Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Aug 16;72(Pt 9):1297–1300. doi: 10.1107/S2056989016012858

A two-dimensional CdII coordination polymer: poly[di­aqua­[μ3-5,6-bis­(pyridin-2-yl)pyrazine-2,3-di­carboxyl­ato-κ5 O 2:O 3:O 3,N 4,N 5]cadmium]

Monserrat Alfonso a, Helen Stoeckli-Evans b,*
PMCID: PMC5120711  PMID: 27920921

The reaction of cadmium dichloride with the ligand 5,6-bis­(pyridin-2-yl)pyrazine-2,3-di­carb­oxy­lic acid leads to the formation of a two-dimensional coordination polymer.

Keywords: crystal structure, cadmium(II), sevenfold coordination, penta­gonal bipyramid, two-dimensional coordination polymer, network, hydrogen bonding

Abstract

The reaction of 5,6-bis­(pyridin-2-yl)pyrazine-2,3-di­carb­oxy­lic acid with cadmium dichloride leads to the formation of the title two-dimensional coordination polymer, [Cd(C16H8N4O4)(H2O)2]n. The metal atom is sevenfold coordinated by one pyrazine and one pyridine N atom, two water O atoms, and by two carboxyl­ate O atoms, one of which bridges two CdII atoms to form a Cd2O2 unit situated about a centre of inversion. Hence, the ligand coordinates to the cadmium atom in an N,N′,O-tridentate and an O-monodentate manner. Within the polymer network, there are a number of O—H⋯O hydrogen bonds present, involving the water mol­ecules and the carboxyl­ate O atoms. There are also C—H⋯N and C—H⋯O hydrogen bonds present. In the crystal, the polymer networks lie parallel to the bc plane. They are aligned back-to-back along the a axis with the non-coordinating pyridine rings directed into the space between the networks.

Chemical context  

The crystal structure of the ligand 5,6-bis­(pyridin-2-yl)pyrazine-2,3-di­carb­oxy­lic acid (H2L) and the chloride, perchlorate and hexa­fluoro­phosphate salts, have been reported on previously (Alfonso et al., 2001). Inter­estingly, the ligand crystallizes as a zwitterion in all four compounds. The reaction of H2L with CuBr2 (ratio 1:2) leads to the formation of a one-dimensional coordination polymer. On exposure to air, the compound loses the solvent of crystallization and four water mol­ecules, transforming into a two-dimensional coordination polymer (Neels et al., 2003). In both cases, there are two crystallographically independent fivefold-coordinated copper atoms present and they all have almost perfect square-pyramidal geometry. Recently, we have reported on the crystal structures of the dimethyl and diethyl ester of the H2L ligand (Alfonso & Stoeckli-Evans, 2016a ). The reaction of the dimethyl ester of H2L with CdCl2 and HgCl2 leads to the formation of isotypic one-dimensional coordination polymers (Alfonso & Stoeckli-Evans, 2016b ). There the ligand coordin­ates to the metal atom via the pyridine N atoms, and they have MN2Cl2 fourfold bis­phenoidal coordination geometry.

Structural commentary  

The reaction of 5,6-bis­(pyridin-2-yl)pyrazine-2,3-di­carb­oxy­lic acid with cadmium dichloride leads to the formation of the title two-dimensional coordination polymer (Fig. 1). Here the metal atom is sevenfold coordinated by one pyrazine N atom (N1), one pyridine N atom (N3) and two water O atoms (O1W and O2W), and by two carboxyl­ate O atoms (O1 and O3). Atom O1 bridges two cadmium atoms to form a Cd2O2 unit situated about a centre of inversion; the Cd1⋯Cd1ii distance is 3.8753 (8) Å, while the Cd—O1 and Cd—O1ii bonds are, respectively, 2.371 (4) and 2.427 (4) Å, and the Cd1—O1⋯Cd1ii and O1—Cd⋯O1ii bond angles are 107.74 (13) and 72.26 (13)°, respectively. As can be seen in Fig. 1, the ligand coordinates to the cadmium atom in a tridentate (N,N,O) and a monodentate manner (O). It can be seen from the carboxyl­ate C—O bond lengths [C15—O1 and C15—O2 are 1.255 (6) and 1.253 (6) Å, respectively, while C16—O3 and C16—O4 are 1.258 (6) and 1.227 (6) Å, respectively] that the negative charge is distributed over the O–C–O group for the first, but located on atom O3 for the second.graphic file with name e-72-01297-scheme1.jpg

Figure 1.

Figure 1

A view of the mol­ecular structure of the title coordination polymer, showing the atom labelling [symmetry codes: (i) x, −y + Inline graphic, z − Inline graphic; (ii) −x + 1, −y + 1, −z + 1; (iii) x, −y + Inline graphic, z + Inline graphic]. Displacement ellipsoids are drawn at the 50% probability level.

Selected bond lengths and angles involving atom Cd1 are given in Table 1. The Cd—Npyrazine (Cd1—N1) and the Cd—Npyridine (Cd1—N3) bond lengths are the same within 3 s.u.s. [2.418 (4) cf. 2.430 (4) Å]. The Cd—Owater bond lengths [2.301 (4) and 2.317 (3) Å] are shorter than the Cd—Ocarboxyl­ate bond lengths [2.371 (4) and 2.377 (4) Å], while the bridging Cd1⋯O1ii distance is the longest at 2.427 (4) Å. The geometry of the sevenfold-coordinated cadmium atom can best be described as a distorted penta­gonal bipyramid, with atoms O1,N1,N3,O2W,O1ii in the basal plane and atoms O1W,O3i in the apical positions with an O1W—Cd1—O3i bond angle of 157.41 (15)° (Table 1).

Table 1. Selected geometric parameters (Å, °).

Cd1—O1 2.371 (4) Cd1—N3 2.430 (4)
Cd1—O3i 2.377 (4) Cd1—O1W 2.301 (4)
Cd1—N1 2.418 (4) Cd1—O2W 2.317 (3)
Cd1—O1ii 2.427 (4)    
       
Cd1—O1—Cd1ii 107.74 (13) O1W—Cd1—N1 91.62 (16)
O1W—Cd1—O3i 157.41 (15) O1W—Cd1—N3 87.87 (15)
O1—Cd1—O1ii 72.26 (13) O1W—Cd1—O1ii 76.59 (15)
O1—Cd1—N1 67.98 (13) O2W—Cd1—O3i 87.05 (13)
N1—Cd1—N3 65.40 (14) O1—Cd1—O3i 80.38 (12)
O2W—Cd1—N3 78.01 (13) O3i—Cd1—N1 91.67 (13)
O2W—Cd1—O1ii 80.65 (13) O3i—Cd1—O1ii 86.60 (12)
O1W—Cd1—O2W 104.67 (16) O3i—Cd1—N3 113.74 (13)
O1W—Cd1—O1 80.18 (15)    

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

The coordinated pyridine ring (N3/C5-C9) and the carboxyl­ate group (O1/O2/C15) are inclined to the pyrazine ring (r.m.s. deviation = 0.03 Å) by 16.9 (2) and 1.9 (6)°, respectively. The non-coordinating pyridine ring (N4/C10–C14) and the second coordinating carboxyl­ate group (O3/O4/C16) are inclined to the pyrazine ring by 60.2 (3) and 89.1 (11)°, respectively. The two pyridine rings are inclined to one another by 75.4 (3) °.

Supra­molecular features  

In the crystal, the two-dimensional polymer networks lie parallel to the bc plane, as illustrated in Figs. 2 and 3. The networks are aligned back-to-back along the a axis, with the non-coordinating pyridine rings directed into the space between the networks (Fig. 4). Within the networks there are a number of O—H⋯O hydrogen bonds present, involving the water mol­ecules and the carboxyl­ate O atoms (Table 2 and Fig. 5). There are also C—H⋯O and C—H⋯N hydrogen bonds present within the network (Table 2).

Figure 2.

Figure 2

A view along the a axis of the title two-dimensional coordination polymer. The C-bound H atoms have been omitted for clarity.

Figure 3.

Figure 3

A view along the c axis of the title two-dimensional coordination polymer. The C-bound H atoms have been omitted for clarity.

Figure 4.

Figure 4

A view in projection down the c axis of the crystal packing of the title two-dimensional coordination polymer. The C-bound H atoms have been omitted for clarity.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3iii 0.82 (2) 2.22 (3) 2.974 (6) 152 (5)
O1W—H1WB⋯O2iv 0.84 (2) 2.05 (4) 2.805 (6) 150 (7)
O2W—H2WA⋯O4i 0.85 (2) 1.88 (3) 2.630 (6) 146 (5)
O2W—H2WB⋯O2ii 0.85 (2) 1.88 (2) 2.692 (5) 159 (5)
C9—H9⋯O3v 0.94 2.52 3.245 (6) 134
C14—H14⋯N4vi 0.94 2.62 3.372 (8) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Figure 5.

Figure 5

A view normal to plane (1Inline graphic0) of the O—H⋯O hydrogen bonds (dashed lines; see Table 2) within the polymer network, involving the carboxyl­ate O atoms (red balls) and the coordinating water mol­ecules. The C atoms and C-bound H atoms of the ligand have been omitted for clarity.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.37, last update May 2016; Groom et al., 2016) for the ligand H2L gave eight hits. All of these structures have been mentioned in the Chemical context above. A search for cadmium complexes with the Cd atom coordinated by two N atoms, two water mol­ecules and three O atoms, two of which are carboxyl­ate O atoms, gave seven hits. One of these compounds, catena-[(μ2-1,1′-(butane-1,4-di­yl)bis­(5,6-dimethyl-1H-benzimidazole)]bis­(μ2-pyridine-2,6-di­carboxyl­ato)tetra­aqua­dicadmium dihydrate) [CSD refcode: FAVHIV; Jiao et al., 2012] has a Cd2O2 unit formed about an inversion centre as in the title compound. In FAVHIV, the Cd⋯Cd distance and the angles Cd—O⋯Cd and O—Cd⋯O are, respectively, 4.0408 (5) Å, and 111.05 (8) and 68.95 (7)°, compared to 3.8753 (8) Å, and 107.74 (13) and 72.26 (13) °, respectively, in the title compound. However, such an arrangement is extremely common for cadmium(II) complexes (over 600 hits in the CSD) and the bond lengths and angles vary enormously; for example the Cd⋯Cd distance varies from ca 3.0 to 4.3 Å, the Cd—O⋯Cd angle varies from ca 82 to 119° and the O—Cd⋯O angle from ca 60 to 90°.

Synthesis and crystallization  

The synthesis of the ligand 5,6-bis­(pyridin-2-yl)pyrazine-2,3-di­carb­oxy­lic acid (H2L) has been reported previously (Alfonso et al., 2001).

Synthesis of the title coordination polymer: H2L (32 mg, 0.10 mmol) was added to an aqueous solution (25 ml) of CdCl2·2H2O (22 mg, 0.10 mmol). The colourless solution immediately obtained was stirred for 1 h at room temperature. The reaction mixture was then filtered and the filtrate allowed to evaporate slowly at room temperature. After two weeks, small colourless plate-like crystals of the title compound were obtained, separated by filtration and dried in air (yield: 40 mg, 42.5%). Selected IR bands (KBr pellet, cm−1): ν 1630(m), 1598(vs), 1533(m), 1469(m), 1442(m), 1414(m), 1362(s), 1301(m), 1273(m), 1176(m), 1165(m), 1119(m), 1043(w), 992(w), 829(m), 789(m), 759(m), 675(m), 562(m), 513(m). Analysis for C16H12N4O6Cd (468.71): calculated: C 41.00, H 2.58, N 11.95%; found: C 40.70, H 2.43, N 11.80%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The water H atoms were located in a difference Fourier map and refined with distance restraints: O—H = 0.84 (2) and H⋯H = 1.35 (2) Å, with U iso(H) = 1.5U eq(O). The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.94 Å with U iso(H) = 1.2U eq(C). The best crystal available was extremely thin (0.01 mm) and as the shape of the crystal was irregular it was not possible to carry out a numerical absorption correction. The displacement ellipsoids for two carboxyl­ate O atoms (O2 and O4) and a water O atom (OW1) are large but attempts to split these atoms were not successful.

Table 3. Experimental details.

Crystal data
Chemical formula [Cd(C16H8N4O4)(H2O)2]
M r 468.70
Crystal system, space group Monoclinic, P21/c
Temperature (K) 223
a, b, c (Å) 16.6854 (12), 7.0799 (6), 13.4537 (10)
β (°) 96.236 (9)
V3) 1579.9 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.43
Crystal size (mm) 0.30 × 0.20 × 0.01
 
Data collection
Diffractometer Stoe IPDS 1 image plate
Absorption correction Multi-scan (MULABS; Spek, 2009)
T min, T max 0.900, 1.00
No. of measured, independent and observed [I > 2σ(I)] reflections 11782, 3056, 1781
R int 0.129
(sin θ/λ)max−1) 0.615
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.063, 0.75
No. of reflections 3056
No. of parameters 257
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.53, −0.59

Computer programs: EXPOSE, CELL and INTEGRATE in IPDS-I (Stoe & Cie, 2004), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989016012858/pk2589sup1.cif

e-72-01297-sup1.cif (378.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016012858/pk2589Isup2.hkl

e-72-01297-Isup2.hkl (244.3KB, hkl)

CCDC reference: 1498382

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Swiss National Science Foundation and the University of Neuchâtel for financial support.

supplementary crystallographic information

Crystal data

[Cd(C16H8N4O4)(H2O)2] F(000) = 928
Mr = 468.70 Dx = 1.970 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 16.6854 (12) Å Cell parameters from 5000 reflections
b = 7.0799 (6) Å θ = 1.7–26.1°
c = 13.4537 (10) Å µ = 1.43 mm1
β = 96.236 (9)° T = 223 K
V = 1579.9 (2) Å3 Plate, colourless
Z = 4 0.30 × 0.20 × 0.01 mm

Data collection

Stoe IPDS 1 image plate diffractometer 3056 independent reflections
Radiation source: fine-focus sealed tube 1781 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.129
φ rotation scans θmax = 25.9°, θmin = 2.5°
Absorption correction: multi-scan (MULABS; Spek, 2009) h = −20→20
Tmin = 0.900, Tmax = 1.00 k = −8→8
11782 measured reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0062P)2] where P = (Fo2 + 2Fc2)/3
S = 0.75 (Δ/σ)max = 0.001
3056 reflections Δρmax = 0.53 e Å3
257 parameters Δρmin = −0.59 e Å3
6 restraints Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00055 (16)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.39911 (3) 0.63678 (6) 0.47689 (3) 0.01231 (13)
O1 0.4663 (2) 0.3932 (6) 0.5741 (2) 0.0160 (9)
O2 0.4579 (2) 0.1638 (6) 0.6875 (3) 0.0266 (10)
O3 0.3636 (2) 0.1259 (6) 0.8712 (2) 0.0207 (9)
O4 0.3010 (3) −0.0413 (6) 0.7454 (3) 0.0436 (14)
O1W 0.4770 (3) 0.8162 (6) 0.5928 (3) 0.0412 (13)
H1WA 0.520 (2) 0.780 (9) 0.623 (4) 0.062*
H1WB 0.457 (3) 0.898 (7) 0.628 (4) 0.062*
O2W 0.3837 (2) 0.8219 (5) 0.3341 (2) 0.0189 (10)
H2WA 0.355 (2) 0.766 (7) 0.287 (3) 0.028*
H2WB 0.4295 (16) 0.833 (8) 0.312 (3) 0.028*
N1 0.3193 (3) 0.5188 (6) 0.6031 (3) 0.0130 (10)
N2 0.2284 (3) 0.3495 (7) 0.7347 (3) 0.0156 (10)
N3 0.2853 (2) 0.8351 (6) 0.5067 (3) 0.0131 (10)
N4 0.0603 (3) 0.5341 (6) 0.6152 (3) 0.0222 (12)
C1 0.2472 (3) 0.5920 (7) 0.6161 (3) 0.0096 (12)
C2 0.2003 (3) 0.4982 (7) 0.6816 (4) 0.0128 (13)
C3 0.3478 (3) 0.3673 (9) 0.6546 (3) 0.0100 (10)
C4 0.3025 (3) 0.2842 (7) 0.7250 (4) 0.0102 (13)
C5 0.2290 (3) 0.7774 (7) 0.5650 (4) 0.0122 (13)
C6 0.1657 (3) 0.8955 (8) 0.5818 (3) 0.0186 (14)
H6 0.1260 0.8536 0.6211 0.022*
C7 0.1608 (4) 1.0747 (7) 0.5410 (4) 0.0196 (14)
H7 0.1174 1.1544 0.5516 0.024*
C8 0.2194 (3) 1.1351 (9) 0.4850 (3) 0.0166 (11)
H8 0.2175 1.2573 0.4576 0.020*
C9 0.2815 (3) 1.0138 (7) 0.4696 (4) 0.0156 (13)
H9 0.3224 1.0560 0.4322 0.019*
C10 0.1146 (4) 0.5462 (7) 0.6958 (4) 0.0179 (14)
C11 0.0946 (4) 0.5917 (8) 0.7907 (4) 0.0249 (15)
H11 0.1347 0.6018 0.8453 0.030*
C12 0.0141 (4) 0.6216 (10) 0.8025 (4) 0.0285 (14)
H12 −0.0016 0.6492 0.8660 0.034*
C13 −0.0426 (4) 0.6106 (9) 0.7204 (5) 0.0333 (16)
H13 −0.0974 0.6328 0.7263 0.040*
C14 −0.0169 (4) 0.5661 (8) 0.6298 (5) 0.0294 (17)
H14 −0.0560 0.5574 0.5741 0.035*
C15 0.4309 (3) 0.3025 (7) 0.6364 (4) 0.0140 (14)
C16 0.3259 (3) 0.1061 (8) 0.7857 (4) 0.0146 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.0136 (2) 0.01131 (19) 0.01235 (19) 0.0013 (3) 0.00290 (13) 0.0012 (2)
O1 0.015 (2) 0.019 (2) 0.0148 (18) −0.001 (2) 0.0050 (16) 0.0052 (18)
O2 0.023 (2) 0.026 (3) 0.034 (2) 0.013 (2) 0.0159 (18) 0.021 (2)
O3 0.032 (2) 0.019 (2) 0.0108 (18) 0.011 (2) 0.0008 (17) −0.002 (2)
O4 0.064 (4) 0.015 (2) 0.042 (3) −0.011 (2) −0.039 (3) 0.003 (2)
O1W 0.029 (3) 0.032 (3) 0.057 (3) 0.010 (2) −0.018 (2) −0.031 (2)
O2W 0.017 (2) 0.023 (3) 0.017 (2) −0.003 (2) −0.0011 (17) 0.0062 (17)
N1 0.012 (3) 0.017 (3) 0.010 (2) 0.003 (2) 0.003 (2) −0.0037 (19)
N2 0.018 (3) 0.015 (2) 0.014 (2) 0.005 (3) −0.0004 (19) 0.002 (2)
N3 0.014 (3) 0.007 (3) 0.018 (2) 0.002 (2) 0.0006 (19) 0.0031 (19)
N4 0.012 (3) 0.027 (3) 0.028 (3) 0.004 (2) 0.004 (2) 0.002 (2)
C1 0.005 (3) 0.017 (3) 0.008 (2) 0.001 (2) 0.004 (2) −0.002 (2)
C2 0.010 (3) 0.014 (3) 0.014 (3) −0.007 (3) −0.002 (2) −0.002 (2)
C3 0.013 (3) 0.010 (2) 0.007 (2) −0.004 (3) 0.001 (2) 0.001 (3)
C4 0.012 (3) 0.010 (3) 0.009 (3) −0.005 (3) 0.002 (2) −0.003 (2)
C5 0.008 (3) 0.017 (3) 0.013 (3) 0.000 (3) 0.004 (2) −0.001 (2)
C6 0.019 (3) 0.021 (4) 0.016 (3) 0.004 (3) 0.007 (2) 0.003 (3)
C7 0.023 (4) 0.015 (3) 0.021 (3) 0.011 (3) 0.003 (3) −0.004 (2)
C8 0.027 (3) 0.007 (2) 0.016 (3) 0.004 (3) 0.003 (2) 0.001 (3)
C9 0.020 (4) 0.017 (3) 0.011 (3) −0.002 (3) 0.006 (3) 0.001 (2)
C10 0.020 (4) 0.014 (3) 0.020 (3) 0.002 (3) 0.003 (3) 0.006 (2)
C11 0.025 (4) 0.024 (4) 0.026 (3) 0.002 (3) 0.009 (3) 0.004 (3)
C12 0.032 (4) 0.021 (3) 0.037 (3) 0.003 (4) 0.021 (3) 0.004 (3)
C13 0.021 (4) 0.022 (4) 0.060 (4) 0.003 (4) 0.017 (3) 0.002 (4)
C14 0.013 (4) 0.028 (4) 0.045 (4) 0.003 (3) −0.004 (3) 0.006 (3)
C15 0.015 (4) 0.015 (3) 0.012 (3) −0.003 (3) 0.002 (3) −0.006 (2)
C16 0.016 (3) 0.012 (3) 0.017 (3) 0.005 (3) 0.005 (2) 0.002 (3)

Geometric parameters (Å, º)

Cd1—O1 2.371 (4) N4—C14 1.344 (7)
Cd1—O3i 2.377 (4) C1—C2 1.407 (7)
Cd1—N1 2.418 (4) C1—C5 1.498 (7)
Cd1—O1ii 2.427 (4) C2—C10 1.502 (8)
Cd1—N3 2.430 (4) C3—C4 1.403 (7)
Cd1—O1W 2.301 (4) C3—C15 1.506 (7)
Cd1—O2W 2.317 (3) C4—C16 1.530 (7)
O1—C15 1.255 (6) C5—C6 1.384 (7)
O1—Cd1ii 2.427 (3) C6—C7 1.381 (7)
O2—C15 1.253 (6) C6—H6 0.9400
O3—C16 1.258 (6) C7—C8 1.366 (7)
O3—Cd1iii 2.377 (4) C7—H7 0.9400
O4—C16 1.227 (6) C8—C9 1.378 (7)
O1W—H1WA 0.82 (2) C8—H8 0.9400
O1W—H1WB 0.837 (19) C9—H9 0.9400
O2W—H2WA 0.847 (19) C10—C11 1.392 (7)
O2W—H2WB 0.852 (19) C11—C12 1.386 (8)
N1—C3 1.335 (7) C11—H11 0.9400
N1—C1 1.339 (6) C12—C13 1.376 (8)
N2—C2 1.328 (7) C12—H12 0.9400
N2—C4 1.341 (7) C13—C14 1.373 (8)
N3—C5 1.351 (6) C13—H13 0.9400
N3—C9 1.359 (6) C14—H14 0.9400
N4—C10 1.338 (7)
Cd1—O1—Cd1ii 107.74 (13) C1—C2—C10 125.1 (5)
O1W—Cd1—O3i 157.41 (15) N1—C3—C4 120.0 (5)
O1—Cd1—O1ii 72.26 (13) N1—C3—C15 116.3 (4)
O1—Cd1—N1 67.98 (13) C4—C3—C15 123.6 (5)
N1—Cd1—N3 65.40 (14) N2—C4—C3 119.4 (5)
O2W—Cd1—N3 78.01 (13) N2—C4—C16 114.6 (4)
O2W—Cd1—O1ii 80.65 (13) C3—C4—C16 125.6 (5)
O1W—Cd1—O2W 104.67 (16) N3—C5—C6 120.2 (5)
O1W—Cd1—O1 80.18 (15) N3—C5—C1 114.3 (5)
O1W—Cd1—N1 91.62 (16) C6—C5—C1 125.1 (5)
O1W—Cd1—N3 87.87 (15) C7—C6—C5 120.3 (5)
O1W—Cd1—O1ii 76.59 (15) C7—C6—H6 119.9
O2W—Cd1—O3i 87.05 (13) C5—C6—H6 119.9
O1—Cd1—O3i 80.38 (12) C8—C7—C6 119.4 (5)
O3i—Cd1—N1 91.67 (13) C8—C7—H7 120.3
O3i—Cd1—O1ii 86.60 (12) C6—C7—H7 120.3
O3i—Cd1—N3 113.74 (13) C7—C8—C9 118.9 (5)
O2W—Cd1—N1 139.31 (15) C7—C8—H8 120.6
O2W—Cd1—O1 150.65 (13) C9—C8—H8 120.6
N1—Cd1—O1ii 139.91 (14) N3—C9—C8 122.1 (5)
O1—Cd1—N3 131.34 (12) N3—C9—H9 119.0
O1ii—Cd1—N3 149.40 (14) C8—C9—H9 119.0
C15—O1—Cd1 120.8 (3) N4—C10—C11 123.3 (5)
C15—O1—Cd1ii 131.4 (4) N4—C10—C2 116.9 (5)
C16—O3—Cd1iii 121.8 (4) C11—C10—C2 119.7 (5)
Cd1—O1W—H1WA 124 (4) C12—C11—C10 118.2 (6)
Cd1—O1W—H1WB 122 (4) C12—C11—H11 120.9
H1WA—O1W—H1WB 109 (3) C10—C11—H11 120.9
Cd1—O2W—H2WA 111 (4) C13—C12—C11 119.3 (5)
Cd1—O2W—H2WB 109 (4) C13—C12—H12 120.4
H2WA—O2W—H2WB 104 (3) C11—C12—H12 120.4
C3—N1—C1 121.2 (4) C14—C13—C12 118.2 (6)
C3—N1—Cd1 116.7 (3) C14—C13—H13 120.9
C1—N1—Cd1 121.9 (3) C12—C13—H13 120.9
C2—N2—C4 119.7 (4) N4—C14—C13 124.4 (6)
C5—N3—C9 119.1 (4) N4—C14—H14 117.8
C5—N3—Cd1 121.8 (3) C13—C14—H14 117.8
C9—N3—Cd1 118.9 (3) O2—C15—O1 126.9 (5)
C10—N4—C14 116.5 (5) O2—C15—C3 115.6 (5)
N1—C1—C2 117.9 (5) O1—C15—C3 117.5 (5)
N1—C1—C5 114.8 (4) O4—C16—O3 127.6 (5)
C2—C1—C5 127.0 (5) O4—C16—C4 114.3 (5)
N2—C2—C1 121.6 (5) O3—C16—C4 118.0 (5)
N2—C2—C10 113.3 (4)
C3—N1—C1—C2 −3.4 (7) C6—C7—C8—C9 1.0 (8)
Cd1—N1—C1—C2 171.5 (3) C5—N3—C9—C8 −3.6 (7)
C3—N1—C1—C5 171.2 (4) Cd1—N3—C9—C8 −178.9 (4)
Cd1—N1—C1—C5 −13.9 (6) C7—C8—C9—N3 1.2 (8)
C4—N2—C2—C1 −1.1 (8) C14—N4—C10—C11 −0.9 (8)
C4—N2—C2—C10 176.2 (5) C14—N4—C10—C2 176.1 (5)
N1—C1—C2—N2 4.7 (7) N2—C2—C10—N4 −117.2 (5)
C5—C1—C2—N2 −169.2 (5) C1—C2—C10—N4 60.0 (7)
N1—C1—C2—C10 −172.3 (5) N2—C2—C10—C11 59.9 (7)
C5—C1—C2—C10 13.8 (8) C1—C2—C10—C11 −122.9 (6)
C1—N1—C3—C4 −1.2 (7) N4—C10—C11—C12 1.5 (8)
Cd1—N1—C3—C4 −176.3 (4) C2—C10—C11—C12 −175.3 (5)
C1—N1—C3—C15 −177.7 (4) C10—C11—C12—C13 −1.7 (9)
Cd1—N1—C3—C15 7.1 (5) C11—C12—C13—C14 1.3 (10)
C2—N2—C4—C3 −3.6 (7) C10—N4—C14—C13 0.4 (9)
C2—N2—C4—C16 −176.7 (5) C12—C13—C14—N4 −0.7 (10)
N1—C3—C4—N2 4.8 (8) Cd1—O1—C15—O2 175.2 (4)
C15—C3—C4—N2 −178.9 (5) Cd1ii—O1—C15—O2 −2.5 (8)
N1—C3—C4—C16 177.2 (5) Cd1—O1—C15—C3 −6.1 (6)
C15—C3—C4—C16 −6.5 (8) Cd1ii—O1—C15—C3 176.2 (3)
C9—N3—C5—C6 3.7 (7) N1—C3—C15—O2 177.9 (4)
Cd1—N3—C5—C6 178.9 (4) C4—C3—C15—O2 1.5 (8)
C9—N3—C5—C1 −169.7 (4) N1—C3—C15—O1 −0.9 (7)
Cd1—N3—C5—C1 5.5 (6) C4—C3—C15—O1 −177.3 (5)
N1—C1—C5—N3 5.2 (6) Cd1iii—O3—C16—O4 1.6 (8)
C2—C1—C5—N3 179.3 (5) Cd1iii—O3—C16—C4 177.4 (3)
N1—C1—C5—C6 −167.8 (5) N2—C4—C16—O4 82.7 (6)
C2—C1—C5—C6 6.3 (9) C3—C4—C16—O4 −90.0 (7)
N3—C5—C6—C7 −1.5 (8) N2—C4—C16—O3 −93.7 (6)
C1—C5—C6—C7 171.1 (5) C3—C4—C16—O3 93.6 (6)
C5—C6—C7—C8 −0.8 (8)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) x, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H1WA···O3iv 0.82 (2) 2.22 (3) 2.974 (6) 152 (5)
O1W—H1WB···O2v 0.84 (2) 2.05 (4) 2.805 (6) 150 (7)
O2W—H2WA···O4i 0.85 (2) 1.88 (3) 2.630 (6) 146 (5)
O2W—H2WB···O2ii 0.85 (2) 1.88 (2) 2.692 (5) 159 (5)
C9—H9···O3vi 0.94 2.52 3.245 (6) 134
C14—H14···N4vii 0.94 2.62 3.372 (8) 137

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iv) −x+1, y+1/2, −z+3/2; (v) x, y+1, z; (vi) x, −y+3/2, z−1/2; (vii) −x, −y+1, −z+1.

References

  1. Alfonso, M. & Stoeckli-Evans, H. (2016a). Acta Cryst. E72, 233–237. [DOI] [PMC free article] [PubMed]
  2. Alfonso, M. & Stoeckli-Evans, H. (2016b). Acta Cryst. E72, 1214–1218. [DOI] [PMC free article] [PubMed]
  3. Alfonso, M., Wang, Y. & Stoeckli-Evans, H. (2001). Acta Cryst. C57, 1184–1188. [DOI] [PubMed]
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Jiao, C., Geng, J., He, C. & Cui, G. (2012). J. Mol. Struct. 1020, 134–141.
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Neels, A., Alfonso, M., Mantero, D. G. & Stoeckli-Evans, H. (2003). Chimia, 57, 619–622.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Stoe & Cie (2004). IPDS-I. Stoe & Cie GmbH, Darmstadt, Germany.
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989016012858/pk2589sup1.cif

e-72-01297-sup1.cif (378.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016012858/pk2589Isup2.hkl

e-72-01297-Isup2.hkl (244.3KB, hkl)

CCDC reference: 1498382

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES