Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Aug 5;72(Pt 9):1251–1253. doi: 10.1107/S205698901601210X

Crystal structure of methyl (E)-4-[2-(8-hy­droxy­quinolin-2-yl)vin­yl]benzoate

Yu-Xing Xu a, Wei-Ji Hu a, Guo-Liang Zhao a,b,*
PMCID: PMC5120699  PMID: 27920909

The title 8-hy­droxy­quinoline derivative has an E conformation about the C=C bond, and the quinoline ring system and the benzene ring are inclined to one another by 29.22 (7)°.

Keywords: crystal structure, 8-hy­droxy­quinoline derivative, vin­yl, inversion dimer, hydrogen bonding, inversion dimers, C—H⋯π inter­actions

Abstract

The title compound, C19H15NO3, was synthesized by a Perkin reaction of 2-methyl-8-hy­droxy­quinoline and 4-formyl-2-methyl­benzoate in acetic anhydride under a nitro­gen atmosphere. The mol­ecule has an E conformation about the C=C bond, and the quinoline ring system and the benzene ring are inclined to one another by 29.22 (7)°. There is an intra­molecular O—H⋯N hydrogen bond in the 8-hy­droxy­quinoline moiety. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an R 2 2(28) ring motif. The dimers are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming sheets parallel to plane (10-1).

Chemical context  

In recent years, 8-hy­droxy­quinoline and its derivatives have played an important role in coordination chemistry (Albrecht et al., 2008; Cacciatore et al., 2013), shown to exhibit biological activity (du Moulinet d’Hardemare et al., 2012) and have found various applications in the fields of synthetic chemistry (Song et al., 2006) and organic light-emitting diodes, which have been extensively exploited in the synthesis of luminescent metal complexes (Tang et al., 1987). It is therefore highly desirable to develop new efficient 8-hy­droxy­quinoline derivatives for use in luminescent metal complexes. In the present work, we report on the synthesis and crystal structure of a new 8-hy­droxy­quinoline derivative, synthesized by the Perkin reaction of 2-methyl-8-hy­droxy­quinoline and 4-formyl-2-methyl­benzoate.graphic file with name e-72-01251-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. It contains an 8-hy­droxy­quinoline moiety, with an intra­molecular O—H⋯N hydrogen bond (Fig. 1 and Table 1), and a methyl­benzoate unit. They are linked by the C9=C10 bond [1.321 (2) Å] with an E conformation. The C11—C10 and C6—C9 bond lengths are 1.463 (2) and 1.466 (2) Å, respectively. These distances are shorter than the standard length of a C—C single bond (ca 1.5 Å) because of the conjugate system formed by the C9=C10 bond and the aromatic systems. The quinoline ring system and the benzene ring are inclined to one another by 29.22 (7)°.

Figure 1.

Figure 1

View of the mol­ecular structure of the title compound, showing the atom labelling and 40% probability displacement ellipsoids. The intra­molecular O—H⋯N hydrogen bond is shown as a dashed line (see Table 1).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of rings N1/C11–C14/C19, C3–C8 and C14–C19, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯N1 0.86 (2) 2.19 (3) 2.715 (2) 120 (2)
O3—H3O⋯O1i 0.86 (2) 2.23 (2) 2.901 (2) 136 (2)
C5—H5A⋯O3ii 0.93 2.57 3.437 (2) 155
C7—H7ACg3iii 0.93 2.99 3.605 (2) 125
C8—H8ACg1iii 0.93 2.93 3.559 (2) 126
C15—H15ACg2ii 0.93 2.83 3.639 (2) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an Inline graphic(28) ring motif (Table 1 and Fig. 2). The dimers are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming sheets parallel to (10Inline graphic); see Table 1 and Fig. 3.

Figure 2.

Figure 2

A view along the a axis of the Inline graphic(28) ring motifs in the crystal of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1), and for clarity only H atoms H3O and H5A are included.

Figure 3.

Figure 3

A view along the b axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1) and, for clarity, only H atoms H3O and H5A are included.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.37, last update May 2016; Groom et al., 2016) for the substructure 2-styrylquinolin-8-ol gave 17 hits; however, certain of these involve bis­(8-hy­droxy­quinolines) or a (9-anthr­yl) moiety. Three compounds are similar to the title compound in the sense that they also have an E conformation about the C=C bond, and in the crystal they also form inversion dimers. They include 2-{2-[4-(tri­fluoro­meth­yl)phen­yl]vin­yl}quinolin-8-ol (HUKTOY; Huo et al., 2015), 2-[2-(4-meth­oxy­phen­yl)vin­yl]quinolin-8-ol (MIMPOP; Yuan et al., 2013), and 2-[2-(2,4-di­nitro­phen­yl)vin­yl]quinolin-8-ol (WELKEF; Yuan et al., 2013). In these three compounds, the quinoline and benzene rings are inclined to one another by 36.72 (10) and 16.66 (10)° in HUKTOY (there are two independent mol­ecules in the asymmetric unit), 42.59 (7)° in MIMPOP and 5.63 (6)° in WELKEF, compared to 29.22 (7)° in the title compound.

Synthesis and crystallization  

The title compound was prepared following reported procedures (Jing et al., 2006; Yuan et al., 2012). A mixture of 2-methy-8-hy­droxy­quinoline (1.59 g, 10 mmol), 4-formyl-2-methyl­benzoate (1.64 g, 10 mmol) and acetic anhydride (20 ml) was stirred for 12 h at 423 K under a nitro­gen atmosphere. After cooling it was poured into ice–water (150 ml) and stirred for 1–2 h. Then, the puce solid obtained was filtered and together with tri­ethyl­amine (1 g, 10 mmol) was dissolved in DMF (30 ml) and the mixture stirred for 3 h at 408 K. After cooling, the reaction mixture was concentrated and purified by chromatography on silica gel (petroleum ether/EtOAc = 3/1). The product obtained was dissolved in ethanol, and on slow evaporation of the solvent yellow crystals were obtained within 2 weeks.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The hy­droxy-H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: C—H = 0.93–0.96 Å with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C19H15NO3
M r 305.32
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 12.0236 (4), 9.7045 (4), 13.2607 (4)
β (°) 96.260 (2)
V3) 1538.07 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.08 × 0.06 × 0.05
 
Data collection
Diffractometer Bruker SMART CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2005)
T min, T max 0.993, 0.996
No. of measured, independent and observed [I > 2σ(I)] reflections 13068, 3511, 2049
R int 0.041
(sin θ/λ)max−1) 0.651
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.137, 1.02
No. of reflections 3511
No. of parameters 217
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.18

Computer programs: SMART and SAINT (Bruker, 2005), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698901601210X/su5312sup1.cif

e-72-01251-sup1.cif (25.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901601210X/su5312Isup2.hkl

e-72-01251-Isup2.hkl (172.2KB, hkl)

Supporting information file. DOI: 10.1107/S205698901601210X/su5312Isup3.mol

Supporting information file. DOI: 10.1107/S205698901601210X/su5312Isup4.cml

CCDC reference: 859030

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the support of the Natural Science Foundation of Zhejiang Province (LY12B01003).

supplementary crystallographic information

Crystal data

C19H15NO3 F(000) = 640
Mr = 305.32 Dx = 1.319 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1747 reflections
a = 12.0236 (4) Å θ = 2.2–27.6°
b = 9.7045 (4) Å µ = 0.09 mm1
c = 13.2607 (4) Å T = 296 K
β = 96.260 (2)° Block, yellow
V = 1538.07 (9) Å3 0.08 × 0.06 × 0.05 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 3511 independent reflections
Radiation source: fine-focus sealed tube 2049 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
phi and ω scans θmax = 27.6°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −15→14
Tmin = 0.993, Tmax = 0.996 k = −12→12
13068 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.1091P] where P = (Fo2 + 2Fc2)/3
3511 reflections (Δ/σ)max < 0.001
217 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.87623 (11) 0.22440 (15) 0.17162 (11) 0.0507 (4)
O3 1.04463 (12) 0.41136 (15) 0.20030 (12) 0.0678 (4)
C19 0.97735 (12) 0.17971 (18) 0.21670 (12) 0.0465 (4)
C3 0.26628 (13) 0.27214 (18) −0.01100 (13) 0.0496 (4)
C14 0.99928 (13) 0.04272 (18) 0.24806 (12) 0.0481 (4)
C11 0.79264 (13) 0.13449 (18) 0.15909 (12) 0.0491 (4)
O2 0.07181 (10) 0.24711 (14) −0.02756 (10) 0.0691 (4)
C6 0.47912 (13) 0.17659 (19) 0.06283 (12) 0.0508 (4)
C13 0.90819 (14) −0.04932 (19) 0.23276 (13) 0.0544 (5)
H13A 0.9178 −0.1412 0.2517 0.065*
C18 1.06399 (13) 0.27912 (19) 0.23164 (13) 0.0521 (4)
C12 0.80665 (14) −0.0046 (2) 0.19061 (13) 0.0549 (5)
H12A 0.7464 −0.0651 0.1824 0.066*
C2 0.15483 (14) 0.3263 (2) −0.05173 (14) 0.0574 (5)
O1 0.14069 (11) 0.42886 (17) −0.10263 (13) 0.0939 (5)
C10 0.68606 (13) 0.18748 (19) 0.11050 (13) 0.0550 (5)
H10A 0.6873 0.2733 0.0795 0.066*
C9 0.58827 (13) 0.1246 (2) 0.10668 (13) 0.0550 (5)
H9A 0.5887 0.0370 0.1352 0.066*
C8 0.36132 (14) 0.3354 (2) −0.03918 (13) 0.0587 (5)
H8A 0.3541 0.4107 −0.0828 0.070*
C15 1.10686 (14) 0.0073 (2) 0.29359 (13) 0.0581 (5)
H15A 1.1226 −0.0831 0.3136 0.070*
C17 1.16678 (14) 0.2423 (2) 0.27826 (15) 0.0611 (5)
H17A 1.2229 0.3081 0.2901 0.073*
C7 0.46638 (14) 0.2885 (2) −0.00345 (14) 0.0587 (5)
H7A 0.5293 0.3318 −0.0237 0.070*
C4 0.27801 (14) 0.15980 (19) 0.05325 (14) 0.0564 (5)
H4A 0.2148 0.1156 0.0721 0.068*
C16 1.18752 (15) 0.1057 (2) 0.30817 (14) 0.0641 (5)
H16A 1.2581 0.0816 0.3387 0.077*
C5 0.38325 (14) 0.11293 (19) 0.08960 (14) 0.0589 (5)
H5A 0.3900 0.0372 0.1329 0.071*
C1 −0.04060 (15) 0.2875 (3) −0.06672 (17) 0.0812 (7)
H1B −0.0932 0.2228 −0.0445 0.122*
H1C −0.0470 0.2886 −0.1395 0.122*
H1D −0.0561 0.3777 −0.0421 0.122*
H3O 0.9748 (17) 0.414 (3) 0.178 (2) 0.101 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0405 (7) 0.0524 (9) 0.0578 (9) 0.0016 (7) −0.0003 (6) −0.0028 (7)
O3 0.0509 (8) 0.0541 (8) 0.0935 (10) −0.0052 (7) −0.0140 (8) 0.0047 (7)
C19 0.0397 (9) 0.0523 (10) 0.0470 (9) 0.0023 (8) 0.0028 (7) −0.0005 (8)
C3 0.0447 (9) 0.0557 (11) 0.0471 (9) 0.0034 (8) −0.0015 (7) −0.0011 (8)
C14 0.0422 (9) 0.0528 (11) 0.0495 (9) 0.0062 (8) 0.0057 (7) 0.0010 (8)
C11 0.0412 (9) 0.0503 (10) 0.0549 (10) 0.0016 (8) 0.0005 (7) −0.0059 (8)
O2 0.0414 (7) 0.0864 (10) 0.0774 (9) 0.0056 (7) −0.0034 (6) 0.0080 (7)
C6 0.0445 (9) 0.0530 (10) 0.0529 (10) 0.0011 (8) −0.0034 (7) −0.0051 (8)
C13 0.0527 (10) 0.0471 (10) 0.0631 (11) 0.0035 (8) 0.0056 (8) 0.0009 (8)
C18 0.0430 (9) 0.0531 (11) 0.0590 (10) 0.0007 (8) 0.0007 (8) 0.0001 (9)
C12 0.0457 (9) 0.0515 (11) 0.0663 (11) −0.0036 (8) 0.0013 (8) −0.0061 (9)
C2 0.0447 (10) 0.0687 (13) 0.0575 (11) 0.0050 (10) 0.0003 (8) −0.0010 (10)
O1 0.0597 (9) 0.0984 (12) 0.1208 (13) 0.0137 (8) −0.0033 (8) 0.0450 (11)
C10 0.0468 (10) 0.0530 (11) 0.0637 (11) 0.0046 (8) −0.0011 (8) −0.0015 (9)
C9 0.0446 (9) 0.0549 (11) 0.0635 (11) 0.0026 (8) −0.0032 (8) −0.0027 (9)
C8 0.0521 (10) 0.0638 (12) 0.0586 (11) 0.0015 (9) −0.0004 (8) 0.0133 (9)
C15 0.0456 (10) 0.0620 (12) 0.0661 (11) 0.0115 (9) 0.0034 (8) 0.0087 (9)
C17 0.0424 (10) 0.0680 (13) 0.0713 (12) −0.0049 (9) −0.0011 (8) −0.0012 (10)
C7 0.0427 (9) 0.0703 (13) 0.0624 (11) −0.0039 (9) 0.0027 (8) 0.0070 (10)
C4 0.0436 (9) 0.0584 (11) 0.0657 (11) −0.0046 (8) −0.0005 (8) 0.0035 (9)
C16 0.0404 (9) 0.0767 (15) 0.0731 (12) 0.0064 (9) −0.0044 (8) 0.0075 (11)
C5 0.0495 (10) 0.0554 (11) 0.0691 (12) −0.0004 (8) −0.0054 (8) 0.0110 (9)
C1 0.0402 (10) 0.1128 (19) 0.0881 (15) 0.0112 (11) −0.0039 (9) 0.0050 (13)
H3O 0.039 (13) 0.12 (2) 0.14 (2) −0.025 (14) −0.010 (13) 0.009 (16)

Geometric parameters (Å, º)

N1—C11 1.328 (2) C18—C17 1.368 (2)
N1—C19 1.3657 (19) C12—H12A 0.9300
O3—C18 1.361 (2) C2—O1 1.204 (2)
O3—H3O 0.86 (2) C10—C9 1.321 (2)
C19—C14 1.409 (2) C10—H10A 0.9300
C19—C18 1.418 (2) C9—H9A 0.9300
C3—C4 1.381 (2) C8—C7 1.377 (2)
C3—C8 1.384 (2) C8—H8A 0.9300
C3—C2 1.485 (2) C15—C16 1.360 (3)
C14—C15 1.409 (2) C15—H15A 0.9300
C14—C13 1.411 (2) C17—C16 1.398 (3)
C11—C12 1.417 (3) C17—H17A 0.9300
C11—C10 1.463 (2) C7—H7A 0.9300
O2—C2 1.326 (2) C4—C5 1.381 (2)
O2—C1 1.448 (2) C4—H4A 0.9300
C6—C5 1.388 (2) C16—H16A 0.9300
C6—C7 1.395 (3) C5—H5A 0.9300
C6—C9 1.466 (2) C1—H1B 0.9600
C13—C12 1.357 (2) C1—H1C 0.9600
C13—H13A 0.9300 C1—H1D 0.9600
C11—N1—C19 118.15 (15) C11—C10—H10A 117.0
C18—O3—H3O 105.2 (17) C10—C9—C6 127.66 (18)
N1—C19—C14 123.90 (15) C10—C9—H9A 116.2
N1—C19—C18 116.78 (16) C6—C9—H9A 116.2
C14—C19—C18 119.32 (14) C7—C8—C3 120.90 (17)
C4—C3—C8 119.02 (15) C7—C8—H8A 119.5
C4—C3—C2 122.07 (17) C3—C8—H8A 119.5
C8—C3—C2 118.91 (17) C16—C15—C14 119.79 (18)
C15—C14—C19 119.34 (16) C16—C15—H15A 120.1
C15—C14—C13 124.70 (17) C14—C15—H15A 120.1
C19—C14—C13 115.94 (14) C18—C17—C16 120.02 (17)
N1—C11—C12 121.65 (14) C18—C17—H17A 120.0
N1—C11—C10 116.03 (16) C16—C17—H17A 120.0
C12—C11—C10 122.32 (15) C8—C7—C6 120.51 (17)
C2—O2—C1 117.01 (16) C8—C7—H7A 119.7
C5—C6—C7 118.07 (15) C6—C7—H7A 119.7
C5—C6—C9 118.56 (17) C5—C4—C3 120.21 (17)
C7—C6—C9 123.36 (17) C5—C4—H4A 119.9
C12—C13—C14 120.40 (17) C3—C4—H4A 119.9
C12—C13—H13A 119.8 C15—C16—C17 121.54 (16)
C14—C13—H13A 119.8 C15—C16—H16A 119.2
O3—C18—C17 120.02 (17) C17—C16—H16A 119.2
O3—C18—C19 120.01 (14) C4—C5—C6 121.28 (17)
C17—C18—C19 119.96 (17) C4—C5—H5A 119.4
C13—C12—C11 119.92 (16) C6—C5—H5A 119.4
C13—C12—H12A 120.0 O2—C1—H1B 109.5
C11—C12—H12A 120.0 O2—C1—H1C 109.5
O1—C2—O2 123.39 (16) H1B—C1—H1C 109.5
O1—C2—C3 124.26 (18) O2—C1—H1D 109.5
O2—C2—C3 112.33 (17) H1B—C1—H1D 109.5
C9—C10—C11 126.00 (18) H1C—C1—H1D 109.5
C9—C10—H10A 117.0
C11—N1—C19—C14 2.0 (2) C8—C3—C2—O2 173.08 (16)
C11—N1—C19—C18 −178.23 (15) N1—C11—C10—C9 −167.28 (17)
N1—C19—C14—C15 179.78 (15) C12—C11—C10—C9 13.1 (3)
C18—C19—C14—C15 0.0 (2) C11—C10—C9—C6 177.07 (16)
N1—C19—C14—C13 −1.6 (2) C5—C6—C9—C10 −162.92 (18)
C18—C19—C14—C13 178.58 (15) C7—C6—C9—C10 16.0 (3)
C19—N1—C11—C12 −0.4 (2) C4—C3—C8—C7 −0.5 (3)
C19—N1—C11—C10 179.96 (14) C2—C3—C8—C7 −179.86 (16)
C15—C14—C13—C12 178.19 (17) C19—C14—C15—C16 1.0 (3)
C19—C14—C13—C12 −0.3 (2) C13—C14—C15—C16 −177.45 (18)
N1—C19—C18—O3 −0.9 (2) O3—C18—C17—C16 −178.39 (18)
C14—C19—C18—O3 178.95 (16) C19—C18—C17—C16 2.1 (3)
N1—C19—C18—C17 178.64 (16) C3—C8—C7—C6 −0.6 (3)
C14—C19—C18—C17 −1.6 (2) C5—C6—C7—C8 1.3 (3)
C14—C13—C12—C11 1.8 (3) C9—C6—C7—C8 −177.65 (17)
N1—C11—C12—C13 −1.5 (3) C8—C3—C4—C5 0.8 (3)
C10—C11—C12—C13 178.16 (16) C2—C3—C4—C5 −179.85 (16)
C1—O2—C2—O1 0.9 (3) C14—C15—C16—C17 −0.5 (3)
C1—O2—C2—C3 −177.71 (15) C18—C17—C16—C15 −1.1 (3)
C4—C3—C2—O1 175.11 (19) C3—C4—C5—C6 −0.1 (3)
C8—C3—C2—O1 −5.6 (3) C7—C6—C5—C4 −1.0 (3)
C4—C3—C2—O2 −6.3 (3) C9—C6—C5—C4 178.01 (16)

Hydrogen-bond geometry (Å, º)

Cg1, Cg2 and Cg3 are the centroids of rings N1/C11–C14/C19, C3–C8 and C14–C19, respectively.

D—H···A D—H H···A D···A D—H···A
O3—H3O···N1 0.86 (2) 2.19 (3) 2.715 (2) 120 (2)
O3—H3O···O1i 0.86 (2) 2.23 (2) 2.901 (2) 136 (2)
C5—H5A···O3ii 0.93 2.57 3.437 (2) 155
C7—H7A···Cg3iii 0.93 2.99 3.605 (2) 125
C8—H8A···Cg1iii 0.93 2.93 3.559 (2) 126
C15—H15A···Cg2ii 0.93 2.83 3.639 (2) 146

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x−1/2, −y+1/2, z−1/2.

References

  1. Albrecht, M., Fiege, M. & Osetska, O. (2008). Coord. Chem. Rev. 252, 812–824.
  2. Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cacciatore, I., Fornasari, E., Baldassare, L., Cornacchia, C., Fulle, S., DiFilippo, E. S., Pietrangelo, T. & Pinnen, F. (2013). Pharmaceuticals, 6, 54–69. [DOI] [PMC free article] [PubMed]
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Huo, Y., Wang, C., Lu, J., Hu, S., Li, X. & Zhang, L. (2015). J. Mol. Struct. 1098, 311–317.
  6. Jing, H.-L., Zeng, H.-P., Zhou, Y.-D., Wang, T.-T., Yuan, G.-Z. & Ouyang, X.-H. (2006). Chin. J. Chem. 24, 966–972.
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. Moulinet d’Hardemare, A. du, Gellon, G., Philouze, C. & Serratrice, G. (2012). Inorg. Chem. 51, 12142–12151. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Song, K.-C., Kim, J.-S., Park, S.-M., Chung, K.-C., Ahn, S. & Chang, S.-K. (2006). Org. Lett. 8, 3413–3416. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Tang, C.-W. & VanSlyke, S. A. (1987). Appl. Phys. Lett. 51, 913–915.
  13. Yuan, G.-Z., Huo, Y.-P., Rong, L.-L., Nie, X.-L. & Fang, X.-M. (2012). Inorg. Chem. Commun. 23, 90–94.
  14. Yuan, G.-Z., Rong, L.-L., Qiao, X.-L., Xia, Y.-P., Guo, T. & Wei, X.-W. (2013). Wuji Huaxue Xuebao, 29, 1769.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698901601210X/su5312sup1.cif

e-72-01251-sup1.cif (25.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901601210X/su5312Isup2.hkl

e-72-01251-Isup2.hkl (172.2KB, hkl)

Supporting information file. DOI: 10.1107/S205698901601210X/su5312Isup3.mol

Supporting information file. DOI: 10.1107/S205698901601210X/su5312Isup4.cml

CCDC reference: 859030

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES