Abstract
An 87% identity has been found between the reported cDNA sequence that encodes acylpeptide hydrolase (EC 3.4.19.1) [Mitta, M., Asada, K., Uchimura, Y., Kimizuka, F., Kato, I., Sakiyama, F. & Tsunasawa, S. (1989) J. Biochem. 106, 548-551] and a cDNA transcribed from a locus (DNF15S2) on the short arm of human chromosome 3, reported by Naylor et al. [Naylor, S.L., Marshall, A., Hensel, C., Martinez, P.F., Holley, B. & Sakaguchi, A.Y. (1989) Genomics 4, 355-361]; the DNF15S2 locus suffers deletions in small cell lung carcinoma associated with a reduction or loss of acylase activity (EC 3.5.1.14). Acylpeptide hydrolase catalyzes the hydrolysis of the terminal acetylated amino acid preferentially from small acetylated peptides. The acetylamino acid formed by acylpeptide hydrolase is further processed to acetate and a free amino acid by an acylase. The substrates for the acylpeptide hydrolase and the acylase behave in a reciprocal manner since acylpeptide hydrolase binds but does not process acetylamino acids and the acylase binds acetylpeptides but does not hydrolyze them; however, the two enzymes share the same specificity for the acyl group. These findings indicate some common functional features in the protein structures of these two enzymes. Since the gene coding for acylpeptide hydrolase is within the same region of human chromosome 3 (3p21) that codes for the acylase and deletions at this locus are also associated with a decrease in acylase activity, there is a close genetic relationship between the two enzymes. There could also be a relationship between the expression of these two enzymes and acetylated peptide growth factors in some carcinomas.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andreadis A., Gallego M. E., Nadal-Ginard B. Generation of protein isoform diversity by alternative splicing: mechanistic and biological implications. Annu Rev Cell Biol. 1987;3:207–242. doi: 10.1146/annurev.cb.03.110187.001231. [DOI] [PubMed] [Google Scholar]
- Axenfors B., Andersson I., Augustinsson K. B. Isolation and characterization of a butyrylesterase from human erythrocytes. Biochim Biophys Acta. 1979 Sep 12;570(1):74–87. doi: 10.1016/0005-2744(79)90202-x. [DOI] [PubMed] [Google Scholar]
- Erlandsson R., Bergerheim U. S., Boldog F., Marcsek Z., Kunimi K., Lin B. Y., Ingvarsson S., Castresana J. S., Lee W. H., Lee E. A gene near the D3F15S2 site on 3p is expressed in normal human kidney but not or only at a severely reduced level in 11 of 15 primary renal cell carcinomas (RCC). Oncogene. 1990 Aug;5(8):1207–1211. [PubMed] [Google Scholar]
- Gade W., Brown J. L. Purification and partial characterization of alpha-N-acylpeptide hydrolase from bovine liver. J Biol Chem. 1978 Jul 25;253(14):5012–5018. [PubMed] [Google Scholar]
- Gade W., Brown J. L. Purification, characterization and possible function of alpha-N-acylamino acid hydrolase from bovine liver. Biochim Biophys Acta. 1981 Nov 13;662(1):86–93. doi: 10.1016/0005-2744(81)90227-8. [DOI] [PubMed] [Google Scholar]
- Heese D., Löffler H. G., Röhm K. H. Further characterization of porcine kidney aminoacylase I reveals close similarity to 'renal dipeptidase'. Biol Chem Hoppe Seyler. 1988 Jul;369(7):559–566. doi: 10.1515/bchm3.1988.369.2.559. [DOI] [PubMed] [Google Scholar]
- Hojring N., Svensmark O. Carboxylesterases with defferent substrate specificity in human brain extracts. J Neurochem. 1976 Aug;27(2):525–528. doi: 10.1111/j.1471-4159.1976.tb12277.x. [DOI] [PubMed] [Google Scholar]
- Højring N., Svensmark O. Molecular and catalytic properties of a butyrylesterase from human red cells and brain. Arch Biochem Biophys. 1988 Jan;260(1):351–358. doi: 10.1016/0003-9861(88)90459-6. [DOI] [PubMed] [Google Scholar]
- Jones W. M., Manning J. M. Acylpeptide hydrolase activity from erythrocytes. Biochem Biophys Res Commun. 1985 Jan 31;126(2):933–940. doi: 10.1016/0006-291x(85)90275-x. [DOI] [PubMed] [Google Scholar]
- Jones W. M., Manning J. M. Substrate specificity of an acylaminopeptidase that catalyzes the cleavage of the blocked amino termini of peptides. Biochim Biophys Acta. 1988 Apr 14;953(3):357–360. doi: 10.1016/0167-4838(88)90045-3. [DOI] [PubMed] [Google Scholar]
- Jones W. M., Manning L. R., Manning J. M. Enzymic cleavage of the blocked amino terminal residues of peptides. Biochem Biophys Res Commun. 1986 Aug 29;139(1):244–250. doi: 10.1016/s0006-291x(86)80105-x. [DOI] [PubMed] [Google Scholar]
- Kobayashi K., Lin L. W., Yeadon J. E., Klickstein L. B., Smith J. A. Cloning and sequence analysis of a rat liver cDNA encoding acyl-peptide hydrolase. J Biol Chem. 1989 May 25;264(15):8892–8899. [PubMed] [Google Scholar]
- Kok K., Osinga J., Carritt B., Davis M. B., van der Hout A. H., van der Veen A. Y., Landsvater R. M., de Leij L. F., Berendsen H. H., Postmus P. E. Deletion of a DNA sequence at the chromosomal region 3p21 in all major types of lung cancer. Nature. 1987 Dec 10;330(6148):578–581. doi: 10.1038/330578a0. [DOI] [PubMed] [Google Scholar]
- Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
- Leff S. E., Rosenfeld M. G., Evans R. M. Complex transcriptional units: diversity in gene expression by alternative RNA processing. Annu Rev Biochem. 1986;55:1091–1117. doi: 10.1146/annurev.bi.55.070186.005303. [DOI] [PubMed] [Google Scholar]
- Martinez H. M. A flexible multiple sequence alignment program. Nucleic Acids Res. 1988 Mar 11;16(5):1683–1691. doi: 10.1093/nar/16.5.1683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller Y. E., Drabkin H., Jones C., Fisher J. H. Human aminoacylase-1: cloning, regional assignment to distal chromosome 3p21.1, and identification of a cross-hybridizing sequence on chromosome 18. Genomics. 1990 Sep;8(1):149–154. doi: 10.1016/0888-7543(90)90237-o. [DOI] [PubMed] [Google Scholar]
- Miller Y. E., Minna J. D., Gazdar A. F. Lack of expression of aminoacylase-1 in small cell lung cancer. Evidence for inactivation of genes encoded by chromosome 3p. J Clin Invest. 1989 Jun;83(6):2120–2124. doi: 10.1172/JCI114125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitta M., Asada K., Uchimura Y., Kimizuka F., Kato I., Sakiyama F., Tsunasawa S. The primary structure of porcine liver acylamino acid-releasing enzyme deduced from cDNA sequences. J Biochem. 1989 Oct;106(4):548–551. doi: 10.1093/oxfordjournals.jbchem.a122891. [DOI] [PubMed] [Google Scholar]
- Mori N., Enokibara S., Yamaguchi Y., Kitamoto Y., Ichikawa Y. Partial purification and substrate specificity of acylamino acid-releasing enzyme from Rhodotorula glutinis. Agric Biol Chem. 1990 Jan;54(1):263–265. [PubMed] [Google Scholar]
- Naylor S. L., Elliott R. W., Brown J. A., Shows T. B. Mapping of aminoacylase-1 and beta-galactosidase-A to homologous regions of human chromosome 3 and mouse chromosome 9 suggests location of additional genes. Am J Hum Genet. 1982 Mar;34(2):235–244. [PMC free article] [PubMed] [Google Scholar]
- Naylor S. L., Marshall A., Hensel C., Martinez P. F., Holley B., Sakaguchi A. Y. The DNF15S2 locus at 3p21 is transcribed in normal lung and small cell lung cancer. Genomics. 1989 Apr;4(3):355–361. doi: 10.1016/0888-7543(89)90342-x. [DOI] [PubMed] [Google Scholar]
- Persson B., Flinta C., von Heijne G., Jörnvall H. Structures of N-terminally acetylated proteins. Eur J Biochem. 1985 Nov 4;152(3):523–527. doi: 10.1111/j.1432-1033.1985.tb09227.x. [DOI] [PubMed] [Google Scholar]
- Radhakrishna G., Wold F. Purification and characterization of an N-acylaminoacyl-peptide hydrolase from rabbit muscle. J Biol Chem. 1989 Jul 5;264(19):11076–11081. [PubMed] [Google Scholar]
- Schwarz T. L., Tempel B. L., Papazian D. M., Jan Y. N., Jan L. Y. Multiple potassium-channel components are produced by alternative splicing at the Shaker locus in Drosophila. Nature. 1988 Jan 14;331(6152):137–142. doi: 10.1038/331137a0. [DOI] [PubMed] [Google Scholar]
- Schönberger O. L., Tschesche H. N-Acetylalanine aminopeptidase, a new enzyme from human erythrocytes. Hoppe Seylers Z Physiol Chem. 1981 Jul;362(7):865–873. doi: 10.1515/bchm2.1981.362.2.865. [DOI] [PubMed] [Google Scholar]
- Zbar B., Brauch H., Talmadge C., Linehan M. Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. 1987 Jun 25-Jul 1Nature. 327(6124):721–724. doi: 10.1038/327721a0. [DOI] [PubMed] [Google Scholar]