Abstract
The Gram-negative bacterium Pseudomonas aeruginosa produces the phenolic siderophore pyochelin. Salicylic acid is an intermediate in the pyochelin biosynthetic pathway, and mutants blocked in salicylic acid biosynthesis (Sal-) are able to incorporate exogenously supplied salicylic acid into pyochelin. A P. aeruginosa Sal- mutant was incubated with 13 salicylic acid analogues and was found to incorporate three (5-fluorosalicylic acid, 4-methylsalicylic acid, and 3-hydroxypicolinic acid) into pyochelin analogues, trivially designated as 5-fluoropyochelin, 4-methylpyochelin, and 6-azapyochelin. The structures of the mutasynthetic products were confirmed by 1H and 13C NMR and high-resolution fast atom bombardment mass spectrometry as being identical to pyochelin except for the expected changes in the aromatic ring. The biological activity of the three pyochelin analogues was determined in iron transport assays. In comparison to pyochelin, 4-methylpyochelin was more active in the assays whereas the activities of 5-fluoropyochelin and 6-azapyochelin were markedly decreased. In coincubation assays, 5-fluoropyochelin substantially inhibited iron transport by pyochelin; 4-methylpyochelin and 6-azapyochelin did not demonstrate this inhibitory effect.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ankenbauer R. G., Cox C. D. Isolation and characterization of Pseudomonas aeruginosa mutants requiring salicylic acid for pyochelin biosynthesis. J Bacteriol. 1988 Nov;170(11):5364–5367. doi: 10.1128/jb.170.11.5364-5367.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ankenbauer R. G., Toyokuni T., Staley A., Rinehart K. L., Jr, Cox C. D. Synthesis and biological activity of pyochelin, a siderophore of Pseudomonas aeruginosa. J Bacteriol. 1988 Nov;170(11):5344–5351. doi: 10.1128/jb.170.11.5344-5351.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox C. D., Graham R. Isolation of an iron-binding compound from Pseudomonas aeruginosa. J Bacteriol. 1979 Jan;137(1):357–364. doi: 10.1128/jb.137.1.357-364.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox C. D., Rinehart K. L., Jr, Moore M. L., Cook J. C., Jr Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4256–4260. doi: 10.1073/pnas.78.7.4256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daum S. J., Lemke J. R. Mutational biosynthesis of new antibiotics. Annu Rev Microbiol. 1979;33:241–265. doi: 10.1146/annurev.mi.33.100179.001325. [DOI] [PubMed] [Google Scholar]
- Heidinger S., Braun V., Pecoraro V. L., Raymond K. N. Iron supply to Escherichia coli by synthetic analogs of enterochelin. J Bacteriol. 1983 Jan;153(1):109–115. doi: 10.1128/jb.153.1.109-115.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neilands J. B. Microbial iron compounds. Annu Rev Biochem. 1981;50:715–731. doi: 10.1146/annurev.bi.50.070181.003435. [DOI] [PubMed] [Google Scholar]
- Shier W. T., Rinehart K. L., Jr, Gottlieb D. Preparation of four new antibiotics from a mutant of Streptomyces fradiae. Proc Natl Acad Sci U S A. 1969 May;63(1):198–204. doi: 10.1073/pnas.63.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sokol P. A. Production and utilization of pyochelin by clinical isolates of Pseudomonas cepacia. J Clin Microbiol. 1986 Mar;23(3):560–562. doi: 10.1128/jcm.23.3.560-562.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
- Weitl F. L., Raymond K. N., Durbin P. W. Synthetic enterobactin analogues. Carboxamido-2,3-dihydroxyterephthalate conjugates of spermine and spermidine. J Med Chem. 1981 Feb;24(2):203–206. doi: 10.1021/jm00134a015. [DOI] [PubMed] [Google Scholar]