Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Mar 15;88(6):2060–2064. doi: 10.1073/pnas.88.6.2060

Molecular evolution of alcohol dehydrogenase 1 in members of the grass family.

B S Gaut 1, M T Clegg 1
PMCID: PMC51168  PMID: 2006143

Abstract

The molecular evolution of the alcohol dehydrogenase 1 (Adh1; alcohol:NAD+ oxidoreductase, EC 1.1.1.1) locus in members of the grass family is analyzed. We report the complete DNA sequence of a genomic clone of Adh1 from Pennisetum glaucum cv. Tift 23DB (pearl millet). The gene is characterized by ten exons and nine introns. The 5' flanking region of the gene contains sequences corresponding to the anaerobic regulatory element as well as sequences corresponding to the TATA box and the CAAT box identified in the maize Adh1-1S flanking regions. Exon sequences from Pennisetum and maize have been subjected to relative rate tests; the maize and Pennisetum Adh1 lineages evolve at equal rates. These results are compared with similar relative rate studies by using the chloroplast DNA encoding the ribulose-1,5-bisphosphate carboxylase (rbcL) gene. Evolutionary rates of Adh1 are estimated. Nonsynonymous rates are found to be 2.50 x 10(-10) substitutions per site per year, whereas synonymous rates are approximately 7.90 x 10(-9) substitutions per site per year. Molecular phylogenies of the Poaceae based upon Adh1 data are presented.

Full text

PDF
2060

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banuett-Bourrillon F., Hague D. R. Genetic analysis of alcohol dehydrogenase isozymes in pearl millet (Pennisetum typhoides). Biochem Genet. 1979 Jun;17(5-6):537–552. doi: 10.1007/BF00498889. [DOI] [PubMed] [Google Scholar]
  2. Birky C. W., Jr, Maruyama T., Fuerst P. An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics. 1983 Mar;103(3):513–527. doi: 10.1093/genetics/103.3.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brändén C. I., Eklund H., Cambillau C., Pryor A. J. Correlation of exons with structural domains in alcohol dehydrogenase. EMBO J. 1984 Jun;3(6):1307–1310. doi: 10.1002/j.1460-2075.1984.tb01967.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crawford J. L., Lipscomb W. N., Schellman C. G. The reverse turn as a polypeptide conformation in globular proteins. Proc Natl Acad Sci U S A. 1973 Feb;70(2):538–542. doi: 10.1073/pnas.70.2.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dennis E. S., Gerlach W. L., Pryor A. J., Bennetzen J. L., Inglis A., Llewellyn D., Sachs M. M., Ferl R. J., Peacock W. J. Molecular analysis of the alcohol dehydrogenase (Adh1) gene of maize. Nucleic Acids Res. 1984 May 11;12(9):3983–4000. doi: 10.1093/nar/12.9.3983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eklund H., Nordström B., Zeppezauer E., Söderlund G., Ohlsson I., Boiwe T., Söderberg B. O., Tapia O., Brändén C. I., Akeson A. Three-dimensional structure of horse liver alcohol dehydrogenase at 2-4 A resolution. J Mol Biol. 1976 Mar 25;102(1):27–59. doi: 10.1016/0022-2836(76)90072-3. [DOI] [PubMed] [Google Scholar]
  7. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  8. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368–376. doi: 10.1007/BF01734359. [DOI] [PubMed] [Google Scholar]
  9. Freeling M., Bennett D. C. Maize Adh1. Annu Rev Genet. 1985;19:297–323. doi: 10.1146/annurev.ge.19.120185.001501. [DOI] [PubMed] [Google Scholar]
  10. Ha D. B., Buffard D., Berger F., Bréda C., Esnault R. Nucleotide sequence encoding a slow allele of Adh1 in pearl millet. Plant Mol Biol. 1990 Mar;14(3):453–455. doi: 10.1007/BF00028783. [DOI] [PubMed] [Google Scholar]
  11. Iltis H. H. From teosinte to maize: the catastrophic sexual transmutation. Science. 1983 Nov 25;222(4626):886–894. doi: 10.1126/science.222.4626.886. [DOI] [PubMed] [Google Scholar]
  12. Kimura M. Estimation of evolutionary distances between homologous nucleotide sequences. Proc Natl Acad Sci U S A. 1981 Jan;78(1):454–458. doi: 10.1073/pnas.78.1.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Li W. H., Wu C. I., Luo C. C. A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol. 1985 Mar;2(2):150–174. doi: 10.1093/oxfordjournals.molbev.a040343. [DOI] [PubMed] [Google Scholar]
  14. Osterman J. C., Dennis E. S. Molecular analysis of the ADH1-Cm allele of maize. Plant Mol Biol. 1989 Aug;13(2):203–212. doi: 10.1007/BF00016138. [DOI] [PubMed] [Google Scholar]
  15. Sachs M. M., Dennis E. S., Gerlach W. L., Peacock W. J. Two Alleles of Maize ALCOHOL DEHYDROGENASE 1 Have 3' Structural and Poly(a) Addition Polymorphisms. Genetics. 1986 Jun;113(2):449–467. doi: 10.1093/genetics/113.2.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Walker J. C., Howard E. A., Dennis E. S., Peacock W. J. DNA sequences required for anaerobic expression of the maize alcohol dehydrogenase 1 gene. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6624–6628. doi: 10.1073/pnas.84.19.6624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wolfe K. H., Gouy M., Yang Y. W., Sharp P. M., Li W. H. Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6201–6205. doi: 10.1073/pnas.86.16.6201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wolfe K. H., Li W. H., Sharp P. M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9054–9058. doi: 10.1073/pnas.84.24.9054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wu C. I., Li W. H. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1741–1745. doi: 10.1073/pnas.82.6.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Xie Y., Wu R. Molecular analysis of an alcohol dehydrogenase-encoding genomic clone (adh2) from rice. Gene. 1990 Mar 15;87(2):185–191. doi: 10.1016/0378-1119(90)90300-g. [DOI] [PubMed] [Google Scholar]
  22. Xie Y., Wu R. Rice alcohol dehydrogenase genes: anaerobic induction, organ specific expression and characterization of cDNA clones. Plant Mol Biol. 1989 Jul;13(1):53–68. doi: 10.1007/BF00027335. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES