Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Mar 15;88(6):2042–2045. doi: 10.1073/pnas.88.6.2042

Biosynthesis of the thiazole moiety of thiamin (vitamin B1) in higher plant chloroplasts.

J H Julliard 1, R Douce 1
PMCID: PMC51164  PMID: 11607160

Abstract

The chloroplast stromal proteins from spinach condense the two heterocyclic moieties of vitamin B1--4-methyl-5-(beta-hydroxyethyl)thiazole and 2-methyl-4-amino-5-hydroxymethylpyrimidine--in the presence of MgATP. We have taken advantage of this observation to study thiazole synthesis. We present data indicating that pyruvate, glyceraldehyde 3-phosphate, tyrosine, cysteine, and MgATP are required for this synthesis and that pyruvate and glyceraldehyde 3-phosphate can be replaced by 1-deoxy-D-threo-2-pentulose. The thiazole synthesis occurs at a sustained, low rate of 140 pmol per mg of protein per hr.

Full text

PDF
2042

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellion E., Kirkley D. H., Faust J. R. The biosynthesis of the thiazole moiety of thiamine in Salmonella Typhimurium. Biochim Biophys Acta. 1976 Jun 23;437(1):229–237. doi: 10.1016/0304-4165(76)90364-0. [DOI] [PubMed] [Google Scholar]
  2. Bellion E., Kirkley D. H. The origin of the sulfur atom in thiamine. Biochim Biophys Acta. 1977 Mar 29;497(1):323–328. doi: 10.1016/0304-4165(77)90166-0. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Edwin E. E. Synthesis of pyrimidine 14C-labeled thiamine. Methods Enzymol. 1979;62:73–76. doi: 10.1016/0076-6879(79)62195-x. [DOI] [PubMed] [Google Scholar]
  5. Estramareix B., Gaudry D., Thérisod M. Biosynthèse du thiazole de la thiamine chez Escherichia coli. Biochimie. 1977;59(10):857–859. doi: 10.1016/s0300-9084(77)80219-8. [DOI] [PubMed] [Google Scholar]
  6. Estramareix B., Therisod M. La tyrosine, facteur de la biosynthèse du thiazole de la thiamine chez Escherichia coli. Biochim Biophys Acta. 1972 Jul 19;273(2):275–282. [PubMed] [Google Scholar]
  7. Gubler C. J., Hemming B. C. High-pressure liquid chromatography of thiamine, thiamine analogs, and their phosphate esters. Methods Enzymol. 1979;62:63–68. doi: 10.1016/0076-6879(79)62192-4. [DOI] [PubMed] [Google Scholar]
  8. Linnett P. E., Walker J. Biosynthesis of thiamin. IV. C-2 of glycine as the precursor of C-2 of the thiazole moiety in yeast. Biochim Biophys Acta. 1969 Jul 30;184(2):381–385. [PubMed] [Google Scholar]
  9. Linnett P. E., Walker J. Biosynthesis of thiamine. II. Origin of the carbon atom in the 2-position of the thiazole component. J Chem Soc Perkin 1. 1967;9:796–799. doi: 10.1039/j39670000796. [DOI] [PubMed] [Google Scholar]
  10. Linnett P. E., Walker J. Biosynthesis of thiamine. Incorporation experiments with 14C-labelled substrates and with (15N)glycine in Saccharomyces cerevisiae. Biochem J. 1968 Sep;109(2):161–168. doi: 10.1042/bj1090161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Penttinen H. K. Fluorometric determination of thiamine and its mono-, di-, and triphosphate esters. Methods Enzymol. 1979;62:58–59. doi: 10.1016/0076-6879(79)62190-0. [DOI] [PubMed] [Google Scholar]
  12. Randall D. D., Rubin P. M., Fenko M. Plant pyruvate dehydrogenase complex purification, characterization and regulation by metabolites and phosphorylation. Biochim Biophys Acta. 1977 Dec 8;485(2):336–349. doi: 10.1016/0005-2744(77)90169-3. [DOI] [PubMed] [Google Scholar]
  13. Thérisod M., Fischer J. C., Estramareix B. The origin of the carbon chain in the thiazole moiety of thiamine in Escherichia coli: incorporation of deuterated 1-deoxy-D-threo-2-pentulose. Biochem Biophys Res Commun. 1981 Jan 30;98(2):374–379. doi: 10.1016/0006-291x(81)90850-0. [DOI] [PubMed] [Google Scholar]
  14. White R. H., Rudolph F. B. The origin of the nitrogen atom in the thiazole ring of thiamine in Escherichia coli. Biochim Biophys Acta. 1978 Aug 17;542(2):340–347. doi: 10.1016/0304-4165(78)90029-6. [DOI] [PubMed] [Google Scholar]
  15. White R. L., Spenser I. D. Thiamin biosynthesis in Saccharomyces cerevisiae. Origin of carbon-2 of the thiazole moiety. Biochem J. 1979 May 1;179(2):315–325. doi: 10.1042/bj1790315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Yamada K., Kumaoka H. Precursor of carbon atom five and hydroxymethyl carbon atom of the pyrimidine moiety of thiamin in Escherichia coli. J Nutr Sci Vitaminol (Tokyo) 1983 Aug;29(4):389–398. doi: 10.3177/jnsv.29.389. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES