Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Aug 5;72(Pt 9):1242–1245. doi: 10.1107/S2056989016012408

Crystal structure of hexa­aqua­nickel(II) bis­{5-bromo-7-[(2-hy­droxy­eth­yl)amino]-1-methyl-6-oxido­quinolin-1-ium-3-sulfonate} monohydrate

Hai Le Thi Hong a, Vinh Nguyen Thi Ngoc a, Anh Do Thi Van a, Luc Van Meervelt b,*
PMCID: PMC5120697  PMID: 27920907

The packing of the title compound is built up by columns of π–π stacking quinoline derivatives running along the c axis, which are inter­connected by [Ni(H2O)6]2+ complex cations through hydrogen bonding.

Keywords: crystal structure, quinoline, hydrogen bonding, π–π stacking

Abstract

The asymmetric unit of the title compound, [Ni(H2O)6](C12H12BrN2O5S)2·H2O, contains a half hexa­aqua­nickel(II) complex cation with the NiII ion lying on an inversion center, one 5-bromo-7-[(2-hy­droxy­eth­yl)amino]-1-methyl-6-oxido­quinolin-1-ium-3-sulfonate (QAO) anion and a half lattice water mol­ecule on a twofold rotation axis. In the crystal, QAO anions are stacked in a column along the c axis by π–π stacking inter­actions [centroid–centroid distances 3.5922 (10)–3.7223 (11) Å]. The columns are inter­linked by hexa­aqua­nickel(II) cations through O—H⋯O and N—H⋯O hydrogen bonds.

Chemical context  

Among heterocyclic rings, the quinoline ring system is of great importance due to its therapeutic and biological activities. Many new quinoline derivatives have been synthesized and used as new potential agents to treat HIV (Cecchetti et al., 2000; Tabarrini et al., 2008) and malaria (Nayyar et al., 2006) or to inhibit human tumor cell growth (Rashad et al., 2010). Recently, a simple amino­quinoline derivative has been used in colorimetric sensors for pH (Wang et al., 2014). In addition, complexes of quinoline compounds with transition metals are also known to exhibit a wide variety of structures and possess profound biochemical activities which allow them to act as anti­microbial, anti-Alzheimer’s (Deraeve et al., 2008) or anti­tumoral agents (Yan et al., 2012; Kitanovic et al., 2014). Some complexes of polysubstituted quinoline compounds have also been used in dye-sensitized solar cells or in efficient organic heterojunction solar cells (Li et al., 2012).graphic file with name e-72-01242-scheme1.jpg

The new quinoline derivative (6-hy­droxy-3-sulfoquinolin-7-yloxy)acetic acid (Q) was synthesized from eugenol and its anti­bacterial activities have been reported (Dinh et al., 2012). From Q, a series of polysubstituted quinoline compounds has been synthesized, including 5-bromo-6-hy­droxy-7-[(2-hy­droxy­ethyl)­amino]-1-methyl-3-sulfo­quinoline (QAO). As polysubstituted quinoline rings are known to coordinate to metal ions, the reaction between QAO and NiCl2 was studied. The reaction product could not be characterized unambiguously by IR or 1H NMR spectroscopy. Although the obtained spectroscopic data are different from those of free QAO, indicating the presence of a deprotonated hydroxyl group, no conclusion about complex formation was possible and further investigation by X-ray diffraction was necessary.

Structural commentary  

The structure determination shows that NiII is not complexed directly with QAO, but is present as a hexa­aqua complex, [Ni(H2O)6]2+, located about an inversion center (Fig. 1). The 6-hy­droxy group as well as the 3-sulfonic acid group of QAO are deprotonated. The substituent atom Br16 deviates most [0.125 (1) Å] from the best plane through the quinoline ring system (r.m.s. deviation = 0.009 Å). The 2-hy­droxy­ethyl­amino substituent shows a +sc conformation [torsion angle N18—C19—C20—O21 = 57.0 (2)°].

Figure 1.

Figure 1

The structures of the mol­ecular components in the title compound with ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x + Inline graphic, −y + Inline graphic, −z + 1.]

Supra­molecular features  

The crystal packing (Fig. 2) is characterized by columns of stacking QAO mol­ecules running along the c axis through π–π stacking inter­actions between the quinoline ring systems [Cg1⋯Cg1i = 3.5922 (10) Å, Cg2⋯Cg2i = 3.5793 (11) Å, Cg1⋯Cg2ii = 3.7223 (11) Å; Cg1 and Cg2 are the centroids of the rings N1/C2–C6 and C5–C10, respectively; symmetry codes: (i) −x + 2, y, −z + Inline graphic; (ii) −x + 2, −y + 1, −z + 1; Fig. 3]. Within these columns additional C—H⋯Br and C—H⋯O inter­actions occur (Table 1 and Fig. 3). The columns inter­act with the hexa­aqua­nickel(II) cations through hydrogen bonding. The lattice water mol­ecule inter­acts with two neighboring cations. One [Ni(H2O)6]2+ complex inter­acts in total with twelve QAO mol­ecules and two water mol­ecules through O—H⋯O and N—H⋯O hydrogen bonds (Table 1 and Fig. 4).

Figure 2.

Figure 2

Packing diagram of the title compound viewed along the a axis. Dashed lines represent hydrogen bonds.

Figure 3.

Figure 3

Partial packing diagram of the title compound, showing π–π inter­actions between quinoline ring systems [grey dotted lines; Cg1 and Cg2 are the centroids of rings N1/C2–C6 and C5–C10, respectively; symmetry codes: (i) −x + 2, y, −z + Inline graphic; (ii) −x + 2, −y + 1, −z + 1], and C—H⋯Br and C—H⋯O hydrogen bonds (red dotted lines).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O21—H21⋯O17i 0.83 (3) 1.89 (3) 2.707 (2) 170 (3)
C11—H11B⋯Br16ii 0.98 3.02 3.987 (2) 171
C19—H19A⋯O13ii 0.99 2.59 3.360 (3) 134
N18—H18⋯O25iii 0.88 2.58 3.422 (2) 159
O23—H23A⋯O14iv 0.92 2.09 2.971 (2) 161
O23—H23B⋯O21v 0.91 1.72 2.630 (2) 172
O24—H24A⋯O13ii 0.90 1.90 2.772 (2) 162
O24—H24B⋯O17vi 0.90 1.83 2.714 (2) 165
O25—H25A⋯O15vii 0.92 2.16 2.826 (2) 129
O25—H25B⋯O26 0.91 1.86 2.755 (2) 165
O26—H26⋯O14ii 0.76 (3) 2.03 (3) 2.783 (2) 175 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Figure 4.

Figure 4

Partial packing diagram of the title compound viewed along the a axis, showing the X—H⋯O hydrogen bonds (red dotted lines, see Table 1 for details) and C—H⋯Br inter­actions (brown dotted lines).

Database survey  

A search of the Cambridge Structural Database (Version 5.37; last update May 2016; Groom et al., 2016) for 3-quinolinium sulfonic acids gives six hits of which four have a zwitterionic form [CSD refcodes PUSMOH (Le Thi Hong et al., 2015), BAPBOK (Skrzypek & Suwinska, 2002), HIVHUQ (Skrzypek & Suwinska, 2007) and QUNREY (Dinh et al., 2012)]. The remaining two are N-methyl­ated [CSD refcode HIVJEC (Skrzypek & Suwinska, 2007)] or N-ethyl­ated [CSD refcode HIVJAY (Skrzypek & Suwinska, 2007)] and have a hydroxyl group at the 4-position.

Synthesis and crystallization  

The quinoline derivative (6-hy­droxy-3-sulfoquinolin-7-yloxy)­acetic acid (Q) was synthesized starting from the natural product eugenol and further transformed to 5-bromo-6-hy­droxy-7-[(2-hy­droxy­ethyl)­amino]-1-methyl-3-sulfo­quinoline (QAO) according to a procedure described by Dinh et al. (2012).

A solution containing NiCl2·6H2O (262 mg, 1.1 mmol) in 10 mL water was added dropwise to 15 mL aqueous solution of QAO (754 mg, 2 mmol) and NH3 (pH ≃ 6–7). The obtained solution was stirred and refluxed at 313–323 K for three h. The brown precipitate was collected by filtration, washed consec­utively with ethanol and dried in vacuo. The obtained crystals were soluble in water and DMSO, but insoluble in ethanol, acetone and chloro­form. The yield was 60%. Single crystals suitable for X-ray investigation were obtained by slow evaporation from a ethanol–water (1:2 v/v) solution at room temperature.

IR (Impack-410 Nicolet spectrometer, KBr, cm−1): 3510, 3334 (νNH, νOH); 3080, 2942 (νC-H); 1588, 1540 (νC=Cring or νC=N); 1190, 1036 (νC-O, νS-O), 632 (νC-Br). 1H NMR (Bruker Avance 500 MHz, d 6-DMSO): 8.34 (1H, d, J =1.0Hz, Ar), 8.27 (1H, s, Ar), 6.51 (1H, s, Ar), 4.22 (3H, s, N-CH3); 3.69 (2H, t, J = 5.5Hz); 3.45 (2H, q, J = 5.5Hz), 7.34 (NH).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms for N18, O21, O23, O24, O25 and O26 were located in difference Fourier maps. The coordinates of H21 and H26 were refined freely, while the other H atoms were refined as riding. All C-bound H atoms were placed at idealized positions and refined as riding, with C—H distances of 0.95 (aromatic), 0.99 (methyl­ene) and 0.98 Å (meth­yl). For most H atoms, U iso(H) values were assigned as 1.5U eq of the parent atoms (1.2U eq for H2, H4, H10, H18, H19A/B and H20A/B).

Table 2. Experimental details.

Crystal data
Chemical formula [Ni(H2O)6](C12H12BrN2O5S)2·H2O
M r 937.23
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 8.7315 (4), 27.4581 (13), 13.7943 (6)
β (°) 94.061 (4)
V3) 3298.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.22
Crystal size (mm) 0.4 × 0.2 × 0.1
 
Data collection
Diffractometer Agilent SuperNova (single source at offset, Eos detector)
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
T min, T max 0.546, 0.725
No. of measured, independent and observed [I > 2σ(I)] reflections 9171, 3372, 3041
R int 0.020
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.024, 0.056, 1.08
No. of reflections 3372
No. of parameters 235
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.49

Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016012408/is5459sup1.cif

e-72-01242-sup1.cif (222.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016012408/is5459Isup2.hkl

e-72-01242-Isup2.hkl (185.2KB, hkl)

CCDC reference: 1497073

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank VLIR–UOS (project ZEIN2014Z182) for financial support and the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.

supplementary crystallographic information

Crystal data

[Ni(H2O)6](C12H12BrN2O5S)2·H2O F(000) = 1904
Mr = 937.23 Dx = 1.887 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 8.7315 (4) Å Cell parameters from 5359 reflections
b = 27.4581 (13) Å θ = 2.8–29.0°
c = 13.7943 (6) Å µ = 3.22 mm1
β = 94.061 (4)° T = 100 K
V = 3298.9 (3) Å3 Plate, orange
Z = 4 0.4 × 0.2 × 0.1 mm

Data collection

Agilent SuperNova (single source at offset, Eos detector) diffractometer 3372 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source 3041 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.020
Detector resolution: 15.9631 pixels mm-1 θmax = 26.4°, θmin = 2.5°
ω scans h = −10→10
Absorption correction: multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015) k = −34→32
Tmin = 0.546, Tmax = 0.725 l = −12→17
9171 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.024 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0207P)2 + 5.2045P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.002
3372 reflections Δρmax = 0.41 e Å3
235 parameters Δρmin = −0.49 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.90237 (18) 0.43668 (6) 0.37155 (11) 0.0110 (3)
C2 0.9801 (2) 0.39411 (8) 0.37514 (14) 0.0132 (4)
H2 0.9254 0.3642 0.3739 0.016*
C3 1.1379 (2) 0.39384 (8) 0.38056 (14) 0.0131 (4)
C4 1.2182 (2) 0.43770 (8) 0.38321 (13) 0.0134 (4)
H4 1.3273 0.4374 0.3877 0.016*
C5 1.1403 (2) 0.48189 (8) 0.37930 (13) 0.0108 (4)
C6 0.9750 (2) 0.48132 (8) 0.37471 (13) 0.0104 (4)
C7 1.2125 (2) 0.52820 (8) 0.38177 (14) 0.0119 (4)
C8 1.1373 (2) 0.57248 (8) 0.38109 (13) 0.0122 (4)
C9 0.9683 (2) 0.56934 (8) 0.37556 (13) 0.0110 (4)
C10 0.8918 (2) 0.52466 (8) 0.37301 (13) 0.0113 (4)
H10 0.7828 0.5238 0.3701 0.014*
C11 0.7332 (2) 0.43449 (8) 0.36504 (14) 0.0128 (4)
H11A 0.6923 0.4543 0.3101 0.019*
H11B 0.6950 0.4470 0.4253 0.019*
H11C 0.6999 0.4006 0.3553 0.019*
S12 1.23734 (6) 0.33760 (2) 0.37750 (4) 0.01589 (12)
O13 1.3871 (2) 0.34725 (7) 0.42443 (13) 0.0360 (5)
O14 1.24175 (17) 0.32666 (6) 0.27422 (10) 0.0200 (3)
O15 1.1481 (2) 0.30278 (6) 0.42858 (12) 0.0323 (4)
Br16 1.42949 (2) 0.53172 (2) 0.38060 (2) 0.01722 (7)
O17 1.19947 (16) 0.61482 (5) 0.38363 (10) 0.0154 (3)
N18 0.89569 (19) 0.61215 (7) 0.37205 (12) 0.0136 (4)
H18 0.9506 0.6391 0.3730 0.016*
C19 0.7298 (2) 0.61683 (8) 0.35993 (15) 0.0139 (4)
H19A 0.6846 0.6070 0.4208 0.017*
H19B 0.6892 0.5947 0.3075 0.017*
C20 0.6831 (2) 0.66848 (8) 0.33499 (15) 0.0162 (4)
H20A 0.5699 0.6704 0.3248 0.019*
H20B 0.7159 0.6902 0.3899 0.019*
O21 0.75070 (19) 0.68455 (6) 0.24924 (11) 0.0229 (4)
H21 0.760 (3) 0.6610 (11) 0.213 (2) 0.034*
Ni22 0.2500 0.7500 0.5000 0.01747 (10)
O23 0.35588 (18) 0.75193 (6) 0.37316 (12) 0.0273 (4)
H23A 0.3304 0.7799 0.3392 0.041*
H23B 0.3270 0.7270 0.3322 0.041*
O24 0.31091 (17) 0.67782 (6) 0.52289 (12) 0.0237 (4)
H24A 0.4136 0.6748 0.5315 0.036*
H24B 0.2816 0.6604 0.4695 0.036*
O25 0.44976 (16) 0.77588 (5) 0.57273 (12) 0.0196 (3)
H25A 0.5337 0.7662 0.5414 0.029*
H25B 0.4680 0.7661 0.6357 0.029*
O26 0.5000 0.73024 (9) 0.7500 0.0218 (5)
H26 0.570 (3) 0.7142 (10) 0.746 (2) 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0109 (8) 0.0116 (9) 0.0102 (8) 0.0017 (7) 0.0001 (6) −0.0009 (7)
C2 0.0169 (10) 0.0120 (10) 0.0106 (9) 0.0023 (8) −0.0005 (8) 0.0001 (8)
C3 0.0151 (10) 0.0137 (11) 0.0102 (9) 0.0061 (8) 0.0001 (7) −0.0021 (8)
C4 0.0125 (10) 0.0178 (11) 0.0098 (9) 0.0049 (8) 0.0007 (7) −0.0004 (8)
C5 0.0103 (9) 0.0153 (11) 0.0070 (8) 0.0009 (8) 0.0010 (7) −0.0001 (8)
C6 0.0118 (9) 0.0132 (11) 0.0064 (8) −0.0002 (8) 0.0014 (7) −0.0001 (8)
C7 0.0075 (9) 0.0184 (11) 0.0099 (9) 0.0003 (8) 0.0009 (7) 0.0005 (8)
C8 0.0109 (10) 0.0178 (11) 0.0078 (9) −0.0010 (8) 0.0003 (7) 0.0001 (8)
C9 0.0111 (10) 0.0142 (11) 0.0077 (9) 0.0018 (8) 0.0003 (7) −0.0011 (8)
C10 0.0079 (9) 0.0150 (11) 0.0111 (9) 0.0017 (8) 0.0007 (7) 0.0001 (8)
C11 0.0079 (9) 0.0140 (11) 0.0166 (10) 0.0003 (8) 0.0005 (7) 0.0003 (8)
S12 0.0176 (3) 0.0156 (3) 0.0141 (2) 0.0096 (2) −0.00095 (19) −0.0023 (2)
O13 0.0268 (9) 0.0349 (11) 0.0431 (11) 0.0212 (8) −0.0198 (8) −0.0210 (9)
O14 0.0243 (8) 0.0199 (9) 0.0156 (7) 0.0105 (7) 0.0008 (6) −0.0038 (6)
O15 0.0481 (11) 0.0194 (9) 0.0315 (9) 0.0170 (8) 0.0186 (8) 0.0112 (8)
Br16 0.00740 (10) 0.02418 (13) 0.02029 (11) 0.00080 (8) 0.00253 (7) 0.00294 (9)
O17 0.0144 (7) 0.0140 (8) 0.0177 (7) −0.0023 (6) −0.0002 (6) 0.0003 (6)
N18 0.0113 (8) 0.0107 (9) 0.0189 (9) −0.0004 (7) 0.0006 (7) 0.0002 (7)
C19 0.0094 (10) 0.0138 (11) 0.0184 (10) 0.0013 (8) 0.0001 (8) 0.0003 (9)
C20 0.0162 (10) 0.0160 (11) 0.0163 (10) 0.0034 (9) −0.0004 (8) −0.0003 (9)
O21 0.0355 (9) 0.0159 (9) 0.0179 (8) 0.0045 (7) 0.0053 (7) 0.0017 (7)
Ni22 0.00750 (18) 0.0097 (2) 0.0349 (2) −0.00015 (14) −0.00080 (16) −0.00713 (17)
O23 0.0182 (8) 0.0217 (9) 0.0422 (10) −0.0036 (7) 0.0036 (7) −0.0123 (8)
O24 0.0136 (7) 0.0140 (8) 0.0422 (10) 0.0032 (6) −0.0073 (7) −0.0106 (7)
O25 0.0107 (7) 0.0148 (8) 0.0331 (9) −0.0003 (6) 0.0004 (6) −0.0042 (7)
O26 0.0133 (11) 0.0133 (12) 0.0403 (14) 0.000 0.0117 (10) 0.000

Geometric parameters (Å, º)

N1—C2 1.351 (3) S12—O15 1.4474 (18)
N1—C6 1.380 (3) N18—H18 0.8806
N1—C11 1.475 (2) N18—C19 1.452 (2)
C2—H2 0.9500 C19—H19A 0.9900
C2—C3 1.374 (3) C19—H19B 0.9900
C3—C4 1.393 (3) C19—C20 1.509 (3)
C3—S12 1.774 (2) C20—H20A 0.9900
C4—H4 0.9500 C20—H20B 0.9900
C4—C5 1.390 (3) C20—O21 1.429 (3)
C5—C6 1.440 (3) O21—H21 0.83 (3)
C5—C7 1.418 (3) Ni22—O23i 2.0366 (17)
C6—C10 1.394 (3) Ni22—O23 2.0366 (17)
C7—C8 1.381 (3) Ni22—O24 2.0704 (15)
C7—Br16 1.8983 (19) Ni22—O24i 2.0704 (15)
C8—C9 1.474 (3) Ni22—O25 2.0750 (14)
C8—O17 1.283 (3) Ni22—O25i 2.0750 (14)
C9—C10 1.397 (3) O23—H23A 0.9191
C9—N18 1.335 (3) O23—H23B 0.9115
C10—H10 0.9500 O24—H24A 0.9003
C11—H11A 0.9800 O24—H24B 0.9001
C11—H11B 0.9800 O25—H25A 0.9163
C11—H11C 0.9800 O25—H25B 0.9128
S12—O13 1.4420 (17) O26—H26 0.76 (3)
S12—O14 1.4592 (15)
C2—N1—C6 122.61 (17) O15—S12—O14 113.06 (10)
C2—N1—C11 117.74 (18) C9—N18—H18 118.8
C6—N1—C11 119.64 (17) C9—N18—C19 123.35 (18)
N1—C2—H2 119.8 C19—N18—H18 117.7
N1—C2—C3 120.4 (2) N18—C19—H19A 109.4
C3—C2—H2 119.8 N18—C19—H19B 109.4
C2—C3—C4 119.84 (19) N18—C19—C20 111.15 (17)
C2—C3—S12 119.61 (17) H19A—C19—H19B 108.0
C4—C3—S12 120.46 (15) C20—C19—H19A 109.4
C3—C4—H4 119.7 C20—C19—H19B 109.4
C5—C4—C3 120.66 (19) C19—C20—H20A 109.4
C5—C4—H4 119.7 C19—C20—H20B 109.4
C4—C5—C6 118.55 (19) H20A—C20—H20B 108.0
C4—C5—C7 124.51 (18) O21—C20—C19 111.00 (17)
C7—C5—C6 116.92 (18) O21—C20—H20A 109.4
N1—C6—C5 117.92 (18) O21—C20—H20B 109.4
N1—C6—C10 121.32 (18) C20—O21—H21 109 (2)
C10—C6—C5 120.76 (19) O23i—Ni22—O23 180.00 (4)
C5—C7—Br16 119.16 (15) O23i—Ni22—O24 88.36 (7)
C8—C7—C5 125.37 (18) O23—Ni22—O24i 88.36 (7)
C8—C7—Br16 115.42 (15) O23—Ni22—O24 91.64 (7)
C7—C8—C9 114.98 (19) O23i—Ni22—O24i 91.64 (7)
O17—C8—C7 126.71 (18) O23i—Ni22—O25i 89.39 (6)
O17—C8—C9 118.31 (18) O23—Ni22—O25 89.39 (6)
C10—C9—C8 121.87 (19) O23i—Ni22—O25 90.61 (6)
N18—C9—C8 114.94 (18) O23—Ni22—O25i 90.61 (6)
N18—C9—C10 123.18 (18) O24—Ni22—O24i 180.0
C6—C10—C9 120.10 (18) O24i—Ni22—O25 86.79 (6)
C6—C10—H10 120.0 O24—Ni22—O25 93.21 (6)
C9—C10—H10 120.0 O24—Ni22—O25i 86.79 (6)
N1—C11—H11A 109.5 O24i—Ni22—O25i 93.21 (6)
N1—C11—H11B 109.5 O25i—Ni22—O25 180.0
N1—C11—H11C 109.5 Ni22—O23—H23A 110.6
H11A—C11—H11B 109.5 Ni22—O23—H23B 113.0
H11A—C11—H11C 109.5 H23A—O23—H23B 105.3
H11B—C11—H11C 109.5 Ni22—O24—H24A 110.6
O13—S12—C3 105.03 (10) Ni22—O24—H24B 109.2
O13—S12—O14 112.98 (10) H24A—O24—H24B 106.3
O13—S12—O15 113.89 (12) Ni22—O25—H25A 110.3
O14—S12—C3 104.43 (9) Ni22—O25—H25B 116.3
O15—S12—C3 106.39 (10) H25A—O25—H25B 105.9
N1—C2—C3—C4 0.5 (3) C6—N1—C2—C3 −1.1 (3)
N1—C2—C3—S12 −176.06 (14) C6—C5—C7—C8 0.7 (3)
N1—C6—C10—C9 −179.52 (17) C6—C5—C7—Br16 −176.56 (13)
C2—N1—C6—C5 1.8 (3) C7—C5—C6—N1 179.55 (16)
C2—N1—C6—C10 −178.59 (17) C7—C5—C6—C10 −0.1 (3)
C2—C3—C4—C5 −0.7 (3) C7—C8—C9—C10 1.1 (3)
C2—C3—S12—O13 −156.31 (17) C7—C8—C9—N18 −178.14 (17)
C2—C3—S12—O14 84.58 (17) C8—C9—C10—C6 −0.6 (3)
C2—C3—S12—O15 −35.24 (19) C8—C9—N18—C19 175.77 (17)
C3—C4—C5—C6 1.4 (3) C9—N18—C19—C20 −166.55 (18)
C3—C4—C5—C7 179.87 (18) C10—C9—N18—C19 −3.5 (3)
C4—C3—S12—O13 27.10 (19) C11—N1—C2—C3 179.54 (17)
C4—C3—S12—O14 −92.01 (17) C11—N1—C6—C5 −178.90 (16)
C4—C3—S12—O15 148.17 (17) C11—N1—C6—C10 0.8 (3)
C4—C5—C6—N1 −1.9 (3) S12—C3—C4—C5 175.84 (14)
C4—C5—C6—C10 178.47 (17) Br16—C7—C8—C9 176.19 (13)
C4—C5—C7—C8 −177.81 (18) Br16—C7—C8—O17 −3.0 (3)
C4—C5—C7—Br16 5.0 (3) O17—C8—C9—C10 −179.67 (17)
C5—C6—C10—C9 0.1 (3) O17—C8—C9—N18 1.1 (3)
C5—C7—C8—C9 −1.1 (3) N18—C9—C10—C6 178.53 (17)
C5—C7—C8—O17 179.72 (18) N18—C19—C20—O21 57.0 (2)

Symmetry code: (i) −x+1/2, −y+3/2, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O21—H21···O17ii 0.83 (3) 1.89 (3) 2.707 (2) 170 (3)
C11—H11B···Br16iii 0.98 3.02 3.987 (2) 171
C19—H19A···O13iii 0.99 2.59 3.360 (3) 134
N18—H18···O25iv 0.88 2.58 3.422 (2) 159
O23—H23A···O14v 0.92 2.09 2.971 (2) 161
O23—H23B···O21vi 0.91 1.72 2.630 (2) 172
O24—H24A···O13iii 0.90 1.90 2.772 (2) 162
O24—H24B···O17vii 0.90 1.83 2.714 (2) 165
O25—H25A···O15viii 0.92 2.16 2.826 (2) 129
O25—H25B···O26 0.91 1.86 2.755 (2) 165
O26—H26···O14iii 0.76 (3) 2.03 (3) 2.783 (2) 175 (3)

Symmetry codes: (ii) −x+2, y, −z+1/2; (iii) −x+2, −y+1, −z+1; (iv) −x+3/2, −y+3/2, −z+1; (v) −x+3/2, y+1/2, −z+1/2; (vi) −x+1, y, −z+1/2; (vii) x−1, y, z; (viii) x−1/2, y+1/2, z.

References

  1. Cecchetti, V., Parolin, C., Moro, S., Pecere, T., Filipponi, E., Calistri, A., Tabarrini, O., Gatto, B., Palumbo, M., Fravolini, A. & Palu’, G. (2000). J. Med. Chem. 43, 3799–3802. [DOI] [PubMed]
  2. Deraeve, C., Boldron, C., Maraval, A., Mazarguil, H., Gornitzka, H., Vendier, L., Pitié, M. & Meunier, B. (2008). Chem. Eur. J. 14, 682–696. [DOI] [PubMed]
  3. Dinh, N. H., Co, L. V., Tuan, N. M., Hai, L. T. H. & Van Meervelt, L. (2012). Heterocycles, 85, 627–637.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Kitanovic, I., Can, S., Alborzinia, H., Kitanovic, A., Pierroz, V., Leonidova, A., Pinto, A., Spingler, B., Ferrari, S., Molteni, R., Steffen, A., Metzler-Nolte, N., Wölfl, S. & Gasser, G. (2014). Chem. Eur. J. 20, 2496–2507. [DOI] [PubMed]
  7. Le Thi Hong, H., Nguyen Thi Ngoc, V., Tran Thi, D., Nguyen Bich, N. & Van Meervelt, L. (2015). Acta Cryst. E71, 1105–1108. [DOI] [PMC free article] [PubMed]
  8. Li, J.-Y., Chen, C.-Y., Ho, W.-C., Chen, S.-H. & Wu, C.-G. (2012). Org. Lett. 14, 5420–5423. [DOI] [PubMed]
  9. Nayyar, A., Malde, A., Coutinho, E. & Jain, R. (2006). Bioorg. Med. Chem. 14, 7302–7310. [DOI] [PubMed]
  10. Rashad, A. E., El-Sayed, W. A., Mohamed, A. M. & Ali, M. M. (2010). Arch. Pharm. Pharm. Med. Chem. 343, 440–448. [DOI] [PubMed]
  11. Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Skrzypek, L. & Suwinska, K. (2002). Heterocycles, 57, 2035–2044.
  15. Skrzypek, L. & Suwinska, K. (2007). Heterocycles, 71, 1363–1370.
  16. Tabarrini, O., Massari, S., Daelemans, D., Stevens, M., Manfroni, G., Sabatini, S., Balzarini, J., Cecchetti, V., Pannecouque, C. & Fravolini, A. (2008). J. Med. Chem. 51, 5454–5458. [DOI] [PubMed]
  17. Wang, Q., Li, R., Qui, S., Lin, Z., Chen, G. & Luo, L. (2014). Anal. Methods, 6, 5016–5019.
  18. Yan, L., Wang, X., Wang, Y., Zhang, Y., Li, Y. & Guo, Z. (2012). J. Inorg. Biochem. 106, 46–51. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016012408/is5459sup1.cif

e-72-01242-sup1.cif (222.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016012408/is5459Isup2.hkl

e-72-01242-Isup2.hkl (185.2KB, hkl)

CCDC reference: 1497073

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES