Abstract
Seven‐membered lactones undergo selective SmI2–H2O‐promoted radical cyclization to form substituted cyclooctanols. The products arise from an exo‐mode of cyclization rather than the usual endo‐attack employed in the few radical syntheses of cyclooctanes. The process is terminated by the quenching of a chiral benzylic samarium. A labeling experiment and neutron diffraction study have been used for the first time to probe the configuration and highly diastereoselective deuteration of a chiral organosamarium intermediate.
Keywords: cyclization, cyclooctanes, neutron diffraction, radicals, samarium diiodide
Mapping new routes to challenging molecular architectures is a major driving force in the development of synthetic chemistry.1 Cyclooctanes are found in important natural products and pharmaceuticals and present a fascinating synthetic challenge due to their high ring strain and transannular interactions.2, 3 The race towards the total synthesis of paclitaxel (Taxol)4 spurred particular interest in the motif and the construction of cyclooctanes has become a fertile field (Scheme 1).5, 6, 7, 8, 9, 10, 11 Among these methods, radical cyclization approaches are scarce and have relied mainly on radicals generated from halides,12 ketones13, 14 and aldehydes15 and 8‐endo cyclization modes (Scheme 2 A).16
Scheme 1.

Natural products containing cyclooctane rings.
Scheme 2.

A) 8‐Endo cyclizations dominate cyclooctane synthesis under radical conditions. B) A proposed 5‐exo radical cyclization approach to cyclooctanes and the challenges involved.
Samarium diiodide (Kagan's reagent, SmI2)17, 18 is perhaps the most versatile reductive electron transfer (ET) reagent and has been used extensively for carbon–carbon bond forming reactions.19 We recently expanded the scope of SmI2‐mediated reactions by introducing activation modes involving the reduction of carboxylic acid derivatives using SmI2–H2O.20 The acyl‐type radicals now accessible have been exploited in new functional group transformations and highly selective radical cyclizations involving carbon–carbon bond formation.20, 21, 22, 23, 24 In the case of lactones, ET from SmII to the carbonyl gives rise to radical anions (cf. I in Scheme 2) that are stabilized by hyperconjugation with the adjacent oxygens and by H2O.20, 21a–21e Very recently, we demonstrated that ET to all lactones using SmI2–H2O is reversible and this back ET typically impedes productive reductive transformations.21d However, new opportunities for carbon–carbon bond formation arise if the transient radical anions can be trapped by a suitably placed radical acceptor.
Here we describe a synthesis of substituted cyclooctanes that exploits the first radical cyclizations of seven‐membered lactones, which can be easily accessed by Baeyer–Villiger oxidation of cyclohexanones. The process involves ET to the lactone 1, and generation of radical anion I, followed by trapping of the radical by the tethered alkene. Crucially, potential issues involving back ET to SmIII, radical fragmentation, and radical reduction are overcome. In situ reduction of the hemiketal intermediate 3 delivers 1,4‐cyclooctandiols 2 (Scheme 2 B). The 5‐exo‐trig radical cyclization of lactones stands in sharp contrast to most radical approaches to cyclooctanes that involve 8‐endo attack (Scheme 2 B).3b Furthermore, we report the use of a labeling experiment and a neutron diffraction study to probe for the first time the configuration and highly diastereoselective quenching of a chiral organosamarium.
The feasibility of the transformation was first assessed using lactone 1 a (R1=Me; R2=Ph; R3=H) (Table 1). As expected, no reaction was observed when 1 a was treated with SmI2 in THF (2‐fold excess) and only upon addition of H2O was conversion observed. After optimization of the amount of H2O additive employed, 1,4‐cyclooctandiol 2 a was obtained in good isolated yield. Oxidation of the crude diol 2 a with Dess–Martin periodinane facilitated assessment of the diastereoselectivity and stereochemical course of the radical cyclization by simplifying the diastereoisomeric mixture and providing crystalline product 3 a in 74 % overall, isolated yield. 7‐Methyl substituted lactones 1 b–h (R1=Me), bearing aryl‐substituted alkene tethers with various groups in all positions of the aromatic moiety, underwent efficient cyclization to give the corresponding hemiketals 3 b–h in good to excellent yields (62–93 %, 2 steps) and with good diastereoselectivities (75:25 to 89:11 d.r.). Variation of the substituent in position 7 of the lactone proved possible. For example, benzyl substituted hemiketals 3 l,m (R1=Bn) were obtained in good to excellent isolated yield and with good diastereocontrol. Halogen substituents were compatible with the cyclization conditions (formation of 3 b, 3 c, 3 d, 3 e, 3 m, 2 o) and serve as handles for further functionalization of the products. The trifluoromethyl group also proved stable to the reducing conditions and cyclooctane 3 c was obtained in excellent overall isolated yield. X‐ray crystallographic analysis of 3 a–d revealed the syn selectivity of the cyclization.25 Terminal alkenes could also be employed to intercept the radical anion intermediate, however, in the absence of an aryl substituent on the alkene, radical cyclization was less efficient and cyclooctanes 3 i and 3 k were obtained in low overall yield and with lower diastereoselectivity. The cyclization proved surprisingly tolerant of steric hindrance: lactone 1 j, bearing gem‐disubstitution α to the lactone carbonyl, underwent efficient radical cyclization upon treatment with SmI2–H2O. In this particular case, the product obtained in good overall yield after oxidation was the hydroxyketone 3 j rather than the corresponding hemiketal.
Table 1.
Cyclooctanoid synthesis by 5‐exo‐trig radical cyclization of seven‐membered lactones with SmI2–H2O.[a]
|
[a] Conditions: SmI2 (8 equiv, 2‐fold excess), THF, H2O (800 equiv), room temperature. Isolated yields for 2 steps. Diastereoselectivities were determined from 1H NMR spectra of crude product mixtures.
Lactones 1 n and 1 o lacking an alkyl substituent at the 7 position of the ring (R1=H) also underwent cyclization to give 1,4‐cyclooctandiols 2 n and 2 o in moderate yield. This observation likely results from the lower relative stability of the required reactive conformation in which the alkene tether adopts a pseudo‐axial conformation (Scheme 3). The absence of an alkyl substituent in position 7 of the lactone ring favors a pseudo‐equatorial conformation of the tether, disfavoring its interaction with the radical anion.
Scheme 3.

The impact of lactone conformation on the efficiency of radical cyclization.
The relative configuration of the products is consistent with an anti attack of the radical anion intermediate on the tethered alkene (conformation IIb) involving a product‐like transition state, followed by a second ET and subsequent protonation (or deuteration, see below) (Scheme 4). The observed selectivity likely results from minimization of electrostatic interactions and steric clashes between the alkene and the radical anion intermediate, thus favoring IIb over IIa.26 Subsequent ET to III and protonation of IV gives rise to hemiketal 3 a, which is then reduced further.
Scheme 4.

Proposed mechanism and rationale for the origin of diastereoselectivity in the radical cyclization.
Interestingly, carrying out the cyclization of 1 a with SmI2–D2O gave d ‐3 a with high diastereoselectivity at the benzylic position (>90:10 d.r.). To gain further insight into the mechanism of the radical cyclization and the nature of the organosamarium intermediate IV,27 formed upon reduction of radical III, we determined the relative configuration of the deuterated product d ‐3 a using neutron diffraction (Scheme 5).28 Based on the analysis of a crystalline sample of d ‐3 a, we propose that a chelated, chiral organosamarium intermediate IV is formed29 and the more stable anti ‐IV diastereomer is quenched selectively with retention of configuration at carbon to generate samarium alkoxide V. Finally, deuteration of samarium(III) alkoxide V delivers d ‐3 a.30 To our knowledge this is the first time that the configuration of a diastereoselectively deuterated product has been confirmed using neutron diffraction.31
Scheme 5.

Proposed stereoretentive quenching of a chiral organosamarium: neutron scattering studies.
In conclusion, radical exo‐cyclization of unsaturated seven‐membered lactones, triggered by single ET to the carbonyl group by SmI2–H2O, generates cyclooctanes typically in good yield and high diastereoselectivity. Neutron diffraction has been used to probe, for the first time, the stereochemical course of the selective deuteration of a chiral organosamarium intermediate.
Supporting information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re‐organized for online delivery, but are not copy‐edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Supplementary
Acknowledgements
We thank the EPSRC (Established Career Fellowship to D.J.P. and Postdoctoral Fellowship to X.J.‐B.).
X. Just-Baringo, J. Clark, M. J. Gutmann, D. J. Procter, Angew. Chem. Int. Ed. 2016, 55, 12499.
References
- 1. Armaly A. M., Deporre Y. C., Groso E. J., Riehl P. S., Schindler C. S., Chem. Rev. 2015, 115, 9232. [DOI] [PubMed] [Google Scholar]
- 2.For reviews on ring-closing reactions of bifunctional molecules, see:
- 2a. Illuminati G., Mandolini L., Acc. Chem. Res. 1981, 14, 95; [Google Scholar]
- 2b. Galli C., Mandolini L., Eur. J. Org. Chem. 2000, 3117. [Google Scholar]
- 3.For reviews on the synthesis of eight-membered carbocycles see:
- 3a. Petasis N. A., Patane M. A., Tetrahedron 1992, 48, 5757; [Google Scholar]
- 3b. Mehta G., Singh V., Chem. Rev. 1999, 99, 881; [DOI] [PubMed] [Google Scholar]
- 3c. Yet L., Tetrahedron 1999, 55, 9349; [Google Scholar]
- 3d. Yet L., Chem. Rev. 2000, 100, 2963.11749312 [Google Scholar]
- 4.For selected synthetic approaches to taxol, see:
- 4a. Holton R. A., Kim H.-B., Somoza C., Liang F., Biediger R. J., Boatman P. D., Shindo M., Smith C. C., Kim S., Nadizadeh H., Suzuki Y., Tao C., Vu P., Tang S., Zhang P., Murthi K. K., Gentile L. N., Liu J. H., J. Am. Chem. Soc. 1994, 116, 1599; [Google Scholar]
- 4b. Nicolaou K. C., Yang Z., Liu J. J., Ueno H., Nantermet P. G., Guy R. K., Claiborne C. F., Renaud J., Couladouros E. A., Paulvannan K., Sorensen E. J., Nature 1994, 367, 630; [DOI] [PubMed] [Google Scholar]
- 4c. Masters J. J., Link J. T., Snyder L. B., Young W. B., Danishefsky S. J., Angew. Chem. Int. Ed. Engl. 1995, 34, 1723; [Google Scholar]; Angew. Chem. 1995, 107, 1886; [Google Scholar]
- 4d. Wender P. A., Badham N. F., Conway S. P., Floreancig P. E., Glass T. E., Houze J. B., Krauss N. E., Lee D., Marquess D. G., McGrane P. L., Meng W., Natchus M. G., Shuker A. J., Sutton J. C., Taylor R. E., J. Am. Chem. Soc. 1997, 119, 2757; [Google Scholar]
- 4e. Mukaiyama T., Shiina I., Iwadare H., Saitoh M., Nishimura T., Ohkawa N., Sakoh H., Nishimura K., Tani Y., Hasegawa M., Yamada K., Saitoh K., Chem. Eur. J. 1999, 5, 121; [Google Scholar]
- 4f. Mendoza A., Ishihara Y., Baran P. S., Nat. Chem. 2012, 4, 21. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Urabe D., Asaba T., Inoue M., Chem. Rev. 2015, 115, 9207. [DOI] [PubMed] [Google Scholar]
- 6.For the total synthesis of pleuromutilin, see:
- 6a. Helm M. D., Da Silva M., Sucunza D., Findley T. J. K., Procter D. J., Angew. Chem. Int. Ed. 2009, 48, 9315; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2009, 121, 9479; [Google Scholar]
- 6b. Fazakerley N. J., Helm M. D., Procter D. J., Chem. Eur. J. 2013, 19, 6718; [DOI] [PubMed] [Google Scholar]
- 6c. R. K. Boeckman, Jr. , Springer D. M., Alessi T. R., J. Am. Chem. Soc. 1989, 111, 8284; [Google Scholar]
- 6d. Gibbons E. G., J. Am. Chem. Soc. 1982, 104, 1767. [Google Scholar]
- 7.For the total synthesis of nitidasin, see: Hog D. T., Huber F. M. E., Mayer P., Trauner D., Angew. Chem. Int. Ed. 2014, 53, 8513; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2014, 126, 8653. [Google Scholar]
- 8.For the total synthesis of naupolide, see: Abe H., Morishita T., Yoshie T., Long K., Kobayashi T., Ito H., Angew. Chem. Int. Ed. 2016, 55, 3795; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2016, 128, 3859. [Google Scholar]
- 9.For the total synthesis of ophiobolin A, see: Rowley M., Tsukamoto M., Kishi Y., J. Am. Chem. Soc. 1989, 111, 2735. [Google Scholar]
- 10.For the total synthesis of (+)-ceroplastol I, see: Paquette L. A., Wang T.-Z., Vo N. H., J. Am. Chem. Soc. 1993, 115, 1676. [Google Scholar]
- 11.For recent reports on the synthesis of cyclooctanes, see:
- 11a. Zhu C., Zhang X., Lian X., Ma S., Angew. Chem. Int. Ed. 2012, 51, 7817; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2012, 124, 7937; [Google Scholar]
- 11b. Feldman A. W., Ovaska S. I., Ovaska T. V., Tetrahedron 2014, 70, 4147; [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11c. Canlas G. M. R., Gilbertson S. R., Chem. Commun. 2014, 50, 5007; [DOI] [PubMed] [Google Scholar]
- 11d. Brimioulle R., Bach T., Angew. Chem. Int. Ed. 2014, 53, 12921; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2014, 126, 13135; [Google Scholar]
- 11e. Zhu C., Ma S., Adv. Synth. Catal. 2014, 356, 3897; [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11f. Wang Y., Yu Z.-X., Acc. Chem. Res. 2015, 48, 2288; [DOI] [PubMed] [Google Scholar]
- 11g. Lainhart B. C., Alexanian E. J., Org. Lett. 2015, 17, 1284; [DOI] [PubMed] [Google Scholar]
- 11h. Arichi N., Yamada K., Yamaoka Y., Takasu K., J. Am. Chem. Soc. 2015, 137, 9579; [DOI] [PubMed] [Google Scholar]
- 11i. Zhang J., Xing S., Ren J., Jiang S., Wang Z., Org. Lett. 2015, 17, 218. [DOI] [PubMed] [Google Scholar]
- 12.For selected papers on cyclooctanes formed by cyclization of radicals generated from halides or pseudohalides, see:
- 12a. Hitchcock S. A., Pattenden G., Tetrahedron Lett. 1992, 33, 4843; [Google Scholar]
- 12b. Ghosh K., Ghosh A. K., Ghatak U. R., J. Chem. Soc. Chem. Commun. 1994, 629; [Google Scholar]
- 12c. Houldsworth S. J., Pattenden G., Pryde D. C., Thomson N. M., J. Chem. Soc. Perkin Trans. 1 1997, 1091; [Google Scholar]
- 12d. Lee K., Cha J. K., Tetrahedron Lett. 2001, 42, 6019; [Google Scholar]
- 12e. Maiti S., Drew M. G. B., Mukhopadhyay R., Achari B., Banerjee A. K., Synthesis 2005, 3067; [Google Scholar]
- 12f. Hierold J., Lupton D. W., Org. Lett. 2012, 14, 3412. [DOI] [PubMed] [Google Scholar]
- 13.For selected papers on cyclooctanes formed by reductive radical cyclization of ketones, see:
- 13a. Molander G. A., McKie J. A., J. Org. Chem. 1994, 59, 3186; [Google Scholar]
- 13b. Saadi J., Reissig H.-U., Synlett 2009, 2089; [Google Scholar]
- 13c. Monovich L. G., Hue Y., Le Huéron Y., Rönn M., Molander G. A., J. Am. Chem. Soc. 2000, 122, 52; [Google Scholar]
- 13d. Saadi J., Brüdgam I., Reissig H.-U., Beilstein J. Org. Chem. 2010, 6, 1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.For selected papers on cyclooctanes formed by oxidative radical cyclization of ketones, see:
- 14a. Snider B. B., Merritt J. E., Tetrahedron 1991, 47, 8663; [Google Scholar]
- 14b. Snider B. B., Cole B. M., J. Org. Chem. 1995, 60, 5376; [Google Scholar]
- 14c. Snider B. B., Kiselgof E. Y., Tetrahedron 1996, 52, 6073; [Google Scholar]
- 14d. Snider B. B., Chem. Rev. 1996, 96, 339. [DOI] [PubMed] [Google Scholar]
- 15.For selected papers on cyclooctanes formed by pinacol coupling, see:
- 15a. Kato N., Takeshita H., Kataoka H., Ohbuchi S., Tanaka S., J. Chem. Soc. Perkin Trans. 1 1989, 165; [Google Scholar]
- 15b. Kato N., Wu X., Nishikawa H., Takeshita H., Synlett 1993, 293; [Google Scholar]
- 15c. Swindell C. S., Fan W., J. Org. Chem. 1996, 61, 1109; [Google Scholar]
- 15d. Swindell C. S., Fan W., Tetrahedron Lett. 1996, 37, 2321; [Google Scholar]
- 15e. Gravier-Pelletier C., Andriuzzi O., Le Merrer Y., Tetrahedron Lett. 2002, 43, 245; [Google Scholar]
- 15f. Groth U., Jung M., Vogel T., Synlett 2004, 1054. [Google Scholar]
- 16.For alternative radical cyclization methods to obtain cyclooctanes, see:
- 16a. Boger D. L., Mathvink R. J., J. Org. Chem. 1992, 57, 1429; [Google Scholar]
- 16b. Myers A. G., Condroski K. R., J. Am. Chem. Soc. 1995, 117, 3057; [Google Scholar]
- 16c. Blake A. J., Gladwin A. R., Pattenden G., Smithies A. J., J. Chem. Soc. Perkin Trans. 1 1997, 1167. [Google Scholar]
- 17.
- 17a. Namy J. L., Girard P., Kagan H. B., Nouv. J. Chim. 1977, 1, 5; [Google Scholar]
- 17b. Girard P., Namy J. L., Kagan H. B., J. Am. Chem. Soc. 1980, 102, 2693. [Google Scholar]
- 18.For general reviews on SmI2, see:
- 18a. Molander G. A., Chem. Rev. 1992, 92, 29; [Google Scholar]
- 18b. Molander G. A., Org. React. 1994, 46, 211; [Google Scholar]
- 18c. Molander G. A., Harris C. R., Chem. Rev. 1996, 96, 307; [DOI] [PubMed] [Google Scholar]
- 18d. Krief A., Laval A.-M., Chem. Rev. 1999, 99, 745; [DOI] [PubMed] [Google Scholar]
- 18e. Kagan H. B., Tetrahedron 2003, 59, 10351; [Google Scholar]
- 18f. R. A. Flowers II , Synlett 2008, 1427; [Google Scholar]
- 18g. Procter D. J., R. A. Flowers II , Skrydstrup T., Organic Synthesis using Samarium Diiodide: A Practical Guide, RSC Publishing, Cambridge, 2010; [Google Scholar]
- 18h. Beemelmanns C., Reissig H.-U., Chem. Soc. Rev. 2011, 40, 2199; [DOI] [PubMed] [Google Scholar]
- 18i. Szostak M., Spain M., Parmar D., Procter D. J., Chem. Commun. 2012, 48, 330; [DOI] [PubMed] [Google Scholar]
- 18j. Szostak M., Spain M., Procter D. J., Chem. Soc. Rev. 2013, 42, 9155. [DOI] [PubMed] [Google Scholar]
- 19.For reviews on carbon–carbon bond formation using SmI2, see:
- 19a. Edmonds D. J., Johnston D., Procter D. J., Chem. Rev. 2004, 104, 3371; [DOI] [PubMed] [Google Scholar]
- 19b. Nicolaou K. C., Ellery S. P., Chen J. S., Angew. Chem. Int. Ed. 2009, 48, 7140; [DOI] [PMC free article] [PubMed] [Google Scholar]; Angew. Chem. 2009, 121, 7276; [Google Scholar]
- 19c. Szostak M., Fazakerley N. J., Parmar D., Procter D. J., Chem. Rev. 2014, 114, 5959. [DOI] [PubMed] [Google Scholar]
- 20.
- 20a. Just-Baringo X., Procter D. J., Acc. Chem. Res. 2015, 48, 1263. [DOI] [PubMed] [Google Scholar]
- 21.For lactone reduction using SmI2, see:
- 21a. Duffy L. A., Matsubara H., Procter D. J., J. Am. Chem. Soc. 2008, 130, 1136; [DOI] [PubMed] [Google Scholar]
- 21b. Parmar D., Duffy L. A., Sadasivam D. V., Matsubara H., Bradley P. A., R. A. Flowers II , Procter D. J., J. Am. Chem. Soc. 2009, 131, 15467; [DOI] [PubMed] [Google Scholar]
- 21c. Szostak M., Collins K. D., Fazakerley N. J., Spain M., Procter D. J., Org. Biomol. Chem. 2012, 10, 5820; [DOI] [PubMed] [Google Scholar]
- 21d. Szostak M., Spain M., Procter D. J., J. Am. Chem. Soc. 2014, 136, 8459; [DOI] [PubMed] [Google Scholar]
- 21e.For a theoretical study on the structure of SmI2–H2O and the role of H2O, see: Zhao X., Perrin L., Procter D. J., Maron L., Dalton Trans. 2016, 45, 3706. [DOI] [PubMed] [Google Scholar]
- 22.For a summary of mechanistic studies on the reduction of carboxylic acid derivatives with SmI2, see: Szostak M., Spain M., Eberhart A. J., Procter D. J., J. Org. Chem. 2014, 79, 11988. [DOI] [PubMed] [Google Scholar]
- 23.For lactone radical cyclisations, see:
- 23a. Parmar D., Price K., Spain M., Matsubara H., Bradley P. A., Procter D. J., J. Am. Chem. Soc. 2011, 133, 2418; [DOI] [PubMed] [Google Scholar]
- 23b. Parmar D., Matsubara H., Price K., Spain M., Procter D. J., J. Am. Chem. Soc. 2012, 134, 12751; [DOI] [PubMed] [Google Scholar]
- 23c. Yalavac I., Lyons S. E., Webb M. R., Procter D. J., Chem. Commun. 2014, 50, 12863; [DOI] [PubMed] [Google Scholar]
- 23d.X. Just-Baringo, C. Morrill, D. J. Procter, Tetrahedron 2016, DOI: 10.1016/j.tet.2016.03.056.
- 24.For analogous cyclizations involving radicals derived from amide derivatives, see:
- 24a. Szostak M., Sautier B., Spain M., Behlendorf M., Procter D. J., Angew. Chem. Int. Ed. 2013, 52, 12559; [DOI] [PMC free article] [PubMed] [Google Scholar]; Angew. Chem. 2013, 125, 12791; [Google Scholar]
- 24b. Shi S., Szostak M., Org. Lett. 2015, 17, 5144; [DOI] [PubMed] [Google Scholar]
- 24c. Shi S., Lalancette R., Szostak M., Synthesis 2016, 1825; [Google Scholar]
- 24d. Huang H.-M., Procter D. J., J. Am. Chem. Soc. 2016, 138, 7770. [DOI] [PubMed] [Google Scholar]
- 25.See Supporting Information for CCDC numbers.
- 26.
- 26a. Beckwith A. L. J., Tetrahedron 1981, 37, 3073; [Google Scholar]
- 26b. Molander G. A., Kenny C., J. Am. Chem. Soc. 1989, 111, 8236. [Google Scholar]
- 27.
- 27a.For a review of organolanthanide σ-complexes, see: Cotton S. A., Coord. Chem. Rev. 1997, 160, 93; [Google Scholar]
- 27b.For reactions of achiral benzylsamariums(III), see: Collin J., Namy J. L., Bied C., Kagan H. B., Inorg. Chim. Acta 1987, 140, 29; [Google Scholar]
- 27c.For an account of diastereoselective and enantioselective lithiation–substitution sequences, see: Beak P., Basu A., Gallagher D. J., Park Y. S., Thayumanavan S., Acc. Chem. Res. 1996, 29, 552. [Google Scholar]
- 28. Keen D. A., Gutmann M. J., Wilson C. C., J. Appl. Crystallogr. 2006, 39, 714. [Google Scholar]
- 29. Matsubara S., Yoshioka M., Utimoto K., Angew. Chem. Int. Ed. Engl. 1997, 36, 617; [Google Scholar]; Angew. Chem. 1997, 109, 631. [Google Scholar]
- 30.An alternative HAT mechanism has been disclosed for other low-valent metals in combination with H2O, such as the TiIII–H2O reagent:
- 30a. Cuerva J. M., Campaña A. G., Justicia J., Rosales A., Oller-López J. L., Robles R., Cárdenas D. J., Buñuel E., Oltra J. E., Angew. Chem. Int. Ed. 2006, 45, 5522; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2006, 118, 5648; [Google Scholar]
- 30b. Gansäuer A., Behlendorf M., Cangönül A., Kube C., Cuerva J. M., Friedrich J., van Gastel M., Angew. Chem. Int. Ed. 2012, 51, 3266; [DOI] [PubMed] [Google Scholar]; Angew. Chem. 2012, 124, 3320. [Google Scholar]
- 31.Neutron diffraction had been used before to analyze a 1:1 epimeric mixture of a monodeuterated product: Wang L.-C., Jang H.-Y., Roh Y., Lynch V., Schultz A. J., Wang X., Krische M. J., J. Am. Chem. Soc. 2002, 124, 9448. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re‐organized for online delivery, but are not copy‐edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Supplementary
