Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Aug 2;72(Pt 9):1234–1238. doi: 10.1107/S2056989016012214

An unprecedented binuclear cadmium di­thio­carbamate adduct: bis­[μ2-N-(2-hydroxy­eth­yl)-N-iso­propyl­carbamodi­thio­ato-κ3 S:S,S′]bis­{[N-(2-hydroxy­eth­yl)-N-iso­propyl­carbamodi­thio­ato-κ2 S,S′](3-{(1E)-[(E)-2-(pyridin-3-yl­methyl­idene)hydrazin-1-yl­idene]meth­yl}pyridine-κN)cadmium]} dihydrate

Hadi D Arman a, Pavel Poplaukhin b, Edward R T Tiekink c,*
PMCID: PMC5120695  PMID: 27920905

A distorted octa­hedral NS5 donor set is found in the binuclear title mol­ecule which features an unprecedented [Cd(di­thio­carbamate)2]2 core. Mol­ecules are connected into a three-dimensional architecture by O—H⋯O,N hydrogen bonding.

Keywords: crystal structure, cadmium, di­thio­carbamate, hydrogen bonding

Abstract

The asymmetric unit in the title binuclear compound, [Cd(C6H12NOS2)2(C12H10N4)]2·2H2O, comprises a CdII atom, two di­thio­carbamate (dtc) anions, a monodentate 3-pyridine­aldazine ligand and a lattice water mol­ecule. The binuclear mol­ecule is constructed by the application of inversion symmetry. One dtc ligand simultaneously chelates one cadmium atom and bridges the centrosymmetric mate, while the other dtc ligand is chelating only. This leads to a centrosymmetric [Cd(dtc)2]2 core to which are appended two 3-pyridine­aldazine ligands. The resulting NS5 donor set is based on an octa­hedron. The three-dimensional mol­ecular packing is sustained by hydroxyl-O—H(hydrox­yl) and water-O—H⋯O(hydrox­yl) hydrogen bonding, leading to supra­molecular layers parallel to (101) which are connected by water-O—H⋯N(pyrid­yl) hydrogen bonding; additional C—H⋯O, S π(chelate ring) inter­actions are also evident. The retention of the central [Cd(dtc)2]2 core upon adduct formation is unprecedented in the structural chemistry of the zinc-triad di­thio­carbamates.

Chemical context  

The common feature of the structural chemistry of the binary cadmium di­thio­carbamates, i.e. mol­ecules of the general formula Cd(S2CNRR′)2 for R, R′ = alkyl, is the adoption of aggregated species in the solid state. The overwhelming majority of structures are binuclear, [Cd(S2CNRR′)2]2, arising from equal numbers of μ2-tridentate and bidentate (chelating) ligands (Tiekink, 2003; Tan, Halim et al., 2016). The exceptional structures are trinuclear {Cd[S2CN(p-tol)furan-2-ylmeth­yl]2}3 (Kumar et al., 2014), having two μ2-tridentate and four chelating ligands, and one-dimensional polymeric [Cd(S2CNMe2)2]n (Bing et al., 2010), {Cd[S2CN(iPr)CH2CH2OH]2}n (Tan et al., 2013; Tan, Halim et al., 2016) and {Cd[S2CN(Me)CH2CH(OMe)2]2}n (Ferreira et al., 2016), having all ligands μ2-tridentate. Inter­estingly, supra­molecular isomers were found for the {Cd[S2CN(iPr)CH2CH2OH]2}n species (Tan et al., 2013; Tan, Halim et al., 2016), which were shown to adopt the common binuclear structural motif. Up to now, whenever Cd(S2CNRR′)2 is reacted with bases, e.g. pyridyl-donors, the original aggregate is disrupted in that no dtc links are retained between cadmium atoms. Thus, when archetypal, binuclear [Cd(S2CNEt2)2]2 (Domenicano et al., 1968; Dee & Tiekink, 2002) reacts with monodentate N-donors such as 2,6-di­methyl­pyridine, mononuclear, five-coordinate species result (Lennartson & Håkansson, 2009). Similarly, bidentate chelating ligands, such as 2,2′-bipyridyl, lead to mononuclear species but with formally six-coordinate cadmium atoms (Airoldi et al., 1990). Higher nuclearity structures are also formed with bridging, bidentate ligands such as in the one-dimensional coordination polymers formed with μ2-1,2-bis­(4-pyrid­yl)ethyl­ene (Chai et al., 2003) and μ2-1,2-bis­(4-pyrid­yl)ethane (Avila et al., 2006). In the latter structures, six-coordinate, trans-N2S4 donor sets are found. In the present report, crystals of the 1:2 adduct between {Cd[S2CN(iPr)CH2CH2OH)]2}2 and 3-pyridine­aldazine were isolated and shown by X-ray crystallography that despite having one potentially bidentate bi-pyridyl ligand per Cd[S2CN(iPr)CH2CH2OH)]2 unit, the central binuclear core (Tan et al., 2013; Tan, Halim et al., 2016) remained intact with the 3-pyridine­aldazine mol­ecules coordinating in a monodentate mode, thereby representing a new structural motif for this class of compound.graphic file with name e-72-01234-scheme1.jpg

Structural commentary  

The mol­ecular structure of the binuclear title compound, isolated as a dihydrate, is shown in Fig. 1 and selected geometric parameters are collated in Table 1. The binuclear compound is disposed about a centre of inversion so the asymmetric comprises a Cd[S2CN(iPr)CH2CH2OH)]2 entity, a 3-pyridine­aldazine ligand and one water mol­ecule of solvation. One di­thio­carbamate (dtc) ligand coordinates in a chelating mode forming very similar Cd—S bond lengths, i.e. the difference between the Cd—Sshort and Cd—Slong bond lengths is only 0.033 Å; this equivalence is reflected in the equivalence in the associated C1—S1, S2 bond lengths, Table 1. The second independent dtc chelates one cadmium atom and at the same time bridges the other cadmium atom. The Cd—S3bridging bond lengths are close to being equal, differing by only 0.010 Å, and are longer by ca 0.1 Å than the non-bridging Cd—S4 bond length, Table 1. The differences in the number and strength of the Cd—S bond lengths for the S3-dtc ligand is reflected in the C7—S3, S4 separations with the C7—S4 bond length of 1.714 (2) Å being the shortest across the series. The sixth position in the distorted octa­hedral coordination geometry is occupied by a nitro­gen atom of the monodentate 3-pyridine­aldazine ligand. Distortions in angles about the cadmium atom are largely related to the restricted bite distances of the dtc ligands, Table 1. While not having crystallographic symmetry, the 3-pyridine­aldazine mol­ecule adopts an anti disposition about both imine bonds, i.e. C18=N4 = 1.283 (3) Å and C19=N5 = 1.277 (3) Å; the central, azo bond is 1.415 (2) Å. The pyridyl-N atoms are also anti but there are twists in the 3-pyridine­aldazine mol­ecule, as seen in the value of the dihedral angle between the two pyridyl rings of 22.78 (12)°.

Figure 1.

Figure 1

The mol­ecular structure of the binuclear title compound, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. [Symmetry code: (i) 1 − x, −y, 1 − z.]

Table 1. Selected geometric parameters (Å, °).

Cd—S1 2.6444 (5) Cd—N3 2.3811 (18)
Cd—S2 2.6768 (5) S1—C1 1.7267 (19)
Cd—S3 2.7422 (5) S2—C1 1.7231 (18)
Cd—S3i 2.7317 (6) S3—C7 1.7404 (19)
Cd—S4i 2.6342 (5) S4—C7 1.714 (2)
       
S1—Cd—S2 67.824 (14) S2—Cd—S3 167.393 (15)
S4i—Cd—S3i 67.343 (17) N3—Cd—S3i 166.35 (4)
S4i—Cd—S1 160.481 (17)    

Symmetry code: (i) Inline graphic.

Supra­molecular features  

Significant O—H⋯O hydrogen bonding is found in the mol­ecular packing of the binuclear title compound as would be expected from the chemical composition. Thus, mol­ecules are assembled into layers approximately parallel to (101) by hy­droxy-O—H⋯O(hydrox­yl) and hy­droxy-O—H⋯O(water) hydrogen bonds as detailed in Table 2. Thus, strings of {⋯Ohy­droxy—H⋯Ohy­droxy—H⋯Owater—H}n chains are formed as shown in Fig. 2 a. The water mol­ecules also form water-O—H⋯N(pyrid­yl) hydrogen bonds on either side of the supra­molecular layers sustained by O—H⋯O hydrogen bonds, Fig. 2 b. The pendent pyridyl-N atoms of Fig. 2 b are coordinating to cadmium atoms of successive layers so that a three-dimensional architecture results. Globally, and as seen from Fig. 3, the mol­ecular packing comprises alternating layers of {Cd[S2CN(iPr)CH2CH2OH)]2}2 and 3-pyridine­aldazine with the key links between them being hydrogen and coordinate bonding. Within this framework stabilized primarily by hydrogen-bonding inter­actions, there are some second tier inter­actions worthy of comment (Spek, 2009). Thus, referring to data in Table 2, the hydroxyl-O1 atom also accepts a contact from a pyridyl-C—H atom as the 3-pyridine­aldazine ligand is orientated so that the non-coord­inating end is directed over the hy­droxy/water-rich region of the structure. Within the layers shown in Fig. 2 a, methine-C—H⋯S inter­actions are seen and between layers pyridyl-C—H⋯S contacts, inter­estingly, both involving the S2 atom. Finally, as has increasingly been noted in recent descriptions of the structural chemistry of metal di­thio­carbamates, C—H⋯π(chelate) inter­actions are present (Tiekink & Zukerman-Schpector, 2011). Here, a pyridyl-C—H atom sits almost perpendicular to the chelate ring involving the S1-di­thio­carbamate ligand, i.e. the C—H⋯ring centroid(chelate ring) angle is 178°, in the inter-layer region, Table 2.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2ii 0.83 (2) 1.83 (3) 2.655 (3) 172 (3)
O2—H2O⋯O1W 0.85 (3) 1.80 (3) 2.640 (3) 180 (6)
O1W—H1W⋯O1 0.84 (3) 1.92 (3) 2.750 (3) 172 (3)
O1W—H2W⋯N6iii 0.85 (2) 2.00 (2) 2.840 (3) 172 (2)
C23—H23⋯O1ii 0.95 2.50 3.295 (3) 141
C4—H4⋯S2iv 1.00 2.79 3.599 (2) 139
C15—H15⋯S2v 0.95 2.84 3.714 (2) 153
C15—H15⋯Cg(Cd,S1,S2,C1)vi 0.95 2.79 3.737 (2) 173

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Figure 2.

Figure 2

Mol­ecular packing: (a) view of the supra­molecular layer sustained by hy­droxy-O—H⋯O(hy­droxy) and hy­droxy-O—H⋯O(water) hydrogen bonds, shown as orange dashed lines. Only the pyridyl N atoms of the 3-pyridine­aldazine ligands are shown. (b) A side-on view of the layer in (a) extended to show the two central 3-pyridine­aldazine ligands (see text). The putative water-O—H⋯N(pyrid­yl) hydrogen bonds are shown as blue dashed lines. In both images, only acidic hydrogen atoms are included.

Figure 3.

Figure 3

A view of the unit cell contents shown in projection down the b axis, highlighting the alternating layers of {Cd[S2CN(iPr)CH2CH2OH)]2}2 and 3-pyridine­aldazine mol­ecules. Water mol­ecules are located in the hy­droxy-rich regions, i.e. the key inter­faces between layers.

Database survey  

There are 14 examples of cadmium compounds with 3-pyridine­aldazine in the crystallographic literature (Groom et al., 2016). Most of these feature μ2-bridging 3-pyridine­aldazine such as in the two most relevant compounds to the present study, namely {Cd[S2P(O-iPr)2]22-3-pyridine­aldazine)}n (Lai & Tiekink, 2006a ) and bulky analogue {Cd[S2P(O-cHex)2]22-3-pyridine­aldazine)}n (Lai & Tiekink, 2006b ). In the structure of {Cd[O2P(O-tBu)2]2(3-pyridine­aldazine)22-3-pyridine­aldazine)·H2O}n (Rajakannu et al., 2015), both bridging and monodentate 3-pyridine­aldazine ligands, in a 1:2 ratio, are observed. Underscoring the flexibility in mode of association of 3-pyridine­aldazine in their crystal structures, in {[Cd(3-pyridine­aldazine)22-3-pyridine­aldazine)(OH2)2](3-pyridine­aldazine)·2ClO4}n (Bhattacharya et al., 2013), bridging, monodentate and non-coordinating 3-pyridine­aldazine ligands, in a 1:2:1 ratio, are noted.

The most curious feature of the structure of the title compound is the retention of the central binuclear core. This is unprecedented in the structural chemistry of cadmium di­thio­carbamates (see Chemical context). A good number of zinc and mercury binary di­thio­carbamates are also known to adopt related binuclear [M(S2CNRR’)2]2 aggregates owing to the presence of equal numbers of μ2-tridentate and chelating ligands (Tiekink, 2003; Jotani et al., 2016). Without exception, these are broken down upon adduct formation, regardless of the nature of the donor atom(s) (Groom et al., 2016). This makes more curious the recent report of the mol­ecular structure of a cadmium xanthate adduct, [Cd(S2CO-iPr)2(hmta)]2, where hmta is hexa­methyl­ene­tetra­mine, for which an analogous centrosymmetric core and NS5 donor set as in the title compound was observed (Tan, Azizuddin et al., 2016). This is quite unusual as there are no precedents for such [Cd(S2COR)2]2 cores in the structural chemistry of metal xanthates (Tiekink & Haiduc, 2005). Clearly, as more study continues in this field, more inter­esting outcomes will be noted and rationalizations emerge.

Synthesis and crystallization  

Cd[S2CN(iPr)CH2CH2OH)]2 (235 mg, 0.5 mmol) and 3-pyridine­aldazine (110 mg, 0.5 mmol) were dissolved in 1-propanol (15 ml). The solution was carefully covered with hexa­nes. Yellow blocks were obtained via slow diffusion of hexa­nes into the 1-propanol solution over two weeks. m.p. 389–391 K. IR (cm−1): 1449 (m) ν(C=N), 1173 (s) ν(C—S). 1H NMR: δ 9.04 (d, Ar, J = 1.46 Hz), 8.81 (s, Ar), 8.72 (d, Ar, J = 1.46 Hz), 8.29 (d, Ar, J = 1.95 Hz), 7.56 (qd, HC=CH, J = 4.88 Hz), 5.22 [sept, CH(CH3)2, J = 6.83 Hz], 4.83 (t, OH, J = 5.37 Hz), 3.74 (d, CH2O, J = 6.83 Hz), 3.68 (d, NCH2, J = 6.83 Hz), 1.18 (d, CH3, J = 6.84 Hz). TGA: three steps, corresponding to loss of water (calculated weight loss 2.6%; experimental weight loss 2.3%; onset 352 K, mid-point 364 K, endset 378 K), loss of the 3-pyridine­aldazine ligand (calculated weight loss 30.2%; experimental weight loss 30.5%; onset 418 K, mid-point 496 K, endset 511 K), and decomposition down to cadmium sulfide (calculated weight loss 79.3; experimental weight loss 75.1%; onset 542 K, mid-point 576 K, endset 620 K).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and were included in the refinement in the riding model approximation, with U iso(H) set at 1.2–1.5U eq(C). The oxygen-bound H atoms were located in a difference Fourier map but were refined with a distance restraint of O—H = 0.84±0.01 Å, and with U iso(H) set at 1.5U eq(O).

Table 3. Experimental details.

Crystal data
Chemical formula [Cd(C6H12NOS2)2(C12H10N4)]2·2H2O
M r 1394.48
Crystal system, space group Monoclinic, P21/n
Temperature (K) 98
a, b, c (Å) 16.4700 (18), 12.2257 (12), 17.0862 (19)
β (°) 114.932 (2)
V3) 3119.8 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.00
Crystal size (mm) 0.40 × 0.30 × 0.08
 
Data collection
Diffractometer AFC12K/SATURN724
Absorption correction Multi-scan (ABSCOR; Higashi, 1995)
T min, T max 0.661, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 22846, 7133, 6807
R int 0.029
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.029, 0.065, 1.08
No. of reflections 7133
No. of parameters 359
No. of restraints 4
Δρmax, Δρmin (e Å−3) 0.54, −0.39

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016012214/wm5312sup1.cif

e-72-01234-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016012214/wm5312Isup2.hkl

e-72-01234-Isup2.hkl (566.8KB, hkl)

CCDC reference: 1496352

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Cd(C6H12NOS2)2(C12H10N4)2]2·2H2O F(000) = 1432
Mr = 1394.48 Dx = 1.484 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 16.4700 (18) Å Cell parameters from 19902 reflections
b = 12.2257 (12) Å θ = 2.7–40.8°
c = 17.0862 (19) Å µ = 1.00 mm1
β = 114.932 (2)° T = 98 K
V = 3119.8 (6) Å3 Plate, yellow
Z = 2 0.40 × 0.30 × 0.08 mm

Data collection

AFC12K/SATURN724 diffractometer 7133 independent reflections
Radiation source: fine-focus sealed tube 6807 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
ω scans θmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −20→21
Tmin = 0.661, Tmax = 1.000 k = −15→15
22846 measured reflections l = −22→19

Refinement

Refinement on F2 4 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0243P)2 + 2.9797P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065 (Δ/σ)max = 0.001
S = 1.08 Δρmax = 0.54 e Å3
7133 reflections Δρmin = −0.39 e Å3
359 parameters

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd 0.43075 (2) 0.13535 (2) 0.44655 (2) 0.01368 (5)
S1 0.36321 (3) 0.19066 (4) 0.55658 (3) 0.01568 (10)
S2 0.43474 (3) 0.35177 (4) 0.47165 (3) 0.01378 (9)
S3 0.39975 (3) −0.08571 (4) 0.43612 (3) 0.01393 (9)
S4 0.45562 (3) −0.11726 (4) 0.62449 (3) 0.01652 (10)
O1 0.36420 (11) 0.30641 (13) 0.79528 (10) 0.0241 (3)
H1O 0.3348 (17) 0.3606 (15) 0.797 (2) 0.036*
O2 0.24285 (16) −0.03206 (14) 0.70325 (14) 0.0425 (5)
H2O 0.241 (3) 0.0271 (17) 0.728 (2) 0.064*
O1W 0.23612 (12) 0.15309 (13) 0.77985 (12) 0.0276 (4)
H1W 0.2791 (15) 0.195 (2) 0.787 (2) 0.041*
H2W 0.1898 (13) 0.185 (2) 0.7437 (16) 0.041*
N1 0.28639 (11) −0.08842 (14) 0.51175 (11) 0.0165 (3)
N2 0.37924 (11) 0.40314 (13) 0.59396 (11) 0.0150 (3)
N3 0.29195 (12) 0.15099 (13) 0.32251 (11) 0.0177 (3)
N4 0.11563 (13) 0.38202 (15) 0.34081 (13) 0.0242 (4)
N5 0.05594 (13) 0.46819 (16) 0.33476 (13) 0.0260 (4)
N6 −0.08839 (14) 0.74203 (17) 0.35311 (15) 0.0324 (5)
C1 0.39084 (12) 0.32403 (15) 0.54493 (12) 0.0126 (3)
C2 0.33799 (13) 0.37919 (16) 0.65353 (13) 0.0165 (4)
H2A 0.2888 0.3259 0.6262 0.020*
H2B 0.3119 0.4472 0.6646 0.020*
C3 0.40587 (15) 0.33254 (18) 0.73950 (14) 0.0218 (4)
H3A 0.4335 0.2658 0.7284 0.026*
H3B 0.4540 0.3868 0.7680 0.026*
C4 0.40109 (14) 0.51947 (15) 0.58531 (14) 0.0178 (4)
H4 0.4361 0.5203 0.5497 0.021*
C5 0.46023 (15) 0.56990 (17) 0.67257 (15) 0.0227 (4)
H5A 0.5143 0.5255 0.7010 0.034*
H5B 0.4273 0.5723 0.7087 0.034*
H5C 0.4771 0.6443 0.6640 0.034*
C6 0.31638 (15) 0.58567 (17) 0.53696 (15) 0.0238 (4)
H6A 0.2798 0.5495 0.4821 0.036*
H6B 0.3325 0.6592 0.5256 0.036*
H6C 0.2823 0.5909 0.5720 0.036*
C7 0.37201 (13) −0.09619 (15) 0.52349 (13) 0.0144 (4)
C8 0.26157 (15) −0.10857 (17) 0.58411 (14) 0.0198 (4)
H8A 0.2988 −0.1687 0.6203 0.024*
H8B 0.1982 −0.1319 0.5609 0.024*
C9 0.27426 (16) −0.00701 (17) 0.63969 (15) 0.0237 (4)
H9A 0.3383 0.0135 0.6676 0.028*
H9B 0.2400 0.0551 0.6037 0.028*
C10 0.21194 (14) −0.07222 (17) 0.42431 (14) 0.0207 (4)
H10 0.2392 −0.0431 0.3861 0.025*
C11 0.16893 (16) −0.1815 (2) 0.38682 (16) 0.0305 (5)
H11A 0.2142 −0.2307 0.3832 0.046*
H11B 0.1211 −0.1701 0.3290 0.046*
H11C 0.1438 −0.2141 0.4241 0.046*
C12 0.14460 (15) 0.0123 (2) 0.42532 (17) 0.0299 (5)
H12A 0.1756 0.0812 0.4491 0.045*
H12B 0.1154 −0.0143 0.4612 0.045*
H12C 0.0994 0.0245 0.3663 0.045*
C13 0.26289 (15) 0.08493 (17) 0.25306 (14) 0.0201 (4)
H13 0.3011 0.0281 0.2507 0.024*
C14 0.17944 (15) 0.09657 (18) 0.18503 (14) 0.0227 (4)
H14 0.1606 0.0482 0.1371 0.027*
C15 0.12347 (14) 0.18035 (17) 0.18798 (14) 0.0209 (4)
H15 0.0665 0.1912 0.1414 0.025*
C16 0.15226 (13) 0.24779 (16) 0.26003 (13) 0.0170 (4)
C17 0.23735 (14) 0.22991 (16) 0.32592 (13) 0.0180 (4)
H17 0.2573 0.2758 0.3753 0.022*
C18 0.09590 (14) 0.33688 (17) 0.26722 (14) 0.0199 (4)
H18 0.0452 0.3609 0.2178 0.024*
C19 0.07322 (14) 0.50864 (18) 0.40903 (15) 0.0234 (4)
H19 0.1193 0.4773 0.4588 0.028*
C20 0.02300 (15) 0.60274 (18) 0.41864 (15) 0.0231 (4)
C21 −0.04395 (15) 0.65334 (19) 0.34710 (16) 0.0256 (5)
H21 −0.0585 0.6232 0.2915 0.031*
C22 −0.06761 (18) 0.7822 (2) 0.4324 (2) 0.0400 (6)
H22 −0.0991 0.8450 0.4374 0.048*
C23 −0.00341 (19) 0.7380 (2) 0.50682 (18) 0.0378 (6)
H23 0.0087 0.7693 0.5615 0.045*
C24 0.04320 (17) 0.6467 (2) 0.50016 (17) 0.0301 (5)
H24 0.0882 0.6145 0.5503 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd 0.01391 (8) 0.01315 (7) 0.01351 (8) 0.00222 (5) 0.00533 (6) −0.00025 (5)
S1 0.0203 (2) 0.0118 (2) 0.0179 (2) −0.00160 (17) 0.0110 (2) −0.00003 (17)
S2 0.0168 (2) 0.0131 (2) 0.0133 (2) −0.00056 (17) 0.00812 (18) −0.00001 (16)
S3 0.0158 (2) 0.0136 (2) 0.0135 (2) 0.00129 (17) 0.00717 (18) 0.00009 (16)
S4 0.0174 (2) 0.0196 (2) 0.0135 (2) 0.00195 (18) 0.00735 (19) 0.00139 (18)
O1 0.0322 (9) 0.0246 (8) 0.0226 (8) 0.0050 (7) 0.0187 (7) 0.0051 (6)
O2 0.0775 (15) 0.0232 (8) 0.0574 (13) −0.0139 (9) 0.0583 (13) −0.0092 (8)
O1W 0.0316 (9) 0.0233 (8) 0.0317 (10) −0.0008 (7) 0.0172 (8) −0.0012 (7)
N1 0.0162 (8) 0.0177 (8) 0.0177 (9) 0.0016 (6) 0.0091 (7) 0.0033 (6)
N2 0.0183 (8) 0.0129 (7) 0.0165 (8) −0.0012 (6) 0.0100 (7) −0.0009 (6)
N3 0.0198 (8) 0.0160 (8) 0.0145 (8) 0.0015 (7) 0.0044 (7) −0.0003 (6)
N4 0.0212 (9) 0.0250 (9) 0.0234 (10) 0.0069 (7) 0.0065 (8) 0.0021 (7)
N5 0.0240 (9) 0.0266 (9) 0.0262 (10) 0.0069 (8) 0.0094 (8) 0.0004 (8)
N6 0.0272 (10) 0.0331 (11) 0.0339 (12) 0.0045 (9) 0.0099 (9) −0.0078 (9)
C1 0.0116 (8) 0.0149 (8) 0.0105 (9) 0.0001 (7) 0.0038 (7) −0.0003 (7)
C2 0.0178 (9) 0.0181 (9) 0.0172 (10) 0.0006 (7) 0.0110 (8) −0.0005 (7)
C3 0.0227 (10) 0.0273 (10) 0.0182 (10) 0.0028 (9) 0.0114 (9) 0.0017 (8)
C4 0.0238 (10) 0.0122 (8) 0.0209 (10) −0.0034 (8) 0.0127 (9) −0.0024 (7)
C5 0.0266 (11) 0.0169 (9) 0.0247 (11) −0.0049 (8) 0.0111 (9) −0.0067 (8)
C6 0.0291 (11) 0.0187 (10) 0.0236 (11) 0.0012 (9) 0.0112 (10) 0.0011 (8)
C7 0.0169 (9) 0.0103 (8) 0.0167 (9) 0.0006 (7) 0.0077 (8) 0.0008 (7)
C8 0.0225 (10) 0.0198 (9) 0.0232 (11) −0.0011 (8) 0.0155 (9) 0.0016 (8)
C9 0.0310 (11) 0.0208 (10) 0.0301 (12) 0.0005 (9) 0.0232 (10) 0.0020 (9)
C10 0.0156 (9) 0.0241 (10) 0.0210 (11) 0.0016 (8) 0.0064 (8) 0.0035 (8)
C11 0.0277 (12) 0.0285 (12) 0.0278 (13) −0.0016 (10) 0.0045 (10) −0.0011 (10)
C12 0.0213 (11) 0.0304 (12) 0.0351 (14) 0.0054 (9) 0.0092 (10) 0.0033 (10)
C13 0.0258 (11) 0.0168 (9) 0.0167 (10) 0.0008 (8) 0.0080 (9) −0.0008 (8)
C14 0.0294 (11) 0.0223 (10) 0.0141 (10) −0.0051 (9) 0.0069 (9) −0.0018 (8)
C15 0.0184 (10) 0.0232 (10) 0.0162 (10) −0.0042 (8) 0.0026 (8) 0.0029 (8)
C16 0.0164 (9) 0.0163 (9) 0.0175 (10) −0.0026 (7) 0.0064 (8) 0.0029 (7)
C17 0.0194 (10) 0.0156 (9) 0.0168 (10) 0.0003 (8) 0.0056 (8) −0.0003 (7)
C18 0.0151 (9) 0.0218 (10) 0.0206 (10) 0.0002 (8) 0.0052 (8) 0.0051 (8)
C19 0.0181 (10) 0.0280 (11) 0.0227 (11) −0.0007 (8) 0.0073 (9) 0.0030 (9)
C20 0.0209 (10) 0.0259 (10) 0.0247 (11) −0.0042 (9) 0.0118 (9) −0.0028 (9)
C21 0.0231 (11) 0.0296 (11) 0.0234 (12) 0.0015 (9) 0.0091 (9) −0.0041 (9)
C22 0.0339 (14) 0.0411 (14) 0.0447 (16) 0.0055 (12) 0.0162 (13) −0.0165 (13)
C23 0.0384 (14) 0.0480 (15) 0.0295 (14) −0.0030 (12) 0.0167 (12) −0.0160 (12)
C24 0.0289 (12) 0.0369 (13) 0.0246 (12) −0.0019 (10) 0.0113 (10) −0.0019 (10)

Geometric parameters (Å, º)

Cd—S1 2.6444 (5) C5—H5B 0.9800
Cd—S2 2.6768 (5) C5—H5C 0.9800
Cd—S3 2.7422 (5) C6—H6A 0.9800
Cd—S3i 2.7317 (6) C6—H6B 0.9800
Cd—S4i 2.6342 (5) C6—H6C 0.9800
Cd—N3 2.3811 (18) C8—C9 1.523 (3)
S1—C1 1.7267 (19) C8—H8A 0.9900
S2—C1 1.7231 (18) C8—H8B 0.9900
S3—C7 1.7404 (19) C9—H9A 0.9900
S3—Cdi 2.7317 (6) C9—H9B 0.9900
S4—C7 1.714 (2) C10—C11 1.521 (3)
S4—Cdi 2.6343 (5) C10—C12 1.521 (3)
O1—C3 1.426 (2) C10—H10 1.0000
O1—H1O 0.830 (10) C11—H11A 0.9800
O2—C9 1.419 (2) C11—H11B 0.9800
O2—H2O 0.846 (10) C11—H11C 0.9800
O1W—H1W 0.842 (10) C12—H12A 0.9800
O1W—H2W 0.847 (10) C12—H12B 0.9800
N1—C7 1.341 (2) C12—H12C 0.9800
N1—C8 1.477 (2) C13—C14 1.383 (3)
N1—C10 1.493 (3) C13—H13 0.9500
N2—C1 1.345 (2) C14—C15 1.393 (3)
N2—C2 1.472 (2) C14—H14 0.9500
N2—C4 1.490 (2) C15—C16 1.388 (3)
N3—C17 1.337 (3) C15—H15 0.9500
N3—C13 1.346 (3) C16—C17 1.396 (3)
N4—C18 1.283 (3) C16—C18 1.469 (3)
N4—N5 1.415 (2) C17—H17 0.9500
N5—C19 1.277 (3) C18—H18 0.9500
N6—C21 1.336 (3) C19—C20 1.466 (3)
N6—C22 1.342 (3) C19—H19 0.9500
C2—C3 1.532 (3) C20—C24 1.396 (3)
C2—H2A 0.9900 C20—C21 1.399 (3)
C2—H2B 0.9900 C21—H21 0.9500
C3—H3A 0.9900 C22—C23 1.377 (4)
C3—H3B 0.9900 C22—H22 0.9500
C4—C6 1.521 (3) C23—C24 1.386 (4)
C4—C5 1.526 (3) C23—H23 0.9500
C4—H4 1.0000 C24—H24 0.9500
C5—H5A 0.9800
N3—Cd—S4i 101.46 (4) N1—C7—S4 120.60 (15)
N3—Cd—S1 94.50 (4) N1—C7—S3 120.40 (15)
N3—Cd—S2 90.73 (4) S4—C7—S3 119.00 (11)
S4i—Cd—S2 100.522 (15) N1—C8—C9 111.86 (16)
S1—Cd—S2 67.824 (14) N1—C8—H8A 109.2
S4i—Cd—S3i 67.343 (17) C9—C8—H8A 109.2
S4i—Cd—S1 160.481 (17) N1—C8—H8B 109.2
S2—Cd—S3 167.393 (15) C9—C8—H8B 109.2
N3—Cd—S3i 166.35 (4) H8A—C8—H8B 107.9
S1—Cd—S3i 98.110 (17) O2—C9—C8 107.62 (17)
S2—Cd—S3i 98.831 (15) O2—C9—H9A 110.2
N3—Cd—S3 86.49 (4) C8—C9—H9A 110.2
S4i—Cd—S3 92.082 (15) O2—C9—H9B 110.2
S1—Cd—S3 100.113 (14) C8—C9—H9B 110.2
S3i—Cd—S3 86.184 (15) H9A—C9—H9B 108.5
C1—S1—Cd 87.09 (6) N1—C10—C11 110.18 (17)
C1—S2—Cd 86.13 (6) N1—C10—C12 111.95 (18)
C7—S3—Cdi 84.87 (7) C11—C10—C12 112.89 (19)
C7—S3—Cd 97.23 (6) N1—C10—H10 107.2
Cdi—S3—Cd 93.816 (15) C11—C10—H10 107.2
C7—S4—Cdi 88.51 (7) C12—C10—H10 107.2
C3—O1—H1O 108 (2) C10—C11—H11A 109.5
C9—O2—H2O 107 (3) C10—C11—H11B 109.5
H1W—O1W—H2W 106 (3) H11A—C11—H11B 109.5
C7—N1—C8 120.49 (17) C10—C11—H11C 109.5
C7—N1—C10 121.81 (16) H11A—C11—H11C 109.5
C8—N1—C10 117.33 (16) H11B—C11—H11C 109.5
C1—N2—C2 121.05 (16) C10—C12—H12A 109.5
C1—N2—C4 121.41 (16) C10—C12—H12B 109.5
C2—N2—C4 117.38 (15) H12A—C12—H12B 109.5
C17—N3—C13 118.42 (18) C10—C12—H12C 109.5
C17—N3—Cd 115.48 (14) H12A—C12—H12C 109.5
C13—N3—Cd 126.01 (14) H12B—C12—H12C 109.5
C18—N4—N5 111.56 (18) N3—C13—C14 122.51 (19)
C19—N5—N4 111.02 (19) N3—C13—H13 118.7
C21—N6—C22 117.4 (2) C14—C13—H13 118.7
N2—C1—S2 121.63 (14) C13—C14—C15 118.9 (2)
N2—C1—S1 119.59 (14) C13—C14—H14 120.5
S2—C1—S1 118.77 (11) C15—C14—H14 120.5
N2—C2—C3 111.96 (16) C16—C15—C14 119.0 (2)
N2—C2—H2A 109.2 C16—C15—H15 120.5
C3—C2—H2A 109.2 C14—C15—H15 120.5
N2—C2—H2B 109.2 C15—C16—C17 118.27 (19)
C3—C2—H2B 109.2 C15—C16—C18 121.51 (19)
H2A—C2—H2B 107.9 C17—C16—C18 120.22 (19)
O1—C3—C2 111.22 (17) N3—C17—C16 122.88 (19)
O1—C3—H3A 109.4 N3—C17—H17 118.6
C2—C3—H3A 109.4 C16—C17—H17 118.6
O1—C3—H3B 109.4 N4—C18—C16 119.52 (19)
C2—C3—H3B 109.4 N4—C18—H18 120.2
H3A—C3—H3B 108.0 C16—C18—H18 120.2
N2—C4—C6 110.94 (17) N5—C19—C20 121.0 (2)
N2—C4—C5 111.74 (17) N5—C19—H19 119.5
C6—C4—C5 112.17 (17) C20—C19—H19 119.5
N2—C4—H4 107.2 C24—C20—C21 118.1 (2)
C6—C4—H4 107.2 C24—C20—C19 120.3 (2)
C5—C4—H4 107.2 C21—C20—C19 121.6 (2)
C4—C5—H5A 109.5 N6—C21—C20 123.2 (2)
C4—C5—H5B 109.5 N6—C21—H21 118.4
H5A—C5—H5B 109.5 C20—C21—H21 118.4
C4—C5—H5C 109.5 N6—C22—C23 123.9 (2)
H5A—C5—H5C 109.5 N6—C22—H22 118.0
H5B—C5—H5C 109.5 C23—C22—H22 118.0
C4—C6—H6A 109.5 C22—C23—C24 118.5 (2)
C4—C6—H6B 109.5 C22—C23—H23 120.8
H6A—C6—H6B 109.5 C24—C23—H23 120.8
C4—C6—H6C 109.5 C23—C24—C20 119.0 (2)
H6A—C6—H6C 109.5 C23—C24—H24 120.5
H6B—C6—H6C 109.5 C20—C24—H24 120.5
C18—N4—N5—C19 176.5 (2) C7—N1—C10—C11 96.7 (2)
C2—N2—C1—S2 177.27 (14) C8—N1—C10—C11 −76.4 (2)
C4—N2—C1—S2 2.0 (3) C7—N1—C10—C12 −136.83 (19)
C2—N2—C1—S1 −3.9 (3) C8—N1—C10—C12 50.1 (2)
C4—N2—C1—S1 −179.22 (14) C17—N3—C13—C14 0.8 (3)
Cd—S2—C1—N2 174.63 (16) Cd—N3—C13—C14 177.07 (15)
Cd—S2—C1—S1 −4.16 (10) N3—C13—C14—C15 0.6 (3)
Cd—S1—C1—N2 −174.61 (16) C13—C14—C15—C16 −1.6 (3)
Cd—S1—C1—S2 4.21 (11) C14—C15—C16—C17 1.3 (3)
C1—N2—C2—C3 82.7 (2) C14—C15—C16—C18 −179.43 (18)
C4—N2—C2—C3 −101.9 (2) C13—N3—C17—C16 −1.1 (3)
N2—C2—C3—O1 −178.05 (16) Cd—N3—C17—C16 −177.75 (15)
C1—N2—C4—C6 104.3 (2) C15—C16—C17—N3 0.0 (3)
C2—N2—C4—C6 −71.1 (2) C18—C16—C17—N3 −179.23 (18)
C1—N2—C4—C5 −129.72 (19) N5—N4—C18—C16 178.04 (17)
C2—N2—C4—C5 54.8 (2) C15—C16—C18—N4 165.2 (2)
C8—N1—C7—S4 −6.0 (2) C17—C16—C18—N4 −15.5 (3)
C10—N1—C7—S4 −178.81 (14) N4—N5—C19—C20 176.96 (18)
C8—N1—C7—S3 173.68 (14) N5—C19—C20—C24 −179.4 (2)
C10—N1—C7—S3 0.9 (3) N5—C19—C20—C21 −1.6 (3)
Cdi—S4—C7—N1 174.52 (15) C22—N6—C21—C20 −1.0 (4)
Cdi—S4—C7—S3 −5.15 (10) C24—C20—C21—N6 0.8 (3)
Cdi—S3—C7—N1 −174.68 (15) C19—C20—C21—N6 −177.0 (2)
Cd—S3—C7—N1 92.11 (15) C21—N6—C22—C23 0.4 (4)
Cdi—S3—C7—S4 4.99 (10) N6—C22—C23—C24 0.3 (5)
Cd—S3—C7—S4 −88.22 (11) C22—C23—C24—C20 −0.4 (4)
C7—N1—C8—C9 84.0 (2) C21—C20—C24—C23 −0.1 (3)
C10—N1—C8—C9 −102.9 (2) C19—C20—C24—C23 177.8 (2)
N1—C8—C9—O2 175.92 (19)

Symmetry code: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1O···O2ii 0.83 (2) 1.83 (3) 2.655 (3) 172 (3)
O2—H2O···O1W 0.85 (3) 1.80 (3) 2.640 (3) 180 (6)
O1W—H1W···O1 0.84 (3) 1.92 (3) 2.750 (3) 172 (3)
O1W—H2W···N6iii 0.85 (2) 2.00 (2) 2.840 (3) 172 (2)
C23—H23···O1ii 0.95 2.50 3.295 (3) 141
C4—H4···S2iv 1.00 2.79 3.599 (2) 139
C15—H15···S2v 0.95 2.84 3.714 (2) 153
C15—H15···Cg(Cd,S1,S2,C1)vi 0.95 2.79 3.737 (2) 173

Symmetry codes: (ii) −x+1/2, y+1/2, −z+3/2; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1; (v) x−1/2, −y+1/2, z−1/2; (vi) x−3/2, −y−1/2, z−3/2.

References

  1. Airoldi, C., De Oliveira, S. F., Ruggiero, S. G. & Lechat, J. R. (1990). Inorg. Chim. Acta, 174, 103–108.
  2. Avila, V., Benson, R. E., Broker, G. A., Daniels, L. M. & Tiekink, E. R. T. (2006). Acta Cryst. E62, m1425–m1427.
  3. Bhattacharya, B., Dey, R., Maity, D. K. & Ghoshal, D. (2013). CrystEngComm, 15, 9457–9464.
  4. Bing, Y., Li, X., Zha, M. & Lu, Y. (2010). Acta Cryst. E66, m1500. [DOI] [PMC free article] [PubMed]
  5. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  6. Chai, J., Lai, C. S., Yan, J. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 249–250.
  7. Dee, C. M. & Tiekink, E. R. T. (2002). Z. Kristallogr. New Cryst. Struct 217, 85–86.
  8. Domenicano, A., Torelli, L., Vaciago, A. & Zambonelli, L. (1968). J. Chem. Soc. A, pp. 1351–1361.
  9. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  10. Ferreira, I. P., de Lima, G. M., Paniago, E. B., Pinheiro, C. B., Wardell, J. L. & Wardell, S. M. S. V. (2016). Inorg. Chim. Acta, 441, 137–145.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  13. Jotani, M. M., Tan, Y. S. & Tiekink, E. R. T. (2016). Z. Kristallogr 231, 403–413.
  14. Kumar, V., Singh, V., Gupta, A. N., Manar, K. K., Drew, M. G. B. & Singh, N. (2014). CrystEngComm, 16, 6765–6774.
  15. Lai, C. S. & Tiekink, E. R. T. (2006a). Z. Kristallogr 221, 288–293.
  16. Lai, C. S. & Tiekink, E. R. T. (2006b). J. Mol. Struct. 796, 114–118.
  17. Lennartson, A. & Håkansson, M. (2009). Angew. Chem. Int. Ed. 48, 5869–5871. [DOI] [PubMed]
  18. Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  19. Rajakannu, P., Howlader, R., Kalita, A. Ch., Butcher, R. J. & Murugavel, R. (2015). Inorg. Chem. Front. 2, 55–66.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  22. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  23. Tan, Y. S., Azizuddin, A. D., Câmpian, M. V., Haiduc, I. & Tiekink, E. R. T. (2016). Z. Kristallogr 231, 155–165.
  24. Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr 231, 113–126.
  25. Tan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. B. A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046–3056.
  26. Tiekink, E. R. T. (2003). CrystEngComm, 5, 101–113.
  27. Tiekink, E. R. T. & Haiduc, I. (2005). Prog. Inorg. Chem 54, 127–319.
  28. Tiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623–6625. [DOI] [PubMed]
  29. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016012214/wm5312sup1.cif

e-72-01234-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016012214/wm5312Isup2.hkl

e-72-01234-Isup2.hkl (566.8KB, hkl)

CCDC reference: 1496352

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES