Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Aug 16;72(Pt 9):1310–1314. doi: 10.1107/S2056989016012937

Crystal structure of 6-(p-tol­yl)benzo[b]naphtho[2,3-d]thio­phene and of an ortho­rhom­bic polymorph of 7-phenyl­anthra[2,3-b]benzo[d]thio­phene

S Gopinath a, K Sethusankar a,*, Helen Stoeckli-Evans b, Muhamad Rafiq c, Arasambattu K Mohanakrishnan c
PMCID: PMC5120714  PMID: 27920924

The title compounds, 6-(p-tol­yl)benzo[b]naphtho­[2,3-d]thio­phene and 7-phenyl­anthra[2,3-b]benzo[d]thio­phene, are benzo­thio­phene derivatives in which the benzo­thio­phene moiety is fused with a naphthalene ring system in the former and with an anthracene ring system in the latter. In the former, the 4-methyl­benzene ring substituent makes a dihedral angle of 71.40 (9)° with the mean plane of the naphthalene ring system, while the phenyl ring substituent in the latter makes a dihedral angle of 67.08 (12)° with the mean plane of the anthracene ring system.

Keywords: crystal structure; benzo­thio­phene; benzo[b]naphtho­[2,3-d]thio­phene; anthra[2,3-b]benzo[d]thio­phene; C—H⋯π inter­actions; offset π–π inter­actions

Abstract

The title compounds, C23H16S, (I), and C26H16S, (II), are benzo­thio­phene derivatives in which the benzo­thio­phene moiety is fused with a naphthalene ring system in (I), and with an anthracene ring system in (II). In (I), the mean plane of the benzo­thio­phene ring system makes a dihedral angle of 2.28 (6)° with the naphthalene ring system, and a dihedral angle of 1.28 (6)° with the anthracene ring system in (II), showing that the fused units are essentially planar. In (I), the 4-methyl­benzene ring substituent makes a dihedral angle of 71.40 (9)° with the naphthalene ring system, while the phenyl ring substituent in (II) makes a dihedral angle of 67.08 (12)° with the anthracene ring system. In the crystals of both compounds, mol­ecules are linked by C—H⋯π inter­actions, leading to the formation of slabs parallel to (001) in (I) and to zigzag chains along [001] in (II). There are also offset π–π inter­actions present within the slabs in (I). In the crystal of (II), they link the chains, forming sheets parallel to (010). The triclinic polymorph of compound (II) has been reported [Sivasakthikumaran et al., (2012). J. Org. Chem. 77, 9053–9071].

Chemical context  

The thio­phene nucleus has been shown to be an important heterocyclic unit in compounds possessing promising pharmacological characteristics, such as anti-HIV PR inhibitors (Bonini et al., 2005) and anti-breast cancer (Brault et al., 2005) activities. Benzo­thio­phenes are important biologically active mol­ecules. One of the most important drugs based on the benzo­thio­phene system is Raloxifine, used for the prevention and treatment of osteoporosis in postmenopausal women (Jordan, 2003). Benzo­thio­phenes are also present in lumin­escent components used in organic materials (Russell & Press, 1996).

Naphtho­[2,3-b]thio­phene derivatives have been found to exhibit anti­proliferative activity related to the inhibition of tublin polymerization (Zuse et al., 2007, 2006). As a result of their outstanding electronic testability and considerable chemical and environmental stability, thio­phene derivatives have been widely used in solar cells (Justin Thomas et al., 2008; Hänsel et al., 2003), organic light-emitting diodes (OLEDs) (Mazzeo et al., 2003), organic field-effect transistors (OFETs) (Zhan et al., 2007) and as NLO devices (Bedworth et al., 1996; Raposo et al., 2011).Against this background, we describe herein the syntheses and crystal structures of the title benzo­thio­phene derivatives. graphic file with name e-72-01310-scheme1.jpg

Structural commentary  

The mol­ecular structures of the title compounds, (I) and (II), are illustrated in Figs. 1 and 2, respectively. In both compounds, the benzo­thio­phene ring systems are almost planar with the dihedral angles between the benzene and thio­phene rings being 1.85 (11)° in (I) and 0.56 (18)° in (II).

Figure 1.

Figure 1

The mol­ecular structure of compound (I), showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2.

Figure 2

The mol­ecular structure of compound (II), showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In compound (I), the naphthalene ring system (atoms C1–C3/C10–C16) (r.m.s. deviation = 0.006 Å) makes a a dihedral angle of 2.28 (6)° with the benzo­thio­phene (C3–C10/S1) ring system (r.m.s. deviation = 0.023 Å). The 4-methyl­benzene ring substituent (C17–C22) makes a dihedral angle of 71.40 (9)° with the naphthalene ring system

In compound (II), the anthracene ring system (C1–C3/C10–C20) is almost planar (r.m.s. deviation = 0.075 Å) and makes a a dihedral angle of 7.31 (9)° with the benzo­thio­phene (C3–C10/S1) ring system (r.m.s. deviation = 0.012 Å). Here, the phenyl ring substituent (C21–C26) in (II) makes a dihedral angle of 67.08 (12)° with the anthracene ring system, and the anthracene ring is (−)anti­periplanar with respect to the benzo­thio­phene moiety, as indicated by the S1—C3—C10—C11 torsion angle of −176.4 (2)°.

In the triclinic polymorph of compound (II) (Sivasakthikumaran et al., 2012), the major component of the disordered phenyl ring substituent makes a dihedral angle of 79.39 (12)° with the anthracene ring system.

Supra­molecular features  

In the crystals of both compounds, mol­ecules are linked by C—H⋯π inter­actions (see Tables 1 and 2), leading to the formation of slabs parallel to (001) in (I), and to zigzag chains along [001] in (II); as illustrated in Figs. 3, 4 and 5. There are also offset π–π inter­actions present within the slabs in (I) [Cg1⋯Cg3i = 3.629 (1) Å, inter­planar distance = 3.602 (1) Å, slippage = 0.49 Å; Cg2⋯Cg4ii = 3.983 (1), inter­planar distance = 3.473 (1), slippage 1.79 Å; Cg1, Cg2, Cg3 and Cg4 are the centroids of rings S1/C3/C4/C9/C10, C1–C3/C10–C12, C1/C12–C16 and C4–C9, respectively; symmetry codes: (i) x + 1, y, z; (ii) x − 1, y, z]. In the crystal of (II), offset π–π inter­actions link the chains, forming sheets parallel to (010) [Cg2⋯Cg4iii = 3.711 (2) Å, inter­planar distance = 3.479 (1) Å, slippage = 1.21 Å; Cg3⋯Cg4iii = 3.741 (2) Å, inter­planar distance = 3.443 (1) Å, slippage = 1.22 Å; Cg2, Cg3 and Cg4 are the centroids of rings C1–C3/C10–C12, C1/C12–C16 and C4–C9, respectively; symmetry code: (iii) −x + 1, −y + 1, −z + 1].

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg3, Cg4 and Cg5 are the centroids of rings (C1/C12–C16), (C4–C6) and (C17–C22), respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯Cg5i 0.93 2.94 3.763 (3) 148
C19—H19⋯Cg4ii 0.93 2.94 3.753 (3) 147
C21—H21⋯Cg3iii 0.93 2.91 3.721 (3) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

Cg2 and Cg3 are the centroids of rings (C1–C3/C10–C12) and (C1/C12–C14/C19/C20), respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Cg2i 0.93 2.97 3.885 (4) 168
C15—H15⋯Cg3i 0.93 2.57 3.479 (4) 166

Symmetry code: (i) Inline graphic.

Figure 3.

Figure 3

The crystal packing of compound (I). The C—H⋯π inter­actions are shown as dashed lines (see Table 1 for details). H atoms not involved in these inter­actions have been omitted for clarity.

Figure 4.

Figure 4

The crystal packing of compound (II), viewed along the b axis. The C—H⋯π inter­actions are shown as dashed lines (see Table 2 for details) and the centroids as brown balls. H atoms not involved in these inter­actions have been omitted for clarity.

Figure 5.

Figure 5

The crystal packing of compound (I), viewed along the c axis, showing the C—H⋯π inter­actions (represented as turquoise lines) leading to the formation of slabs parallel to (001).

Database survey  

A search of the Cambridge Structural Database (Version 5.38, update May 2016; Groom et al., 2016) for the naphtho­benzo­thio­phene skeleton gave 32 hits. Among these there are five naphtho­benzo­thio­phene derivatives that resemble compound (I), viz. 6-(phen­yl)benzo[b]naphtho­[2,3-d]thio­phene (NEQMAZ; Silambarasan et al., 2013), 6-(4-meth­oxy­phen­yl)benzo[b]naphtho­[2,3-d]thio­phene (PECQEV; Silambarasan et al., 2012), 6-(2-thien­yl)benzo[b]naphtho­[2,3-d]thiophene (XIMZUQ; Sivasakthikumaran et al., 2012), 6-(1-benzo­thio­phen-3-yl)benzo[b]naphtho­[2,3-d]thio­phene (HIXQUB; Li et al., 2007) and 1,3-di­methyl­benzo[b]naphtho­[2,3-d]thio­phene (ROMPUF/ROMPUF01; Umarani et al., 2009/Dhayalan et al., 2009). There are also two anthracene analogues, viz. anthra[2,3-b]benzo[d]thio­phene itself (JOHSOP; Du et al., 2008), and 7-(1-benzo­thio­phen-2-yl)anthra[2,3-b]benzo[d]thio­phene (FOLGEU; Rafiq et al., 2014); as well as the triclinic polymorph of compound (II) (XIMZOK; Sivasakthikumaran et al., 2012).

Synthesis and crystallization  

Compound (I)

The reduction of the diketone (benzo­thio­phen-3-yl)[2-(4-methyl­benzo­yl)phen­yl]methanone (0.85 g, 2.38 mmol) using sodium borohydride (0.49 g, 12.89 mmol) followed by work-up gave the diol. Dipivaloylation of the diol (0.77 g, 2.31 mmol) using pivaloyl chloride (1.39 g, 11.52 mmol) and tri­ethyl­amine (4.69 g, 45.20 mmol) in the presence of a catalytic amount of DMAP (10 mg) in dry DCM (20 ml) led to the isolation of dipivalate (benzo[b]thio­phen-3-yl){2-[pivalo­yloxy(p-tol­yl) meth­yl]phen­yl}methyl pivalate as a viscous liquid. Dipivalate (benzo[b]thio­phen-3-yl){2-[pivalo­yloxy(p-to­yl) meth­yl]phen­yl}methyl pivalate (0.98 g, 1.96 mmol) upon inter­action with ZnBr2 (0.02 g, 0.13 mmol) followed by removal of solvent and column chromatographic purification (silica gel; hexa­ne–ethyl acetate, 99:1) gave 6-(p-tol­yl)benzo[b]naphtho­[2,3-d]thiophene as a pale-green solid (yield 0.53 g, 78%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of (I) in ethyl acetate at room temperature (m.p. 391–393 K).

Compound (II)

The reduction of the diketone (2-benzoyl­phen­yl)(dibenzo[b,d]thio­phen-2-yl)methanone (1.11 g, 2.38 mmol) using sodium borohydride (0.53 g, 13.94 mmol) followed by work-up gave the diol. Dipivaloylation of the diol (1.12 g, 2.82 mmol) using pivaloyl chloride (1.70 g, 14.14 mmol) and tri­ethyl­amine (5.72 g, 56.56 mmol) in the presence of a catalytic amount of DMAP (10 mg) in dry DCM (20 ml) led to the isolation of dipivalate (dibenzo[b,d]thio­phen-2-yl){2-[phen­yl(pivalo­yloxy)meth­yl]phen­yl}methyl pivalate as a thick liquid. Dipivalate (dibenzo[b,d]thio­phen-2-yl){2-[phen­yl(pivalo­yloxy)meth­yl]phen­yl}methyl pivalate (1.28 g, 2.26 mmol) upon inter­action with ZnBr2 (0.02 g, 0.13 mmol) followed by removal of solvent and column chromatographic purification (silica gel; hexa­ne–ethyl acetate, 99:1) gave a new ortho­rhom­bic polymorph of 7-phenyl­anthra[2,3-b]benzo[d]thio­phene (yield 0.83 g, 72%) as a yellow solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the compound (II) in ethyl acetate at room temperature (m.p. 463–465 K).

Refinement  

Crystal data, data collection and structure refinement details for compounds (I) and (II) are summarized in Table 3. The C-bound H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.93–0.96 Å and with U iso(H) = 1.5U eq(methyl C) and 1.2U eq(C) for other H atoms.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C23H16S C26H16S
M r 324.42 360.45
Crystal system, space group Triclinic, P Inline graphic Orthorhombic, P c c n
Temperature (K) 296 296
a, b, c (Å) 6.2404 (3), 11.1725 (6), 12.9987 (7) 12.2159 (8), 33.1138 (4), 8.8993 (5)
α, β, γ (°) 109.284 (2), 100.233 (4), 93.925 (2) 90, 90, 90
V3) 833.90 (8) 3599.9 (3)
Z 2 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.19 0.19
Crystal size (mm) 0.30 × 0.25 × 0.20 0.30 × 0.25 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008) Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.944, 0.962 0.946, 0.955
No. of measured, independent and observed [I > 2σ(I)] reflections 15861, 2944, 2407 43542, 3171, 2540
R int 0.024 0.036
(sin θ/λ)max−1) 0.595 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.113, 1.07 0.059, 0.182, 1.04
No. of reflections 2944 3171
No. of parameters 218 244
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.21 1.06, −0.40

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989016012937/lh5819sup1.cif

e-72-01310-sup1.cif (48.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016012937/lh5819Isup2.hkl

e-72-01310-Isup2.hkl (144.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989016012937/lh5819IIsup3.hkl

e-72-01310-IIsup3.hkl (155.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016012937/lh5819Isup4.cml

CCDC references: 1498519, 1498518

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Jagan and Dr Babu Varghese, Senior Scientific Officers, SAIF, IIT Madras, Chennai, India, for the data collection.

supplementary crystallographic information

(I) 6-(p-Tolyl)benzo[b]naphtho[2,3-d]thiophene . Crystal data

C23H16S Z = 2
Mr = 324.42 F(000) = 340
Triclinic, P1 Dx = 1.292 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.2404 (3) Å Cell parameters from 2944 reflections
b = 11.1725 (6) Å θ = 2.1–25.0°
c = 12.9987 (7) Å µ = 0.19 mm1
α = 109.284 (2)° T = 296 K
β = 100.233 (4)° Block, colourless
γ = 93.925 (2)° 0.30 × 0.25 × 0.20 mm
V = 833.90 (8) Å3

(I) 6-(p-Tolyl)benzo[b]naphtho[2,3-d]thiophene . Data collection

Bruker Kappa APEXII CCD diffractometer 2944 independent reflections
Radiation source: fine-focus sealed tube 2407 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
ω & φ scans θmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −7→7
Tmin = 0.944, Tmax = 0.962 k = −13→13
15861 measured reflections l = −15→15

(I) 6-(p-Tolyl)benzo[b]naphtho[2,3-d]thiophene . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.4189P] where P = (Fo2 + 2Fc2)/3
2944 reflections (Δ/σ)max = 0.002
218 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.21 e Å3

(I) 6-(p-Tolyl)benzo[b]naphtho[2,3-d]thiophene . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(I) 6-(p-Tolyl)benzo[b]naphtho[2,3-d]thiophene . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.1614 (3) 0.24648 (18) 0.15929 (16) 0.0358 (4)
C2 −0.0247 (3) 0.27515 (17) 0.09112 (15) 0.0344 (4)
C3 0.1606 (3) 0.36306 (18) 0.14305 (15) 0.0355 (4)
C4 0.5130 (3) 0.51269 (19) 0.20179 (16) 0.0401 (5)
C5 0.7116 (3) 0.5852 (2) 0.21532 (19) 0.0504 (5)
H5 0.7718 0.5822 0.1541 0.060*
C6 0.8178 (4) 0.6618 (2) 0.3211 (2) 0.0566 (6)
H6 0.9518 0.7108 0.3316 0.068*
C7 0.7283 (4) 0.6671 (2) 0.4127 (2) 0.0551 (6)
H7 0.8012 0.7209 0.4835 0.066*
C8 0.5328 (4) 0.5937 (2) 0.39951 (18) 0.0474 (5)
H8 0.4743 0.5970 0.4612 0.057*
C9 0.4228 (3) 0.51430 (18) 0.29316 (16) 0.0380 (4)
C10 0.2200 (3) 0.42696 (18) 0.26060 (15) 0.0360 (4)
C11 0.0889 (3) 0.39891 (19) 0.32582 (16) 0.0403 (5)
H11 0.1264 0.4399 0.4028 0.048*
C12 −0.1012 (3) 0.30925 (19) 0.27797 (16) 0.0390 (4)
C13 −0.2388 (4) 0.2784 (2) 0.34417 (18) 0.0485 (5)
H13 −0.2009 0.3178 0.4213 0.058*
C14 −0.4235 (4) 0.1932 (2) 0.2978 (2) 0.0544 (6)
H14 −0.5116 0.1752 0.3430 0.065*
C15 −0.4829 (4) 0.1316 (2) 0.1815 (2) 0.0513 (5)
H15 −0.6102 0.0729 0.1500 0.062*
C16 −0.3550 (3) 0.1575 (2) 0.11515 (18) 0.0437 (5)
H16 −0.3963 0.1154 0.0384 0.052*
C17 −0.0765 (3) 0.21177 (18) −0.03270 (15) 0.0359 (4)
C18 −0.2468 (4) 0.2399 (2) −0.10000 (18) 0.0514 (6)
H18 −0.3361 0.2983 −0.0676 0.062*
C19 −0.2881 (4) 0.1835 (2) −0.21439 (18) 0.0560 (6)
H19 −0.4042 0.2049 −0.2576 0.067*
C20 −0.1618 (4) 0.0964 (2) −0.26596 (17) 0.0467 (5)
C21 0.0061 (4) 0.0673 (2) −0.19921 (19) 0.0565 (6)
H21 0.0935 0.0079 −0.2319 0.068*
C22 0.0493 (4) 0.1237 (2) −0.08442 (18) 0.0514 (6)
H22 0.1652 0.1019 −0.0415 0.062*
C23 −0.2067 (5) 0.0357 (3) −0.3913 (2) 0.0739 (8)
H23A −0.0779 0.0023 −0.4136 0.111*
H23B −0.2443 0.0987 −0.4243 0.111*
H23C −0.3267 −0.0327 −0.4158 0.111*
S1 0.35084 (8) 0.41019 (5) 0.07515 (4) 0.04430 (18)

(I) 6-(p-Tolyl)benzo[b]naphtho[2,3-d]thiophene . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0382 (10) 0.0343 (10) 0.0370 (10) 0.0107 (8) 0.0085 (8) 0.0139 (8)
C2 0.0387 (10) 0.0344 (10) 0.0318 (10) 0.0126 (8) 0.0081 (8) 0.0119 (8)
C3 0.0390 (10) 0.0391 (11) 0.0328 (10) 0.0127 (8) 0.0120 (8) 0.0146 (8)
C4 0.0435 (11) 0.0410 (11) 0.0404 (11) 0.0097 (9) 0.0095 (9) 0.0192 (9)
C5 0.0487 (12) 0.0581 (14) 0.0534 (13) 0.0031 (10) 0.0127 (10) 0.0311 (11)
C6 0.0513 (13) 0.0559 (14) 0.0643 (16) −0.0075 (11) 0.0046 (11) 0.0300 (12)
C7 0.0601 (14) 0.0463 (13) 0.0496 (13) −0.0078 (11) −0.0010 (11) 0.0143 (11)
C8 0.0559 (13) 0.0450 (12) 0.0399 (11) 0.0026 (10) 0.0093 (10) 0.0142 (9)
C9 0.0420 (10) 0.0360 (10) 0.0385 (11) 0.0083 (8) 0.0094 (8) 0.0153 (9)
C10 0.0407 (10) 0.0347 (10) 0.0338 (10) 0.0101 (8) 0.0086 (8) 0.0120 (8)
C11 0.0456 (11) 0.0430 (11) 0.0311 (10) 0.0065 (9) 0.0098 (8) 0.0103 (9)
C12 0.0417 (10) 0.0397 (11) 0.0388 (11) 0.0102 (9) 0.0131 (9) 0.0147 (9)
C13 0.0532 (12) 0.0554 (13) 0.0408 (12) 0.0066 (10) 0.0190 (10) 0.0172 (10)
C14 0.0510 (13) 0.0619 (15) 0.0585 (14) 0.0030 (11) 0.0239 (11) 0.0263 (12)
C15 0.0446 (12) 0.0515 (13) 0.0598 (14) 0.0018 (10) 0.0106 (10) 0.0233 (11)
C16 0.0433 (11) 0.0431 (12) 0.0429 (11) 0.0047 (9) 0.0054 (9) 0.0149 (9)
C17 0.0370 (10) 0.0360 (10) 0.0350 (10) 0.0056 (8) 0.0092 (8) 0.0118 (8)
C18 0.0581 (13) 0.0569 (14) 0.0416 (12) 0.0271 (11) 0.0119 (10) 0.0157 (10)
C19 0.0624 (14) 0.0656 (15) 0.0406 (12) 0.0183 (12) 0.0021 (11) 0.0218 (11)
C20 0.0572 (13) 0.0432 (12) 0.0350 (11) −0.0068 (10) 0.0102 (10) 0.0100 (9)
C21 0.0612 (14) 0.0553 (14) 0.0470 (13) 0.0184 (11) 0.0196 (11) 0.0039 (11)
C22 0.0496 (12) 0.0575 (14) 0.0426 (12) 0.0214 (11) 0.0069 (10) 0.0103 (10)
C23 0.100 (2) 0.0677 (17) 0.0405 (13) −0.0129 (15) 0.0131 (13) 0.0077 (12)
S1 0.0469 (3) 0.0525 (3) 0.0360 (3) 0.0051 (2) 0.0137 (2) 0.0165 (2)

(I) 6-(p-Tolyl)benzo[b]naphtho[2,3-d]thiophene . Geometric parameters (Å, º)

C1—C16 1.411 (3) C12—C13 1.420 (3)
C1—C2 1.426 (3) C13—C14 1.349 (3)
C1—C12 1.434 (3) C13—H13 0.9300
C2—C3 1.373 (3) C14—C15 1.405 (3)
C2—C17 1.492 (3) C14—H14 0.9300
C3—C10 1.423 (3) C15—C16 1.358 (3)
C3—S1 1.7492 (19) C15—H15 0.9300
C4—C5 1.384 (3) C16—H16 0.9300
C4—C9 1.397 (3) C17—C18 1.375 (3)
C4—S1 1.746 (2) C17—C22 1.376 (3)
C5—C6 1.372 (3) C18—C19 1.377 (3)
C5—H5 0.9300 C18—H18 0.9300
C6—C7 1.388 (3) C19—C20 1.370 (3)
C6—H6 0.9300 C19—H19 0.9300
C7—C8 1.373 (3) C20—C21 1.366 (3)
C7—H7 0.9300 C20—C23 1.508 (3)
C8—C9 1.393 (3) C21—C22 1.382 (3)
C8—H8 0.9300 C21—H21 0.9300
C9—C10 1.449 (3) C22—H22 0.9300
C10—C11 1.369 (3) C23—H23A 0.9600
C11—C12 1.400 (3) C23—H23B 0.9600
C11—H11 0.9300 C23—H23C 0.9600
C16—C1—C2 122.80 (18) C14—C13—H13 119.2
C16—C1—C12 117.81 (17) C12—C13—H13 119.2
C2—C1—C12 119.39 (17) C13—C14—C15 120.2 (2)
C3—C2—C1 117.87 (17) C13—C14—H14 119.9
C3—C2—C17 120.13 (17) C15—C14—H14 119.9
C1—C2—C17 121.99 (17) C16—C15—C14 120.2 (2)
C2—C3—C10 123.09 (17) C16—C15—H15 119.9
C2—C3—S1 125.07 (15) C14—C15—H15 119.9
C10—C3—S1 111.84 (14) C15—C16—C1 121.9 (2)
C5—C4—C9 121.40 (19) C15—C16—H16 119.1
C5—C4—S1 125.91 (16) C1—C16—H16 119.1
C9—C4—S1 112.68 (15) C18—C17—C22 117.15 (19)
C6—C5—C4 118.5 (2) C18—C17—C2 122.18 (17)
C6—C5—H5 120.8 C22—C17—C2 120.65 (17)
C4—C5—H5 120.8 C17—C18—C19 121.4 (2)
C5—C6—C7 121.0 (2) C17—C18—H18 119.3
C5—C6—H6 119.5 C19—C18—H18 119.3
C7—C6—H6 119.5 C20—C19—C18 121.4 (2)
C8—C7—C6 120.6 (2) C20—C19—H19 119.3
C8—C7—H7 119.7 C18—C19—H19 119.3
C6—C7—H7 119.7 C21—C20—C19 117.3 (2)
C7—C8—C9 119.6 (2) C21—C20—C23 121.5 (2)
C7—C8—H8 120.2 C19—C20—C23 121.2 (2)
C9—C8—H8 120.2 C20—C21—C22 121.7 (2)
C8—C9—C4 118.95 (19) C20—C21—H21 119.1
C8—C9—C10 128.82 (18) C22—C21—H21 119.1
C4—C9—C10 112.23 (17) C17—C22—C21 121.0 (2)
C11—C10—C3 118.90 (18) C17—C22—H22 119.5
C11—C10—C9 129.40 (18) C21—C22—H22 119.5
C3—C10—C9 111.69 (17) C20—C23—H23A 109.5
C10—C11—C12 120.75 (18) C20—C23—H23B 109.5
C10—C11—H11 119.6 H23A—C23—H23B 109.5
C12—C11—H11 119.6 C20—C23—H23C 109.5
C11—C12—C13 121.63 (19) H23A—C23—H23C 109.5
C11—C12—C1 120.00 (17) H23B—C23—H23C 109.5
C13—C12—C1 118.37 (18) C4—S1—C3 91.52 (9)
C14—C13—C12 121.6 (2)
C16—C1—C2—C3 −179.76 (17) C10—C11—C12—C1 −0.5 (3)
C12—C1—C2—C3 −0.2 (3) C16—C1—C12—C11 −179.63 (17)
C16—C1—C2—C17 −0.5 (3) C2—C1—C12—C11 0.8 (3)
C12—C1—C2—C17 179.12 (16) C16—C1—C12—C13 0.1 (3)
C1—C2—C3—C10 −0.6 (3) C2—C1—C12—C13 −179.48 (18)
C17—C2—C3—C10 −179.96 (16) C11—C12—C13—C14 179.1 (2)
C1—C2—C3—S1 179.27 (13) C1—C12—C13—C14 −0.6 (3)
C17—C2—C3—S1 −0.1 (3) C12—C13—C14—C15 0.6 (4)
C9—C4—C5—C6 −1.3 (3) C13—C14—C15—C16 −0.1 (3)
S1—C4—C5—C6 179.61 (17) C14—C15—C16—C1 −0.4 (3)
C4—C5—C6—C7 −0.3 (3) C2—C1—C16—C15 179.98 (18)
C5—C6—C7—C8 1.3 (4) C12—C1—C16—C15 0.4 (3)
C6—C7—C8—C9 −0.7 (3) C3—C2—C17—C18 −108.5 (2)
C7—C8—C9—C4 −0.9 (3) C1—C2—C17—C18 72.2 (3)
C7—C8—C9—C10 178.1 (2) C3—C2—C17—C22 70.1 (3)
C5—C4—C9—C8 1.9 (3) C1—C2—C17—C22 −109.1 (2)
S1—C4—C9—C8 −178.87 (15) C22—C17—C18—C19 −0.7 (3)
C5—C4—C9—C10 −177.24 (18) C2—C17—C18—C19 177.9 (2)
S1—C4—C9—C10 2.0 (2) C17—C18—C19—C20 0.3 (4)
C2—C3—C10—C11 0.9 (3) C18—C19—C20—C21 0.4 (4)
S1—C3—C10—C11 −179.04 (15) C18—C19—C20—C23 −179.5 (2)
C2—C3—C10—C9 179.87 (17) C19—C20—C21—C22 −0.6 (4)
S1—C3—C10—C9 0.0 (2) C23—C20—C21—C22 179.3 (2)
C8—C9—C10—C11 −1.4 (3) C18—C17—C22—C21 0.5 (3)
C4—C9—C10—C11 177.64 (19) C2—C17—C22—C21 −178.2 (2)
C8—C9—C10—C3 179.71 (19) C20—C21—C22—C17 0.2 (4)
C4—C9—C10—C3 −1.2 (2) C5—C4—S1—C3 177.47 (19)
C3—C10—C11—C12 −0.3 (3) C9—C4—S1—C3 −1.69 (15)
C9—C10—C11—C12 −179.05 (18) C2—C3—S1—C4 −178.95 (17)
C10—C11—C12—C13 179.71 (18) C10—C3—S1—C4 0.96 (14)

(I) 6-(p-Tolyl)benzo[b]naphtho[2,3-d]thiophene . Hydrogen-bond geometry (Å, º)

Cg3, Cg4 and Cg5 are the centroids of rings (C1/C12–C16), (C4–C6) and (C17–C22), respectively.

D—H···A D—H H···A D···A D—H···A
C15—H15···Cg5i 0.93 2.94 3.763 (3) 148
C19—H19···Cg4ii 0.93 2.94 3.753 (3) 147
C21—H21···Cg3iii 0.93 2.91 3.721 (3) 146

Symmetry codes: (i) −x−1, −y, −z; (ii) −x, −y+1, −z; (iii) −x, −y, −z.

(II) 7-Phenylanthra[2,3-b]benzo[d]thiophene . Crystal data

C26H16S F(000) = 1504
Mr = 360.45 Dx = 1.330 Mg m3
Orthorhombic, Pccn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2ac Cell parameters from 3171 reflections
a = 12.2159 (8) Å θ = 2.5–25.0°
b = 33.1138 (4) Å µ = 0.19 mm1
c = 8.8993 (5) Å T = 296 K
V = 3599.9 (3) Å3 Block, colourless
Z = 8 0.30 × 0.25 × 0.25 mm

(II) 7-Phenylanthra[2,3-b]benzo[d]thiophene . Data collection

Bruker Kappa APEXII CCD diffractometer 3171 independent reflections
Radiation source: fine-focus sealed tube 2540 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.036
ω & φ scans θmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −14→14
Tmin = 0.946, Tmax = 0.955 k = −39→39
43542 measured reflections l = −10→9

(II) 7-Phenylanthra[2,3-b]benzo[d]thiophene . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0831P)2 + 5.3659P] where P = (Fo2 + 2Fc2)/3
3171 reflections (Δ/σ)max < 0.001
244 parameters Δρmax = 1.06 e Å3
0 restraints Δρmin = −0.40 e Å3

(II) 7-Phenylanthra[2,3-b]benzo[d]thiophene . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(II) 7-Phenylanthra[2,3-b]benzo[d]thiophene . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4387 (2) 0.40078 (9) 0.4515 (3) 0.0366 (7)
C2 0.4905 (3) 0.42302 (9) 0.3361 (3) 0.0412 (7)
H2 0.5423 0.4107 0.2749 0.049*
C3 0.4643 (3) 0.46257 (9) 0.3144 (3) 0.0422 (7)
C4 0.4365 (3) 0.53427 (10) 0.2336 (4) 0.0494 (8)
C5 0.4359 (3) 0.57228 (11) 0.1701 (4) 0.0581 (9)
H5 0.4836 0.5788 0.0923 0.070*
C6 0.3634 (4) 0.60010 (11) 0.2244 (5) 0.0667 (11)
H6 0.3614 0.6257 0.1819 0.080*
C7 0.2930 (3) 0.59091 (11) 0.3413 (5) 0.0626 (11)
H7 0.2442 0.6103 0.3762 0.075*
C8 0.2948 (3) 0.55284 (10) 0.4065 (4) 0.0532 (9)
H8 0.2479 0.5466 0.4855 0.064*
C9 0.3679 (3) 0.52414 (9) 0.3515 (4) 0.0454 (8)
C10 0.3829 (3) 0.48249 (9) 0.4034 (4) 0.0416 (7)
C11 0.3348 (3) 0.46241 (9) 0.5176 (4) 0.0442 (8)
H11 0.2827 0.4754 0.5764 0.053*
C12 0.3627 (2) 0.42151 (9) 0.5490 (4) 0.0400 (7)
C13 0.3191 (3) 0.40108 (10) 0.6711 (4) 0.0432 (7)
H13 0.2707 0.4145 0.7344 0.052*
C14 0.3452 (2) 0.36119 (9) 0.7016 (3) 0.0402 (7)
C15 0.3034 (3) 0.34053 (11) 0.8295 (4) 0.0492 (8)
H15 0.2612 0.3547 0.8986 0.059*
C16 0.3231 (3) 0.30128 (11) 0.8533 (4) 0.0548 (9)
H16 0.2945 0.2886 0.9379 0.066*
C17 0.3869 (3) 0.27908 (11) 0.7506 (4) 0.0557 (9)
H17 0.3987 0.2517 0.7666 0.067*
C18 0.4313 (3) 0.29732 (10) 0.6286 (4) 0.0464 (8)
H18 0.4737 0.2822 0.5626 0.056*
C19 0.4146 (2) 0.33940 (9) 0.5989 (3) 0.0379 (7)
C20 0.4605 (2) 0.35934 (9) 0.4753 (3) 0.0359 (7)
C21 0.5279 (2) 0.33716 (8) 0.3628 (3) 0.0362 (7)
C22 0.6302 (3) 0.32209 (9) 0.3981 (4) 0.0466 (8)
H22 0.6588 0.3261 0.4938 0.056*
C23 0.6905 (3) 0.30109 (10) 0.2926 (4) 0.0538 (9)
H23 0.7593 0.2912 0.3180 0.065*
C24 0.6502 (3) 0.29467 (10) 0.1514 (4) 0.0530 (9)
H24 0.6904 0.2799 0.0817 0.064*
C25 0.5496 (3) 0.31020 (11) 0.1135 (4) 0.0534 (9)
H25 0.5224 0.3064 0.0169 0.064*
C26 0.4887 (3) 0.33134 (10) 0.2176 (4) 0.0478 (8)
H26 0.4208 0.3418 0.1905 0.057*
S1 0.52265 (8) 0.49395 (3) 0.18065 (10) 0.0547 (3)

(II) 7-Phenylanthra[2,3-b]benzo[d]thiophene . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0346 (15) 0.0381 (15) 0.0371 (15) 0.0019 (12) −0.0045 (13) −0.0064 (13)
C2 0.0445 (17) 0.0402 (16) 0.0391 (17) 0.0081 (13) −0.0050 (14) −0.0058 (13)
C3 0.0466 (18) 0.0413 (17) 0.0388 (17) 0.0005 (14) −0.0070 (14) −0.0041 (13)
C4 0.0527 (19) 0.0462 (18) 0.0492 (19) 0.0015 (15) −0.0137 (17) −0.0067 (15)
C5 0.063 (2) 0.055 (2) 0.056 (2) −0.0056 (18) −0.0142 (18) 0.0020 (17)
C6 0.079 (3) 0.0383 (19) 0.083 (3) −0.0056 (18) −0.031 (2) 0.0072 (19)
C7 0.057 (2) 0.0421 (19) 0.089 (3) 0.0117 (16) −0.016 (2) −0.0154 (19)
C8 0.0470 (19) 0.0497 (19) 0.063 (2) −0.0002 (15) −0.0075 (16) −0.0095 (17)
C9 0.0474 (18) 0.0382 (16) 0.0506 (19) 0.0015 (14) −0.0136 (15) −0.0088 (14)
C10 0.0424 (16) 0.0400 (16) 0.0425 (17) 0.0043 (13) −0.0097 (14) −0.0108 (14)
C11 0.0428 (17) 0.0422 (16) 0.0477 (19) 0.0079 (14) −0.0018 (15) −0.0117 (14)
C12 0.0371 (15) 0.0397 (16) 0.0431 (17) 0.0068 (12) −0.0045 (13) −0.0131 (13)
C13 0.0381 (16) 0.0488 (18) 0.0429 (17) 0.0036 (13) 0.0049 (14) −0.0106 (14)
C14 0.0320 (15) 0.0461 (17) 0.0424 (17) 0.0001 (13) −0.0032 (13) −0.0085 (14)
C15 0.0404 (17) 0.064 (2) 0.0436 (18) −0.0002 (15) 0.0069 (15) −0.0034 (16)
C16 0.056 (2) 0.060 (2) 0.048 (2) −0.0037 (17) 0.0068 (17) 0.0067 (17)
C17 0.063 (2) 0.0480 (19) 0.056 (2) −0.0015 (16) 0.0022 (18) 0.0074 (17)
C18 0.0499 (19) 0.0428 (17) 0.0463 (18) 0.0039 (14) 0.0009 (15) −0.0041 (14)
C19 0.0346 (15) 0.0414 (16) 0.0378 (16) 0.0013 (12) −0.0052 (13) −0.0063 (13)
C20 0.0337 (14) 0.0350 (14) 0.0390 (16) 0.0047 (12) −0.0053 (12) −0.0070 (12)
C21 0.0395 (16) 0.0313 (14) 0.0378 (16) 0.0015 (12) −0.0001 (13) −0.0026 (12)
C22 0.0503 (19) 0.0420 (17) 0.0473 (19) 0.0103 (14) −0.0043 (15) −0.0079 (14)
C23 0.0486 (19) 0.0469 (18) 0.066 (2) 0.0118 (15) 0.0052 (17) −0.0024 (17)
C24 0.058 (2) 0.0461 (18) 0.055 (2) 0.0043 (16) 0.0195 (18) −0.0078 (16)
C25 0.062 (2) 0.058 (2) 0.0407 (18) −0.0048 (17) 0.0045 (16) −0.0088 (16)
C26 0.0431 (17) 0.055 (2) 0.0450 (18) 0.0027 (15) 0.0013 (15) −0.0070 (15)
S1 0.0709 (6) 0.0480 (5) 0.0453 (5) 0.0081 (4) 0.0074 (4) 0.0035 (4)

(II) 7-Phenylanthra[2,3-b]benzo[d]thiophene . Geometric parameters (Å, º)

C1—C20 1.414 (4) C13—H13 0.9300
C1—C2 1.414 (4) C14—C15 1.423 (5)
C1—C12 1.444 (4) C14—C19 1.440 (4)
C2—C3 1.362 (4) C15—C16 1.338 (5)
C2—H2 0.9300 C15—H15 0.9300
C3—C10 1.431 (4) C16—C17 1.408 (5)
C3—S1 1.734 (3) C16—H16 0.9300
C4—C5 1.380 (5) C17—C18 1.356 (5)
C4—C9 1.385 (5) C17—H17 0.9300
C4—S1 1.764 (4) C18—C19 1.433 (4)
C5—C6 1.366 (6) C18—H18 0.9300
C5—H5 0.9300 C19—C20 1.400 (4)
C6—C7 1.384 (6) C20—C21 1.489 (4)
C6—H6 0.9300 C21—C22 1.382 (4)
C7—C8 1.388 (5) C21—C26 1.392 (4)
C7—H7 0.9300 C22—C23 1.381 (5)
C8—C9 1.393 (5) C22—H22 0.9300
C8—H8 0.9300 C23—C24 1.366 (5)
C9—C10 1.466 (4) C23—H23 0.9300
C10—C11 1.350 (5) C24—C25 1.374 (5)
C11—C12 1.424 (4) C24—H24 0.9300
C11—H11 0.9300 C25—C26 1.380 (5)
C12—C13 1.386 (5) C25—H25 0.9300
C13—C14 1.386 (4) C26—H26 0.9300
C20—C1—C2 122.0 (3) C13—C14—C19 119.2 (3)
C20—C1—C12 119.5 (3) C15—C14—C19 118.6 (3)
C2—C1—C12 118.5 (3) C16—C15—C14 121.9 (3)
C3—C2—C1 119.9 (3) C16—C15—H15 119.0
C3—C2—H2 120.1 C14—C15—H15 119.0
C1—C2—H2 120.1 C15—C16—C17 120.2 (3)
C2—C3—C10 121.9 (3) C15—C16—H16 119.9
C2—C3—S1 125.2 (3) C17—C16—H16 119.9
C10—C3—S1 112.9 (2) C18—C17—C16 120.6 (3)
C5—C4—C9 121.9 (3) C18—C17—H17 119.7
C5—C4—S1 125.7 (3) C16—C17—H17 119.7
C9—C4—S1 112.3 (3) C17—C18—C19 121.6 (3)
C6—C5—C4 118.3 (4) C17—C18—H18 119.2
C6—C5—H5 120.9 C19—C18—H18 119.2
C4—C5—H5 120.9 C20—C19—C18 123.1 (3)
C5—C6—C7 121.4 (3) C20—C19—C14 119.9 (3)
C5—C6—H6 119.3 C18—C19—C14 117.0 (3)
C7—C6—H6 119.3 C19—C20—C1 120.0 (3)
C6—C7—C8 120.3 (3) C19—C20—C21 121.1 (3)
C6—C7—H7 119.9 C1—C20—C21 118.8 (3)
C8—C7—H7 119.9 C22—C21—C26 118.2 (3)
C7—C8—C9 118.9 (4) C22—C21—C20 121.7 (3)
C7—C8—H8 120.6 C26—C21—C20 120.1 (3)
C9—C8—H8 120.6 C23—C22—C21 120.6 (3)
C8—C9—C4 119.3 (3) C23—C22—H22 119.7
C8—C9—C10 127.7 (3) C21—C22—H22 119.7
C4—C9—C10 113.0 (3) C22—C23—C24 120.8 (3)
C11—C10—C3 119.5 (3) C22—C23—H23 119.6
C11—C10—C9 130.2 (3) C24—C23—H23 119.6
C3—C10—C9 110.3 (3) C25—C24—C23 119.3 (3)
C10—C11—C12 120.8 (3) C25—C24—H24 120.3
C10—C11—H11 119.6 C23—C24—H24 120.3
C12—C11—H11 119.6 C24—C25—C26 120.5 (3)
C13—C12—C11 121.7 (3) C24—C25—H25 119.8
C13—C12—C1 119.1 (3) C26—C25—H25 119.8
C11—C12—C1 119.2 (3) C25—C26—C21 120.5 (3)
C12—C13—C14 122.0 (3) C25—C26—H26 119.7
C12—C13—H13 119.0 C21—C26—H26 119.7
C14—C13—H13 119.0 C3—S1—C4 91.43 (16)
C13—C14—C15 122.2 (3)
C20—C1—C2—C3 177.9 (3) C13—C14—C15—C16 175.5 (3)
C12—C1—C2—C3 −3.1 (4) C19—C14—C15—C16 −2.7 (5)
C1—C2—C3—C10 −1.6 (5) C14—C15—C16—C17 0.1 (5)
C1—C2—C3—S1 178.5 (2) C15—C16—C17—C18 1.6 (6)
C9—C4—C5—C6 −1.4 (5) C16—C17—C18—C19 −0.5 (5)
S1—C4—C5—C6 179.9 (3) C17—C18—C19—C20 179.0 (3)
C4—C5—C6—C7 0.8 (6) C17—C18—C19—C14 −2.1 (5)
C5—C6—C7—C8 0.1 (6) C13—C14—C19—C20 4.3 (4)
C6—C7—C8—C9 −0.5 (5) C15—C14—C19—C20 −177.5 (3)
C7—C8—C9—C4 −0.1 (5) C13—C14—C19—C18 −174.7 (3)
C7—C8—C9—C10 −179.9 (3) C15—C14—C19—C18 3.6 (4)
C5—C4—C9—C8 1.1 (5) C18—C19—C20—C1 178.8 (3)
S1—C4—C9—C8 180.0 (2) C14—C19—C20—C1 −0.1 (4)
C5—C4—C9—C10 −179.2 (3) C18—C19—C20—C21 2.0 (4)
S1—C4—C9—C10 −0.2 (3) C14—C19—C20—C21 −176.9 (3)
C2—C3—C10—C11 3.8 (5) C2—C1—C20—C19 174.5 (3)
S1—C3—C10—C11 −176.4 (2) C12—C1—C20—C19 −4.5 (4)
C2—C3—C10—C9 −177.4 (3) C2—C1—C20—C21 −8.6 (4)
S1—C3—C10—C9 2.5 (3) C12—C1—C20—C21 172.4 (3)
C8—C9—C10—C11 −3.0 (6) C19—C20—C21—C22 −69.3 (4)
C4—C9—C10—C11 177.3 (3) C1—C20—C21—C22 113.8 (3)
C8—C9—C10—C3 178.4 (3) C19—C20—C21—C26 111.1 (3)
C4—C9—C10—C3 −1.4 (4) C1—C20—C21—C26 −65.7 (4)
C3—C10—C11—C12 −1.0 (5) C26—C21—C22—C23 −1.4 (5)
C9—C10—C11—C12 −179.6 (3) C20—C21—C22—C23 179.0 (3)
C10—C11—C12—C13 176.1 (3) C21—C22—C23—C24 −0.2 (5)
C10—C11—C12—C1 −3.7 (4) C22—C23—C24—C25 1.6 (5)
C20—C1—C12—C13 4.9 (4) C23—C24—C25—C26 −1.4 (5)
C2—C1—C12—C13 −174.1 (3) C24—C25—C26—C21 −0.2 (5)
C20—C1—C12—C11 −175.3 (3) C22—C21—C26—C25 1.6 (5)
C2—C1—C12—C11 5.7 (4) C20—C21—C26—C25 −178.8 (3)
C11—C12—C13—C14 179.5 (3) C2—C3—S1—C4 177.6 (3)
C1—C12—C13—C14 −0.7 (5) C10—C3—S1—C4 −2.2 (2)
C12—C13—C14—C15 177.9 (3) C5—C4—S1—C3 −179.7 (3)
C12—C13—C14—C19 −3.9 (5) C9—C4—S1—C3 1.4 (3)

(II) 7-Phenylanthra[2,3-b]benzo[d]thiophene . Hydrogen-bond geometry (Å, º)

Cg2 and Cg3 are the centroids of rings (C1–C3/C10–C12) and (C1/C12–C14/C19/C20), respectively.

D—H···A D—H H···A D···A D—H···A
C13—H13···Cg2i 0.93 2.97 3.885 (4) 168
C15—H15···Cg3i 0.93 2.57 3.479 (4) 166

Symmetry code: (i) x, −y−1/2, z−1/2.

References

  1. Bedworth, P. V., Cai, Y., Jen, A. & Marder, S. R. (1996). J. Org. Chem. 61, 2242–2246.
  2. Bonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Berti, F. & Campaner, P. (2005). Tetrahedron, 61, 6580–6589.
  3. Brault, L., Migianu, E., Néguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757–763. [DOI] [PubMed]
  4. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Dhayalan, V., Clement, J. A., Jagan, R. & Mohanakrishnan, A. K. (2009). Eur. J. Org. Chem. pp. 531–546.
  6. Du, C., Guo, Y., Liu, Y., Qiu, W., Zhang, H., Gao, X., Liu, Y., Qi, T., Lu, K. & Yu, G. (2008). Chem. Mater. 20, 4188–4190.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Hänsel, H., Zettl, H., Krausch, G., Kisselev, R., Thelakkat, M. & Schmidt, H. W. (2003). Adv. Mater. 15, 2056–2060.
  10. Jordan, V. C. (2003). J. Med. Chem. 46, 1081–1111. [DOI] [PubMed]
  11. Justin Thomas, K. R., Hsu, Y. C., Lin, J. T., Lee, K. M., Ho, K. C., Lai, C. H., Cheng, Y. M. & Chou, P. T. (2008). Chem. Mater. 20, 1830–1840.
  12. Li, G., Zhou, S., Su, G., Liu, Y. & Wang, P. G. (2007). J. Org. Chem. 72, 9830–9833. [DOI] [PubMed]
  13. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  14. Mazzeo, M., Vitale, V., Della Sala, F., Pisignano, D., Anni, M., Barbarella, G., Favaretto, L., Zanelli, A., Cingolani, R. & Gigli, G. (2003). Adv. Mater. 15, 2060–2063.
  15. Rafiq, S. M., Sivasakthikumaran, R. & Mohanakrishnan, A. K. (2014). Org. Lett. 16, 2720–2723. [DOI] [PubMed]
  16. Raposo, M. M. M., Fonseca, A. M. C., Castro, M. C. R., Belsley, M., Cardoso, M. F. S., Carvalho, L. M. & Coelho, P. J. (2011). Dyes Pigments, 91, 62–73.
  17. Russell, R. K. & Press, J. B. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 2, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven. pp. 679–729. Oxford: Pergamon Press.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Silambarasan, V., Srinivasan, T., Sivasakthikumaran, R., Mohanakrishnan, A. K. & Velmurugan, D. (2012). Acta Cryst. E68, o3408–o3409. [DOI] [PMC free article] [PubMed]
  20. Silambarasan, V., Srinivasan, T., Sivasakthikumaran, R., Mohana­krishnan, A. K. & Velmurugan, D. (2013). Acta Cryst. E69, o36. [DOI] [PMC free article] [PubMed]
  21. Sivasakthikumaran, R., Nandakumar, M. & Mohanakrishnan, A. K. (2012). J. Org. Chem. 77, 9053–9071. [DOI] [PubMed]
  22. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  23. Zhan, X., Tan, Z.-A., Domercq, B., An, Z., Zhang, X., Barlow, S., Li, Y.-F., Zhu, D.-B., Kippelen, B. & Marder, S. R. (2007). J. Am. Chem. Soc. 129, 7246–7247. [DOI] [PubMed]
  24. Zuse, A., Schmidt, P., Baasner, S., Böhm, K. J., Müller, K., Gerlach, M., Günther, E. G., Unger, E. & Prinz, H. (2006). J. Med. Chem. 49, 7816–7825. [DOI] [PubMed]
  25. Zuse, A., Schmidt, P., Baasner, S., Böhm, K. J., Müller, K., Gerlach, M., Günther, E. G., Unger, E. & Prinz, H. (2007). J. Med. Chem. 50, 6059–6066. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989016012937/lh5819sup1.cif

e-72-01310-sup1.cif (48.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016012937/lh5819Isup2.hkl

e-72-01310-Isup2.hkl (144.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989016012937/lh5819IIsup3.hkl

e-72-01310-IIsup3.hkl (155.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016012937/lh5819Isup4.cml

CCDC references: 1498519, 1498518

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES