. doi: 10.1128/mcb.9.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lee K. F., DeMayo F. J., Atiee S. H., Rosen J. M. Tissue-specific expression of the rat beta-casein gene in transgenic mice. Nucleic Acids Res. 1988 Feb 11;16(3):1027–1041. doi: 10.1093/nar/16.3.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Massey J. M. Animal production industry in the year 2000 A.D. J Reprod Fertil Suppl. 1990;41:199–208. [PubMed] [Google Scholar]
  18. Meade H., Gates L., Lacy E., Lonberg N. Bovine alpha S1-casein gene sequences direct high level expression of active human urokinase in mouse milk. Biotechnology (N Y) 1990 May;8(5):443–446. doi: 10.1038/nbt0590-443. [DOI] [PubMed] [Google Scholar]
  19. Piletz J. E., Heinlen M., Ganschow R. E. Biochemical characterization of a novel whey protein from murine milk. J Biol Chem. 1981 Nov 25;256(22):11509–11516. [PubMed] [Google Scholar]
  20. Pittius C. W., Hennighausen L., Lee E., Westphal H., Nicols E., Vitale J., Gordon K. A milk protein gene promoter directs the expression of human tissue plasminogen activator cDNA to the mammary gland in transgenic mice. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5874–5878. doi: 10.1073/pnas.85.16.5874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pittius C. W., Sankaran L., Topper Y. J., Hennighausen L. Comparison of the regulation of the whey acidic protein gene with that of a hybrid gene containing the whey acidic protein gene promoter in transgenic mice. Mol Endocrinol. 1988 Nov;2(11):1027–1032. doi: 10.1210/mend-2-11-1027. [DOI] [PubMed] [Google Scholar]
  22. Pursel V. G., Hammer R. E., Bolt D. J., Palmiter R. D., Brinster R. L. Integration, expression and germ-line transmission of growth-related genes in pigs. J Reprod Fertil Suppl. 1990;41:77–87. [PubMed] [Google Scholar]
  23. Pursel V. G., Pinkert C. A., Miller K. F., Bolt D. J., Campbell R. G., Palmiter R. D., Brinster R. L., Hammer R. E. Genetic engineering of livestock. Science. 1989 Jun 16;244(4910):1281–1288. doi: 10.1126/science.2499927. [DOI] [PubMed] [Google Scholar]
  24. Rexroad C. E., Jr, Hammer R. E., Behringer R. R., Palmiter R. D., Brinster R. L. Insertion, expression and physiology of growth-regulating genes in ruminants. J Reprod Fertil Suppl. 1990;41:119–124. [PubMed] [Google Scholar]
  25. Simons F. E., Simons K. J., Chung M., Yeh J. The comparative pharmacokinetics of H1-receptor antagonists. Ann Allergy. 1987 Dec;59(6 Pt 2):20–24. [PubMed] [Google Scholar]
  26. Simons J. P., McClenaghan M., Clark A. J. Alteration of the quality of milk by expression of sheep beta-lactoglobulin in transgenic mice. Nature. 1987 Aug 6;328(6130):530–532. doi: 10.1038/328530a0. [DOI] [PubMed] [Google Scholar]
  27. Vilotte J. L., Soulier S., Stinnakre M. G., Massoud M., Mercier J. C. Efficient tissue-specific expression of bovine alpha-lactalbumin in transgenic mice. Eur J Biochem. 1989 Dec 8;186(1-2):43–48. doi: 10.1111/j.1432-1033.1989.tb15175.x. [DOI] [PubMed] [Google Scholar]
  28. Wall R. J., Pursel V. G., Hammer R. E., Brinster R. L. Development of porcine ova that were centrifuged to permit visualization of pronuclei and nuclei. Biol Reprod. 1985 Apr;32(3):645–651. doi: 10.1095/biolreprod32.3.645. [DOI] [PubMed] [Google Scholar]
  29. Wilkie T. M., Brinster R. L., Palmiter R. D. Germline and somatic mosaicism in transgenic mice. Dev Biol. 1986 Nov;118(1):9–18. doi: 10.1016/0012-1606(86)90068-0. [DOI] [PubMed] [Google Scholar]
  30. Yu S. H., Deen K. C., Lee E., Hennighausen L., Sweet R. W., Rosenberg M., Westphal H. Functional human CD4 protein produced in milk of transgenic mice. Mol Biol Med. 1989 Aug;6(4):255–261. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES