Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Aug 5;72(Pt 9):1246–1250. doi: 10.1107/S2056989016012160

Crystal structure of [tris­(4,4′-bi­pyridine)]­diium bis­(1,1,3,3-tetra­cyano-2-eth­oxy­propenide) trihydrate

Fatima Setifi a,*, Arto Valkonen b, Zouaoui Setifi a, Sami Nummelin c, Rachid Touzani d,e,*, Christopher Glidewell f,*
PMCID: PMC5120698  PMID: 27920908

In the title hydrated salt, which was obtained from the hydro­thermal reaction between between potassium 1,1,3,3-tetra­cyano-2-eth­oxy­propenide and 4,4′-bi­pyridine in the presence of iron(II) sulfate hepta­hydrate, the ionic components are linked into a three-dimensional network by C—H⋯N hydrogen bonds.

Keywords: crystal structure, hydro­thermal synthesis, polynitrile anions, mol­ecular structure, hydrogen bonding

Abstract

The title hydrated salt, C30H26N6 2+·2C9H5N4O·3H2O, was obtained as an unexpected product from the hydro­thermal reaction between potassium 1,1,3,3-tetra­cyano-2-eth­oxy­propenide, 4,4′-bi­pyridine and iron(II) sulfate hepta­hydrate. The cation lies across a twofold rotation axis in the space group I2/a with the other components all in general positions. In the cation, the H atom linking the pyridine units is disordered over two adjacent sites having occupancies of 0.66 (4) and 0.36 (4), i.e. as N—H⋯N and N⋯H—N. The water mol­ecules of crystallization are each disordered over two sets of atomic sites, having occupancies of 0.522 (6) and 0.478 (6) for one, and 0.34 (3) and 0.16 (3) for the other, and it was not possible to reliably locate the H atoms associated with these partial-occupancy sites. In the crystal, four independent C—H⋯N hydrogen bonds link the ionic components into a three-dimensional network.

Chemical context  

In recent years, the use of polynitrile anions as coordinating ligands for the construction of polymeric architectures with inter­esting properties has been a burgeoning subject in materials and coordination chemistry (Thétiot et al., 2003; Benmansour et al., 2007; Atmani et al., 2008). These anions are versatile structural components, leading to many different architectures in zero, one, two or three dimensions, and incorporating most of the 3d transition metals (Benmansour et al., 2008, 2010, 2012; Yuste et al., 2009; Setifi, Domasevitch et al., 2013; Setifi, Setifi et al., 2013; Setifi, Lehchili et al., 2014). This versatility is based on two main properties of these ligands: (i) the ability to act as bridges, given the linear and rigid geometry of the cyano groups, and (ii) the possibility of functionalization with different potentially coordinating groups that leads to a high variety of coordination modes. To take advantage of this behaviour we have been using these organic anions in combination with other chelating or bridging neutral co-ligands to explore their structural and electronic characteristics of the resulting complexes, particularly with reference to mol­ecular materials exhibiting inter­esting magnetic exchange coupling behaviour. During the course of attempts to prepare such complexes with 4,4′-bi­pyridine, we isolated the title compound (I) (Fig. 1 and Scheme 1), whose structure is reported here.

Figure 1.

Figure 1

The independent components of the structure of compound (I), showing the atom-labelling scheme, the complete central 4,4′-bipy unit and the hydrogen bond (shown as a dashed line) between the cation and anion within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level and the atoms marked with ‘a’ are at the symmetry position (−x + Inline graphic, y, −z + 1). The partially occupied water sites have refined occupancies as follows: O5A 0.522 (6), O5B 0.478 (6), O6A 0.34 (3) and O6B 0.16 (3).

Structural commentary  

The structure of compound (I) consists of a [tris­(4,4′-bi­pyridine)]diium dication, [(4,4′-bipy)-H-(4,4′-bipy)-H-(4,4′-bipy)]2+, two 1,1,3,3-tetra­cyano-2-eth­oxy­propenide anions, [(NC)2CC(OEt)C(CN)2], and three water mol­ecules. The cation lies across a twofold rotation axis, selected for the reference cation as that along (0.25, y, 0.5), while the other components all lie in general positions. Within the cation, the H atom linking the 4,4′-bipy units is disordered over two adjacent sites having occupancies of 0.66 (4) and 0.36 (4), and the two independent water mol­ecules are also disordered, both over two atomic sites, with one having occupancies of 0.522 (6) and 0.478 (6) and the other having occupancies of 0.34 (3) and 0.16 (3).graphic file with name e-72-01246-scheme1.jpg

In the cation, the dihedral angle between the two symmetry-related rings of the central unit is 37.60 (4)°, the dihedral angle between the rings containing atoms N11 and N21 is 85.96 (5)° and that between the rings containing atoms N21 and N31 is 29.33 (3)° (cf. Fig. 1). In the anion, the corresponding pairs of bond distances and bond angles associated with the two C—C(CN)2 units containing the atoms C41 and C43 are very similar. In addition, the C—C distances in the C(CN)2 fragments are all short for their type [mean value (Allen et al., 1987) 1.431 Å, lower quartile value 1.425 Å], while the C—N distances are all long for their type (mean value 1.136 Å, upper quartile value 1.142 Å). These observations indicate that there is considerable delocalization of the negative charge within the anion, not just over the central propenide fragment, resonance forms (a) and (b) (see Scheme 2), but also onto the N atoms of the four cyano substituents, forms (c)–(f). Despite this, the core skeleton of the anion is not planar, as the two C(CN)2 units are rotated in conrotatory fashion out of the plane of the propenide unit; this central C3 fragment makes dihedral angles of 10.39 (13) and 16.71 (18)°, respectively, with the C(CN)2 units containing atoms C41 and C43.graphic file with name e-72-01246-scheme2.jpg

Supra­molecular inter­actions  

The two independent 4,4′-bipy units are linked by disordered N—H⋯N hydrogen bonds, both of which are almost linear (Table 1). In addition, there are four C—H⋯N hydrogen bonds in the structure: two of these have donor atoms, C13 and C15, which are part of the 4,4′-bipy unit containing N11 and acceptors in the anion, one has an acceptor in the 4,4′-bipy unit containing N21 and N31, and the fourth involves only the anion. Of these four inter­actions, the first two can be regarded as charge-assisted hydrogen bonds (Gilli et al., 1994) and it is inter­esting to note that the eth­oxy O atom in the anion plays no role in the supra­molecular assembly.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯N21 0.98 (4) 1.69 (4) 2.6655 (18) 175 (3)
N21—H21⋯N11 0.90 (7) 1.78 (7) 2.6655 (18) 172 (5)
C12—H12⋯N31i 0.95 2.57 3.4248 (19) 150
C13—H13⋯N411ii 0.95 2.56 3.434 (2) 154
C15—H15⋯N411 0.95 2.38 3.249 (2) 152
C25—H25⋯O5B 0.95 2.56 3.355 (4) 141
C35—H35⋯O6A 0.95 2.53 3.474 (13) 176
C35—H35⋯O6B 0.95 2.54 3.484 (16) 170
C421—H41A⋯N431iii 0.99 2.61 3.589 (2) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

These six hydrogen bonds link the cations and anions into a three-dimensional network whose formation is readily analysed in terms of substructures (Ferguson et al., 1998a ,b ; Gregson et al., 2000) in zero, one and two dimensions. It is convenient to consider firstly the hydrogen bonds between cations and anions. The anions and the central 4,4′-bipy units containing atom N11 which are related by translation along the [010] direction are linked to form the one-dimensional substructure in the form of a ribbon of edge-fused Inline graphic(14) loops (Fig. 2). Ribbons of this type, which are related by translation along [1Inline graphic1], are linked by the 4,4′-bipy units containing atoms N21 and N31 to form the two-dimensional substructure, a sheet lying parallel to (10Inline graphic) (Fig. 3). Adjacent sheets are linked by the zero-dimensional substructure which involves inversion-related pairs of anions forming a centrosymmetric motif characterized by an Inline graphic(14) ring (Fig. 4).

Figure 2.

Figure 2

Part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded ribbon of edge-fused Inline graphic(14) rings along the [010] direction. For the sake of clarity, the 4,4′-bipy units containing atoms N21 and N31, the partial-occupancy water mol­ecules, and the H atoms not involved in the motif shown have been omitted.

Figure 3.

Figure 3

Part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded sheet lying parallel to (10Inline graphic). For the sake of clarity, the partial-occupancy water mol­ecules, and the H atoms not involved in the motif shown have been omitted.

Figure 4.

Figure 4

Part of the crystal structure of compound (I), showing the formation by pairs of anions of a hydrogen-bonded Inline graphic(14) ring. The atoms marked with an asterisk (*) are at the symmetry position (−x, −y + 1, −z + 1). For the sake of clarity, the unit-cell outline, the 4,4′-bipy units and the partial-occupancy water mol­ecules have all been omitted.

Three of the partially occupied water sites are linked by C—H⋯O hydrogen bonds (Table 1) within the selected asymmetric unit to one of the 4,4′-bipy components, while the fourth, O5A, lies 2.54 (3) Å from atom O6A at (−x + 1, y + Inline graphic, −z + Inline graphic), i.e. within the reference (10Inline graphic) sheet and comfortably within O—H⋯O hydrogen-bonding range.

Database survey  

The 1,1,3,3-tetra­cyano-2-eth­oxy­propenide unit, here conveniently denoted as X , has been reported in a number of structures. These include salts of organic cations, including [(2,2′-bipy)H]+·X , (II) (Setifi, Valkonen et al., 2015), [(4,4′-bipy)H2]2+·2X , (III) (Setifi, Geiger et al., 2015), and [(4,4′-bipy)Et2]2+·2X , (IV) (Setifi, Lehchili et al., 2014); salts of mononuclear metal complexes in which the 1,1,3,3-tetra­cyano-2-eth­oxy­propenide unit is not ccordinated to the metal centre, including [(2,2′-bi-1H-imidazole)2Cu]2+·2X , (V) (Gaamoune et al., 2010), [(1,10-phen)3Fe]2−·2X ·0.5H2O, (VI) (Setifi, Setifi et al., 2013), [(1,10-phen)3Fe]2−·2X ·H2O, and (VII) (Setifi, Domasevitch et al., 2013); and compounds where the 1,1,3,3-tetra­cyano-2-eth­oxy­propenide unit acts as a ligand including a binuclear Cu complex in which it acts both as a bridging ligand between two CuII centres and as a monodentate terminal ligand, thus [(2,2′-bipy)XCu]2(μ-X)2, (VIII) (Addala et al., 2015), and a two-dimensional coordination polymer [X(1,10-phen)ClCu]n, (IX) (Setifi, Setifi et al., 2014).

Of these examples, compounds (II), (III) and (IV) are most closely related to compound (I) reported here. In the structure of compound (II), a combination of N—H⋯N and C—H⋯N hydrogen bonds links the ions into ribbons containing alternating Inline graphic(18) and Inline graphic(26) rings; in (IV), where there are no N—H⋯N hydrogen bonds, the ions are linked into sheets by C—H⋯N hydrogen bonds, and in (III), an extensive series of N—H⋯N and C—H⋯N hydrogen bonds generates a three-dimensional network, so that the supra­molecular aggregation is one-, two- and three-dimensional in compounds (II), (IV) and (III), respectively.

Synthesis and crystallization  

The salt K(tcnoet) was prepared according to a published method (Middleton et al., 1958). The title compound was synthesized hydro­thermally under autogenous pressure from a mixture of iron(II) sulfate hepta­hydrate (56 mg, 0.2 mmol), 4,4′-bi­pyridine (32 mg, 0.2 mmol) and K(tcnoet) (90 mg, 0.4 mmol) in water–methanol (4:1 v/v, 20 ml). This mixture was sealed in a Teflon-lined autoclave and held at 423 K for 2 d, and then cooled to ambient temperature at a rate of 10 K h−1 (yield 25%). Pale-yellow blocks of the title compound suitable for single-crystal X-ray diffraction were selected directly from the synthesized product.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms bonded to C or N atoms were all located in difference maps. The H atoms bonded to C atoms were subsequently treated as riding atoms in geometrically idealised positions, with C—H = 0.95 (pyrid­yl), 0.98 (CH3) or 0.99 Å (CH2), and with U iso(H) = kU eq(C) where k = 1.5 for the methyl group, which was permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. The unique H atom bonded to N was disordered over two atomic sites, labeled H11 and H21, adjacent to atoms N11 and N21, respectively, and having unequal occupancies; for these two sites, the atomic coordinates were refined with U iso(H) = 1.2U eq(N), leading to the N—H distances shown in Table 1 and to refined site occupancies of 0.66 (4) and 0.36 (4) for H11 and H21, respectively. No H-atom sites associated with water atoms O5 and O6 could be located. Each of these water O atoms is disordered over two atomic sites: O5 is disordered over two sites, labelled O5A and O5B, which are separated by 0.963 (4) Å, while O6 is disordered over two sites, labelled O6A and O6B, which are separated by 0.627 (9) Å. Free refinement of the site occupancies of O5A and O5B gave values of 0.579 (7) and 0.512 (7), respectively; these values are not physically possible and both are over-estimates because of the lack of H atoms in the modelling of the water sites. Accordingly, the occupancies of O5A and O5B were constrained to sum to unity, giving values of 0.522 (6) and 0.478 (6). Free refinement of the site occupancies for O6A and O6B gave values of 0.36 (3) and 0.16 (3), and these values were subsequently restrained to sum to 0.500 (2), giving final values of 0.34 (3) and 0.16 (3). The final analysis of variance showed a large value, 4.522, of K = [mean(F o 2)]/[mean(F c 2)] for the group of 541 very weak reflections having F c/F c(max) in the range 0.000 < F c/F c(max) < 0.014.

Table 2. Experimental details.

Crystal data
Chemical formula C30H26N6 2+·2C9H5N4O·3H2O
M r 894.95
Crystal system, space group Monoclinic, I2/a
Temperature (K) 123
a, b, c (Å) 18.1861 (2), 7.1187 (1), 35.7070 (4)
β (°) 100.448 (1)
V3) 4546.03 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.45 × 0.38 × 0.31
 
Data collection
Diffractometer Bruker–Nonius Kappa CCD with APEXII detector
Absorption correction Multi-scan (SADABS; Sheldrick, 2003)
T min, T max 0.907, 0.973
No. of measured, independent and observed [I > 2σ(I)] reflections 35680, 5197, 4559
R int 0.039
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.049, 0.115, 1.09
No. of reflections 5197
No. of parameters 335
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.23

Computer programs: COLLECT (Bruker, 2008), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016012160/hb7603sup1.cif

e-72-01246-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016012160/hb7603Isup2.hkl

e-72-01246-Isup2.hkl (413.9KB, hkl)

CCDC reference: 1496221

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Algerian MESRS (Ministère de l’Enseignement Supérieur et de la Recherche Scientifique), the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and Université Ferhat Abbas Sétif 1 for financial support.

supplementary crystallographic information

Crystal data

C30H26N62+·2C9H5N4O·3H2O F(000) = 1872
Mr = 894.95 Dx = 1.299 Mg m3
Monoclinic, I2/a Mo Kα radiation, λ = 0.71073 Å
a = 18.1861 (2) Å Cell parameters from 5197 reflections
b = 7.1187 (1) Å θ = 2.3–27.5°
c = 35.7070 (4) Å µ = 0.09 mm1
β = 100.448 (1)° T = 123 K
V = 4546.03 (10) Å3 Block, pale yellow
Z = 4 0.45 × 0.38 × 0.31 mm

Data collection

Bruker–Nonius Kappa CCD with APEXII detector diffractometer 5197 independent reflections
Radiation source: fine focus sealed tube 4559 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.039
φ and ω scans θmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −23→23
Tmin = 0.907, Tmax = 0.973 k = −8→9
35680 measured reflections l = −42→46

Refinement

Refinement on F2 1 restraint
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0362P)2 + 5.2868P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.001
5197 reflections Δρmax = 0.32 e Å3
335 parameters Δρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N11 0.34943 (7) 0.62579 (18) 0.59359 (3) 0.0268 (3)
H11 0.3778 (17) 0.621 (4) 0.6196 (11) 0.032* 0.66 (4)
C12 0.34888 (8) 0.7810 (2) 0.57234 (4) 0.0260 (3)
H12 0.3753 0.8893 0.5830 0.031*
C13 0.31054 (7) 0.7862 (2) 0.53523 (4) 0.0234 (3)
H13 0.3109 0.8967 0.5204 0.028*
C14 0.27134 (7) 0.62756 (19) 0.51984 (3) 0.0192 (3)
C15 0.27272 (8) 0.4676 (2) 0.54248 (4) 0.0244 (3)
H15 0.2466 0.3574 0.5327 0.029*
C16 0.31261 (8) 0.4715 (2) 0.57924 (4) 0.0276 (3)
H16 0.3140 0.3625 0.5947 0.033*
N21 0.42091 (7) 0.62202 (17) 0.66569 (4) 0.0269 (3)
H21 0.400 (3) 0.616 (8) 0.641 (2) 0.032* 0.34 (4)
C22 0.49341 (8) 0.5785 (2) 0.67630 (4) 0.0276 (3)
H22 0.5217 0.5488 0.6572 0.033*
C23 0.52856 (8) 0.5754 (2) 0.71399 (4) 0.0256 (3)
H23 0.5802 0.5455 0.7206 0.031*
C24 0.48726 (8) 0.61675 (19) 0.74231 (4) 0.0219 (3)
C25 0.41210 (8) 0.6605 (2) 0.73098 (4) 0.0258 (3)
H25 0.3821 0.6887 0.7494 0.031*
C26 0.38118 (8) 0.6626 (2) 0.69263 (4) 0.0277 (3)
H26 0.3298 0.6940 0.6852 0.033*
N31 0.58874 (8) 0.61811 (19) 0.86102 (3) 0.0331 (3)
C32 0.51622 (9) 0.5772 (2) 0.84948 (4) 0.0327 (3)
H32 0.4872 0.5488 0.8683 0.039*
C33 0.48101 (9) 0.5739 (2) 0.81152 (4) 0.0281 (3)
H33 0.4294 0.5438 0.8049 0.034*
C34 0.52250 (8) 0.61556 (19) 0.78334 (4) 0.0227 (3)
C35 0.59782 (8) 0.6576 (2) 0.79502 (4) 0.0270 (3)
H35 0.6283 0.6867 0.7768 0.032*
C36 0.62787 (9) 0.6565 (2) 0.83360 (4) 0.0313 (3)
H36 0.6795 0.6848 0.8410 0.038*
C41 0.15157 (8) −0.1715 (2) 0.58797 (4) 0.0272 (3)
C42 0.11579 (7) −0.3411 (2) 0.57565 (4) 0.0234 (3)
C43 0.11642 (8) −0.5041 (2) 0.59765 (4) 0.0249 (3)
C411 0.16626 (8) −0.0335 (2) 0.56164 (4) 0.0297 (3)
N411 0.17940 (8) 0.0773 (2) 0.54035 (4) 0.0382 (3)
C412 0.17576 (9) −0.1283 (2) 0.62709 (5) 0.0347 (4)
N412 0.19482 (10) −0.0875 (3) 0.65855 (5) 0.0528 (4)
C431 0.06545 (8) −0.6532 (2) 0.58565 (4) 0.0262 (3)
N431 0.02403 (7) −0.77540 (19) 0.57765 (4) 0.0333 (3)
C432 0.16949 (9) −0.5343 (2) 0.63136 (4) 0.0321 (3)
N432 0.21320 (9) −0.5619 (3) 0.65832 (4) 0.0496 (4)
O421 0.08005 (6) −0.35955 (15) 0.53932 (3) 0.0283 (2)
C421 0.02174 (9) −0.2228 (2) 0.52443 (4) 0.0330 (3)
H41A 0.0143 −0.2200 0.4963 0.040*
H41B 0.0372 −0.0959 0.5341 0.040*
C422 −0.04964 (9) −0.2764 (3) 0.53674 (5) 0.0427 (4)
H42A −0.0886 −0.1850 0.5268 0.064*
H42B −0.0650 −0.4016 0.5269 0.064*
H42C −0.0421 −0.2778 0.5646 0.064*
O5A 0.2512 (2) 0.9317 (7) 0.73743 (12) 0.0915 (17) 0.522 (6)
O5B 0.28182 (16) 0.9204 (5) 0.76234 (11) 0.0533 (13) 0.478 (6)
O6A 0.7139 (8) 0.743 (4) 0.7296 (2) 0.055 (4) 0.34 (3)
O6B 0.7007 (9) 0.824 (4) 0.7286 (3) 0.031 (4) 0.16 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N11 0.0253 (6) 0.0364 (7) 0.0166 (5) 0.0030 (5) −0.0018 (5) 0.0009 (5)
C12 0.0241 (7) 0.0309 (8) 0.0210 (6) −0.0013 (6) −0.0013 (5) −0.0028 (6)
C13 0.0248 (6) 0.0246 (7) 0.0199 (6) −0.0014 (5) 0.0015 (5) 0.0007 (5)
C14 0.0165 (6) 0.0233 (7) 0.0169 (6) 0.0020 (5) 0.0011 (5) 0.0004 (5)
C15 0.0244 (6) 0.0254 (7) 0.0224 (7) −0.0016 (6) 0.0013 (5) 0.0016 (5)
C16 0.0295 (7) 0.0306 (8) 0.0217 (7) 0.0026 (6) 0.0020 (5) 0.0063 (6)
N21 0.0325 (6) 0.0262 (6) 0.0188 (6) −0.0020 (5) −0.0036 (5) 0.0016 (5)
C22 0.0322 (7) 0.0283 (7) 0.0216 (7) −0.0004 (6) 0.0034 (6) 0.0011 (6)
C23 0.0259 (7) 0.0255 (7) 0.0235 (7) 0.0015 (6) −0.0002 (5) 0.0007 (5)
C24 0.0269 (7) 0.0174 (6) 0.0197 (6) −0.0014 (5) 0.0001 (5) 0.0006 (5)
C25 0.0270 (7) 0.0265 (7) 0.0228 (7) −0.0006 (6) 0.0016 (5) −0.0024 (5)
C26 0.0260 (7) 0.0280 (8) 0.0259 (7) −0.0003 (6) −0.0035 (5) −0.0002 (6)
N31 0.0437 (8) 0.0285 (7) 0.0227 (6) 0.0020 (6) −0.0053 (5) 0.0004 (5)
C32 0.0466 (9) 0.0287 (8) 0.0216 (7) −0.0022 (7) 0.0029 (6) 0.0032 (6)
C33 0.0332 (7) 0.0253 (7) 0.0239 (7) −0.0026 (6) 0.0003 (6) 0.0014 (6)
C34 0.0295 (7) 0.0174 (6) 0.0193 (6) 0.0035 (5) −0.0010 (5) −0.0005 (5)
C35 0.0292 (7) 0.0249 (7) 0.0250 (7) 0.0031 (6) 0.0001 (6) −0.0028 (5)
C36 0.0324 (8) 0.0294 (8) 0.0280 (7) 0.0037 (6) −0.0054 (6) −0.0041 (6)
C41 0.0283 (7) 0.0256 (7) 0.0286 (7) −0.0013 (6) 0.0074 (6) −0.0023 (6)
C42 0.0226 (6) 0.0266 (7) 0.0217 (6) 0.0015 (5) 0.0060 (5) −0.0009 (5)
C43 0.0246 (7) 0.0266 (7) 0.0233 (7) −0.0006 (6) 0.0038 (5) 0.0012 (5)
C411 0.0284 (7) 0.0245 (7) 0.0379 (8) −0.0001 (6) 0.0108 (6) −0.0039 (6)
N411 0.0419 (8) 0.0267 (7) 0.0495 (8) −0.0033 (6) 0.0181 (7) 0.0013 (6)
C412 0.0343 (8) 0.0332 (9) 0.0375 (9) −0.0080 (7) 0.0084 (7) −0.0069 (7)
N412 0.0583 (10) 0.0593 (11) 0.0399 (9) −0.0190 (8) 0.0065 (7) −0.0157 (8)
C431 0.0278 (7) 0.0265 (7) 0.0250 (7) 0.0036 (6) 0.0068 (5) 0.0037 (6)
N431 0.0345 (7) 0.0284 (7) 0.0366 (7) −0.0030 (6) 0.0053 (6) 0.0006 (6)
C432 0.0305 (8) 0.0326 (8) 0.0325 (8) −0.0031 (6) 0.0036 (6) 0.0064 (6)
N432 0.0429 (8) 0.0560 (10) 0.0432 (9) −0.0030 (7) −0.0096 (7) 0.0147 (7)
O421 0.0348 (5) 0.0277 (5) 0.0211 (5) 0.0027 (4) 0.0019 (4) −0.0006 (4)
C421 0.0368 (8) 0.0334 (8) 0.0263 (7) 0.0047 (7) −0.0011 (6) 0.0061 (6)
C422 0.0353 (9) 0.0423 (10) 0.0489 (10) 0.0042 (8) 0.0031 (7) −0.0003 (8)
O5A 0.059 (2) 0.166 (4) 0.054 (3) 0.015 (2) 0.021 (2) 0.037 (2)
O5B 0.0324 (15) 0.082 (2) 0.043 (2) 0.0148 (14) 0.0002 (14) −0.0208 (16)
O6A 0.058 (4) 0.072 (11) 0.038 (2) −0.021 (6) 0.015 (2) −0.009 (4)
O6B 0.047 (5) 0.023 (9) 0.027 (4) 0.002 (5) 0.016 (3) 0.000 (4)

Geometric parameters (Å, º)

N11—C16 1.339 (2) C33—C34 1.395 (2)
N11—C12 1.3393 (19) C33—H33 0.9500
N11—H11 0.98 (4) C34—C35 1.390 (2)
C12—C13 1.3813 (19) C35—C36 1.387 (2)
C12—H12 0.9500 C35—H35 0.9500
C13—C14 1.3938 (19) C36—H36 0.9500
C13—H13 0.9500 C41—C42 1.404 (2)
C14—C15 1.3943 (19) C41—C411 1.418 (2)
C14—C14i 1.487 (2) C41—C412 1.420 (2)
C15—C16 1.3802 (19) C42—O421 1.3480 (16)
C15—H15 0.9500 C411—N411 1.151 (2)
C16—H16 0.9500 C412—N412 1.151 (2)
N21—C26 1.335 (2) C42—C43 1.400 (2)
N21—C22 1.3405 (19) C43—C431 1.423 (2)
N21—H21 0.90 (8) C43—C432 1.416 (2)
C22—C23 1.3813 (19) C431—N431 1.152 (2)
C22—H22 0.9500 C432—N432 1.149 (2)
C23—C24 1.396 (2) O421—C421 1.4662 (18)
C23—H23 0.9500 C421—C422 1.493 (2)
C24—C25 1.3887 (19) C421—H41A 0.9900
C24—C34 1.4885 (18) C421—H41B 0.9900
C25—C26 1.3826 (19) C422—H42A 0.9800
C25—H25 0.9500 C422—H42B 0.9800
C26—H26 0.9500 C422—H42C 0.9800
N31—C36 1.339 (2) O5A—O5B 0.963 (4)
N31—C32 1.340 (2) O6A—O6B 0.627 (9)
C32—C33 1.390 (2) O6A—O6Aii 1.78 (2)
C32—H32 0.9500
C16—N11—C12 120.54 (12) C32—C33—C34 119.08 (14)
C16—N11—H11 118.5 (16) C32—C33—H33 120.5
C12—N11—H11 121.0 (17) C34—C33—H33 120.5
N11—C12—C13 121.05 (14) C35—C34—C33 117.49 (13)
N11—C12—H12 119.5 C35—C34—C24 121.27 (13)
C13—C12—H12 119.5 C33—C34—C24 121.24 (13)
C12—C13—C14 119.33 (13) C36—C35—C34 119.10 (14)
C12—C13—H13 120.3 C36—C35—H35 120.5
C14—C13—H13 120.3 C34—C35—H35 120.5
C13—C14—C15 118.63 (11) N31—C36—C35 124.16 (14)
C13—C14—C14i 121.13 (8) N31—C36—H36 117.9
C15—C14—C14i 120.25 (9) C35—C36—H36 117.9
C16—C15—C14 119.06 (13) C42—C41—C411 121.34 (13)
C16—C15—H15 120.5 C42—C41—C412 122.53 (14)
C14—C15—H15 120.5 C411—C41—C412 116.12 (14)
N11—C16—C15 121.39 (13) O421—C42—C43 114.36 (12)
N11—C16—H16 119.3 O421—C42—C41 120.05 (13)
C15—C16—H16 119.3 C41—C42—C43 125.51 (13)
C26—N21—C22 118.63 (12) C42—C43—C431 120.70 (13)
C26—N21—H21 123 (3) C42—C43—C432 122.51 (13)
C22—N21—H21 119 (3) C431—C43—C432 116.70 (13)
N21—C22—C23 122.47 (14) N411—C411—C41 178.83 (16)
N21—C22—H22 118.8 N412—C412—C41 177.9 (2)
C23—C22—H22 118.8 N431—C431—C43 176.87 (15)
C22—C23—C24 119.19 (13) N432—C432—C43 178.5 (2)
C22—C23—H23 120.4 C42—O421—C421 118.36 (11)
C24—C23—H23 120.4 O421—C421—C422 109.51 (13)
C25—C24—C23 117.80 (12) O421—C421—H41A 109.8
C25—C24—C34 120.90 (12) C422—C421—H41A 109.8
C23—C24—C34 121.30 (12) O421—C421—H41B 109.8
C26—C25—C24 119.55 (13) C422—C421—H41B 109.8
C26—C25—H25 120.2 H41A—C421—H41B 108.2
C24—C25—H25 120.2 C421—C422—H42A 109.5
N21—C26—C25 122.35 (13) C421—C422—H42B 109.5
N21—C26—H26 118.8 H42A—C422—H42B 109.5
C25—C26—H26 118.8 C421—C422—H42C 109.5
C36—N31—C32 116.31 (13) H42A—C422—H42C 109.5
N31—C32—C33 123.86 (15) H42B—C422—H42C 109.5
N31—C32—H32 118.1 O6B—O6A—O6Aii 102 (2)
C33—C32—H32 118.1
C16—N11—C12—C13 0.0 (2) C25—C24—C34—C35 −150.27 (14)
N11—C12—C13—C14 0.5 (2) C23—C24—C34—C35 29.3 (2)
C12—C13—C14—C15 −0.6 (2) C25—C24—C34—C33 29.1 (2)
C12—C13—C14—C14i 179.35 (14) C23—C24—C34—C33 −151.33 (14)
C13—C14—C15—C16 0.1 (2) C33—C34—C35—C36 −0.1 (2)
C14i—C14—C15—C16 −179.83 (14) C24—C34—C35—C36 179.35 (13)
C12—N11—C16—C15 −0.5 (2) C32—N31—C36—C35 0.6 (2)
C14—C15—C16—N11 0.4 (2) C34—C35—C36—N31 −0.4 (2)
C26—N21—C22—C23 −0.4 (2) C411—C41—C42—O421 −14.7 (2)
N21—C22—C23—C24 0.8 (2) C412—C41—C42—O421 165.94 (14)
C22—C23—C24—C25 −0.3 (2) C411—C41—C42—C43 161.79 (14)
C22—C23—C24—C34 −179.91 (13) C412—C41—C42—C43 −17.6 (2)
C23—C24—C25—C26 −0.3 (2) O421—C42—C43—C432 158.96 (13)
C34—C24—C25—C26 179.24 (13) C41—C42—C43—C432 −17.7 (2)
C22—N21—C26—C25 −0.3 (2) O421—C42—C43—C431 −17.47 (19)
C24—C25—C26—N21 0.7 (2) C41—C42—C43—C431 165.87 (14)
C36—N31—C32—C33 −0.3 (2) C43—C42—O421—C421 127.63 (14)
N31—C32—C33—C34 −0.1 (2) C41—C42—O421—C421 −55.52 (18)
C32—C33—C34—C35 0.3 (2) C42—O421—C421—C422 −81.41 (17)
C32—C33—C34—C24 −179.10 (13)

Symmetry codes: (i) −x+1/2, y, −z+1; (ii) −x+3/2, −y+3/2, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N11—H11···N21 0.98 (4) 1.69 (4) 2.6655 (18) 175 (3)
N21—H21···N11 0.90 (7) 1.78 (7) 2.6655 (18) 172 (5)
C12—H12···N31iii 0.95 2.57 3.4248 (19) 150
C13—H13···N411iv 0.95 2.56 3.434 (2) 154
C15—H15···N411 0.95 2.38 3.249 (2) 152
C25—H25···O5B 0.95 2.56 3.355 (4) 141
C35—H35···O6A 0.95 2.53 3.474 (13) 176
C35—H35···O6B 0.95 2.54 3.484 (16) 170
C421—H41A···N431v 0.99 2.61 3.589 (2) 172

Symmetry codes: (iii) −x+1, y+1/2, −z+3/2; (iv) −x+1/2, y+1, −z+1; (v) −x, −y−1, −z+1.

References

  1. Addala, A., Setifi, F., Kottrup, K., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  3. Atmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921–924.
  4. Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478.
  5. Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). Inorg. Chim. Acta, 361, 3856–3862.
  6. Benmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359–2365. [DOI] [PubMed]
  7. Benmansour, S., Setifi, F., Triki, S., Salaün, J.-Y., Vandevelde, F., Sala-Pala, J., Gómez-García, C. J. & Roisnel, T. (2007). Eur. J. Inorg. Chem. pp. 186–194.
  8. Bruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.
  9. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.
  10. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.
  11. Gaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044–m1045. [DOI] [PMC free article] [PubMed]
  12. Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (1994). J. Am. Chem. Soc. 116, 909–915.
  13. Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57. [DOI] [PubMed]
  14. Middleton, W. J., Little, E. L., Coffman, D. D. & Engelhardt, V. A. (1958). J. Am. Chem. Soc. 80, 2795–2806.
  15. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  16. Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351–1356. [DOI] [PubMed]
  17. Setifi, F., Geiger, D. K., Abdul Razak, I. & Setifi, Z. (2015). Acta Cryst. C71, 658–663. [DOI] [PubMed]
  18. Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338–341. [DOI] [PubMed]
  19. Setifi, Z., Setifi, F., El Ammari, L., El-Ghozzi, M., Sopková-de Oliveira Santos, J., Merazig, H. & Glidewell, C. (2014). Acta Cryst. C70, 19–22. [DOI] [PubMed]
  20. Setifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013). Acta Cryst. E69, m12–m13. [DOI] [PMC free article] [PubMed]
  21. Setifi, Z., Valkonen, A., Fernandes, M. A., Nummelin, S., Boughzala, H., Setifi, F. & Glidewell, C. (2015). Acta Cryst. E71, 509–515. [DOI] [PMC free article] [PubMed]
  22. Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
  23. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  24. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  25. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  26. Thétiot, F., Triki, S. & Sala-Pala, J. (2003). Polyhedron, 22, 1837–1843.
  27. Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016012160/hb7603sup1.cif

e-72-01246-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016012160/hb7603Isup2.hkl

e-72-01246-Isup2.hkl (413.9KB, hkl)

CCDC reference: 1496221

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES