Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Aug 26;72(Pt 9):1326–1329. doi: 10.1107/S2056989016013232

Synthesis and crystal structure of ((E)-{2-[(E)-(4-hy­droxynaphthalen-1-yl)methyl­idene]hydrazin-1-yl}(methyl­sulfan­yl)methyl­idene)azanium hydrogen sulfate monohydrate

Oussama Nehar a, Samira Louhibi a,*, Leila Boukli-Hacene b, Thierry Roisnel c
PMCID: PMC5120717  PMID: 27920927

In the title mol­ecular salt, C13H14N3S+·HSO4 ·H2O, the protonation of the azomethine N atom in sulfuric acid medium involves the formation of a bis­ulfate anion. The mol­ecular structure of the cation is obtained from the thiol tautomer of thio­semicarbazone wherein the naphthalene moiety and the conjugation of the bonds contribute to the planarity of the mol­ecular skeleton.

Keywords: crystal structure, thio­semicarbazone, synthesis, hydrogen bonding

Abstract

In the title hydrated mol­ecular salt, C13H14N3S+·HSO4 ·H2O, the protonation of the azomethine N atom in sulfuric acid medium involves the formation of the bis­ulfate anion. The mol­ecular structure of the cation is obtained from the thiol tautomer of thio­semicarbazone wherein the naphthalene moiety and the conjugation of the bonds contribute to the planarity of the mol­ecular skeleton. In the crystal, the cation, anion and water mol­ecule of crystallization are linked by a series of O—H⋯O and N—H⋯O hydrogen bonds, forming a three-dimensional network. Within this network, there are also C—H⋯π inter­actions present involving symmetry-related naphthalene rings.

Chemical context  

Thio­semicarbazones and their metal complexes have been widely explored because of their pharmaceutical properties (Klayman et al., 1983). These compounds present a wide variety of biological activities, such as anti­tumoral, fungicidal and anti­viral (Tarasconi et al., 2000), and bactericidal (Abram et al., 1998). The ability of thio­semicarbazone mol­ecules to chelate with traces of metals in biological systems is believed to be a reason for their activity (Teoh et al., 1999). The nature of the aldehyde and ketone from which the thio­semicarbazone is obtained and the nature of the substituents attached at the +NH2 N atom influence the biological activity (Beraldo & Gambinob, 2004). Thio­semicarbazones can exist as E and Z isomers and they exhibit thione–thiol tautomerism, as illus­trated for the title compound in Fig. 1. Complexation usually takes place via dissociation of the acidic proton, resulting in the formation of a five-membered chelate ring (Pal et al., 2002). The crystal structure of the title compound was determined in order to investigate the extent of electron delocal­ization, the ligand conformation and to explore its biological implications.graphic file with name e-72-01326-scheme1.jpg

Figure 1.

Figure 1

Thio­semicarbazones can exist as E and Z isomers and they exhibit thione–thiol tautomerism.

Structural commentary  

The mol­ecular structure of the title mol­ecular salt is illustrated in Fig. 2. It is composed of three entities: a bis­ulfate anion, a thio­semicarbazone cation and a water mol­ecule of crystallization. The cationic entity shows an E conformation with respect to the C12=N13 bond and is approximately planar, the maximum deviation from the mean plane through the 18 non-hydrogen atoms being 0.118 (2) Å for atom C12. This planarity is due to electron delocalization along the cationic entity backbone. Bond lengths and angles are close to those observed for similar (methyl­idene)hydrazinecarbo­thio­amide derivatives (Gangadharan et al., 2015; Joseph et al., 2004; Houari et al., 2013.)

Figure 2.

Figure 2

A view of the mol­ecular structure of the title mol­ecular salt, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, there is an extensive hydrogen-bonding network present. The cation, anion and water mol­ecule of crystallization are linked by a series of O—H⋯O and N—H⋯O hydrogen bonds, forming a three-dimensional network (Table 1 and Fig. 3). Within this network there are also C—H⋯π inter­actions present involving symmetry-related naphthalene rings (Table 1).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of rings C1–C3/C5/C10/C11 and C5–C10, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O13i 0.89 (3) 1.96 (3) 2.791 (4) 155 (5)
O1W—H1WB⋯O13ii 0.86 (2) 1.88 (3) 2.732 (3) 172 (5)
O4—H4O⋯O11iii 0.96 (6) 1.84 (6) 2.719 (3) 153 (6)
O12—H12O⋯O1W 0.94 (5) 1.61 (5) 2.543 (4) 168 (5)
N14—H14⋯O14 0.86 (2) 2.00 (2) 2.860 (3) 176 (4)
N16—H16A⋯O1W iv 0.86 (2) 2.32 (3) 3.046 (4) 142 (4)
N16—H16B⋯O14v 0.84 (2) 2.20 (3) 2.937 (3) 147 (4)
C6—H6⋯Cg2vi 0.95 2.67 3.451 (3) 140
C7—H7⋯Cg1vi 0.95 2.94 3.622 (3) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Figure 3.

Figure 3

A view along the a axis of the crystal packing of the title mol­ecular salt. The hydrogen bonds are drawn as dashed lines (see Table 1) and the C-bound H atoms have been omitted for clarity.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.37, update May 2016; Groom et al., 2016) for the S-methyl (methyl­idene)thio­semicarbazidium cation substructure gave two hits, viz. S-methyl-N′-(pyrrolyl-2′-methyl­ene)iso­thio­semicarbazidium iodide monohydrate (JIHZUV; Bourosh et al., 1990) and 8-quinoline­aldehyde S-methyl­thio­semicarbazone hydro­chloride dihydrate (RUJXOK; Botoshansky et al., 2009). Only the coordinates for the latter structure were available. The cation in RUJXOK, is relatively planar and the bond lengths and angles in the S-methyl (methyl­idene)thio­semicarbazidium moiety are similar to those observed for the title compound.

Synthesis and crystallization  

The synthesis of the title mol­ecular salt is illustrated in Fig. 4. An equimolar amount of thio­semicarbazide 10 mmol (0.91 g) and 3-hy­droxy-2-naphthaldehyde 10 mmol (1.72 g) were dissolved in a mixture of methanol and water (30 ml, 50%) and refluxed for 5 h in the presence of a catalytic amount of glacial sulfuric acid. Brown crystals suitable for X-ray diffraction analysis were obtained after slow evaporation of the solution.

Figure 4.

Figure 4

The synthesis of the title mol­ecular salt.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The hy­droxy H atom was located in a difference Fourier map and freely refined. The water and N-bound H atoms were located in difference Fourier maps and refined with distance restraints O—H = 0.84 (2) Å and N—H = 0.88 (2) Å. The C-bound H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.95–0.98 Å and U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(C) otherwise.

Table 2. Experimental details.

Crystal data
Chemical formula C13H14N3OS+·HO4S·H2O
M r 375.41
Crystal system, space group Orthorhombic, P212121
Temperature (K) 150
a, b, c (Å) 6.3726 (5), 14.2549 (11), 18.2817 (12)
V3) 1660.7 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.36
Crystal size (mm) 0.42 × 0.33 × 0.19
 
Data collection
Diffractometer Bruker D8 VENTURE
Absorption correction Multi-scan (SADABS; Bruker, 2015)
T min, T max 0.752, 0.935
No. of measured, independent and observed [I > 2σ(I)] reflections 19123, 3786, 3586
R int 0.073
(sin θ/λ)max−1) 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.103, 1.07
No. of reflections 3786
No. of parameters 247
No. of restraints 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.33
Absolute structure Flack x determined using 1477 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.03 (5)

Computer programs: APEX3 and SAINT (Bruker, 2015), SIR97 (Altomare et al., 1999), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989016013232/su5320sup1.cif

e-72-01326-sup1.cif (644.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016013232/su5320Isup2.hkl

e-72-01326-Isup2.hkl (302KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016013232/su5320Isup3.cml

CCDC reference: 1451398

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for the support provided by the Algerian Ministry for Education and Research.

supplementary crystallographic information

Crystal data

C13H14N3OS+·HO4S·H2O Dx = 1.501 Mg m3
Mr = 375.41 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 9907 reflections
a = 6.3726 (5) Å θ = 2.9–27.5°
b = 14.2549 (11) Å µ = 0.36 mm1
c = 18.2817 (12) Å T = 150 K
V = 1660.7 (2) Å3 Block, brown
Z = 4 0.42 × 0.33 × 0.19 mm
F(000) = 784

Data collection

Bruker D8 VENTURE diffractometer 3586 reflections with I > 2σ(I)
Multilayer monochromator Rint = 0.073
rotation images scans θmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan (SADABS; Bruker, 2015) h = −8→8
Tmin = 0.752, Tmax = 0.935 k = −18→18
19123 measured reflections l = −23→23
3786 independent reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.4752P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103 (Δ/σ)max < 0.001
S = 1.07 Δρmax = 0.36 e Å3
3786 reflections Δρmin = −0.33 e Å3
247 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
5 restraints Extinction coefficient: 0.027 (5)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack x determined using 1477 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier map Absolute structure parameter: 0.03 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.33252 (11) 0.30710 (5) 0.35547 (4) 0.0214 (2)
C1 0.6277 (5) 0.5080 (2) 0.06062 (17) 0.0274 (6)
H1 0.5211 0.5545 0.0624 0.033*
C2 0.8011 (5) 0.5215 (2) 0.01485 (18) 0.0302 (7)
H2 0.8125 0.5775 −0.0130 0.036*
C3 0.9553 (5) 0.4542 (2) 0.00993 (16) 0.0244 (6)
O4 1.1258 (4) 0.46247 (17) −0.03340 (14) 0.0334 (6)
H4O 1.141 (10) 0.520 (5) −0.059 (3) 0.09 (2)*
C5 0.9393 (5) 0.3697 (2) 0.05103 (15) 0.0210 (6)
C6 1.0925 (5) 0.2980 (2) 0.04354 (16) 0.0256 (6)
H6 1.2085 0.3069 0.0117 0.031*
C7 1.0739 (5) 0.2162 (2) 0.08197 (17) 0.0308 (7)
H7 1.1746 0.1678 0.0755 0.037*
C8 0.9071 (6) 0.2033 (2) 0.13084 (17) 0.0299 (7)
H8 0.8977 0.1467 0.1581 0.036*
C9 0.7567 (5) 0.2716 (2) 0.13989 (16) 0.0246 (6)
H9 0.6458 0.2620 0.1738 0.029*
C10 0.7656 (4) 0.3566 (2) 0.09897 (14) 0.0192 (5)
C11 0.6085 (5) 0.4279 (2) 0.10353 (16) 0.0215 (6)
C12 0.4268 (5) 0.4151 (2) 0.15100 (15) 0.0220 (6)
H12A 0.4066 0.3563 0.1744 0.026*
N13 0.2939 (4) 0.48088 (17) 0.16192 (12) 0.0205 (5)
N14 0.1329 (4) 0.45700 (16) 0.20919 (13) 0.0202 (5)
H14 0.144 (7) 0.406 (2) 0.234 (2) 0.040 (11)*
C15 −0.0120 (4) 0.5212 (2) 0.22410 (14) 0.0182 (5)
N16 −0.0075 (4) 0.60276 (18) 0.19085 (14) 0.0249 (5)
H16B −0.103 (5) 0.641 (2) 0.199 (2) 0.032 (10)*
H16A 0.084 (5) 0.614 (3) 0.1575 (18) 0.036 (11)*
C17 −0.3802 (5) 0.5843 (2) 0.28398 (18) 0.0253 (6)
H17A −0.4311 0.5911 0.2337 0.038*
H17B −0.3101 0.6423 0.2992 0.038*
H17C −0.4990 0.5718 0.3166 0.038*
S2 −0.19735 (11) 0.48825 (5) 0.28856 (4) 0.0245 (2)
O11 0.3992 (4) 0.40352 (16) 0.36112 (13) 0.0348 (6)
O12 0.5287 (4) 0.2471 (2) 0.33653 (15) 0.0442 (7)
H12O 0.631 (8) 0.246 (4) 0.374 (3) 0.059 (14)*
O13 0.2455 (5) 0.2712 (2) 0.42322 (13) 0.0433 (7)
O14 0.1937 (4) 0.29015 (14) 0.29348 (11) 0.0278 (5)
O1W 0.8206 (4) 0.2244 (2) 0.42969 (13) 0.0385 (6)
H1WA 0.939 (6) 0.256 (4) 0.426 (3) 0.060 (16)*
H1WB 0.784 (8) 0.225 (3) 0.4750 (15) 0.061 (15)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0240 (3) 0.0184 (3) 0.0220 (3) −0.0050 (3) −0.0028 (3) 0.0010 (2)
C1 0.0309 (15) 0.0164 (14) 0.0349 (15) 0.0031 (12) 0.0053 (12) 0.0021 (11)
C2 0.0386 (17) 0.0186 (13) 0.0333 (15) 0.0000 (14) 0.0083 (14) 0.0045 (12)
C3 0.0286 (15) 0.0232 (14) 0.0215 (13) −0.0062 (11) 0.0019 (12) −0.0019 (11)
O4 0.0336 (13) 0.0323 (13) 0.0344 (12) 0.0011 (10) 0.0136 (10) 0.0079 (10)
C5 0.0226 (14) 0.0217 (14) 0.0186 (12) −0.0016 (11) −0.0032 (11) −0.0032 (10)
C6 0.0250 (14) 0.0321 (17) 0.0196 (13) 0.0047 (13) 0.0002 (11) −0.0013 (12)
C7 0.0324 (17) 0.0351 (18) 0.0248 (14) 0.0145 (14) 0.0001 (13) 0.0014 (13)
C8 0.0347 (16) 0.0299 (16) 0.0253 (14) 0.0108 (14) 0.0001 (13) 0.0084 (12)
C9 0.0254 (14) 0.0265 (14) 0.0218 (13) 0.0037 (11) 0.0008 (11) 0.0031 (11)
C10 0.0202 (13) 0.0207 (13) 0.0166 (12) −0.0004 (10) −0.0020 (10) −0.0027 (10)
C11 0.0244 (14) 0.0176 (13) 0.0226 (13) −0.0011 (11) 0.0024 (11) −0.0026 (10)
C12 0.0234 (14) 0.0192 (13) 0.0233 (13) −0.0003 (11) −0.0012 (11) −0.0009 (11)
N13 0.0204 (11) 0.0196 (11) 0.0215 (11) 0.0001 (10) 0.0021 (9) −0.0011 (9)
N14 0.0212 (11) 0.0160 (11) 0.0233 (11) 0.0010 (8) 0.0028 (10) 0.0028 (9)
C15 0.0198 (12) 0.0182 (12) 0.0166 (11) −0.0002 (10) −0.0008 (9) −0.0006 (10)
N16 0.0287 (13) 0.0187 (12) 0.0273 (12) 0.0058 (10) 0.0084 (11) 0.0056 (10)
C17 0.0218 (13) 0.0214 (13) 0.0326 (15) 0.0023 (11) 0.0030 (12) −0.0007 (12)
S2 0.0264 (4) 0.0209 (3) 0.0263 (3) 0.0027 (3) 0.0080 (3) 0.0056 (3)
O11 0.0456 (14) 0.0215 (11) 0.0372 (12) −0.0120 (10) −0.0030 (11) −0.0060 (10)
O12 0.0395 (14) 0.0493 (17) 0.0437 (14) 0.0146 (13) −0.0118 (12) −0.0185 (13)
O13 0.0443 (15) 0.0602 (17) 0.0254 (11) −0.0204 (13) −0.0057 (10) 0.0137 (11)
O14 0.0353 (12) 0.0209 (10) 0.0271 (10) −0.0059 (9) −0.0089 (10) 0.0040 (8)
O1W 0.0277 (12) 0.0604 (17) 0.0274 (11) 0.0027 (12) 0.0015 (10) 0.0012 (11)

Geometric parameters (Å, º)

S1—O11 1.442 (2) C9—C10 1.425 (4)
S1—O13 1.450 (2) C9—H9 0.9500
S1—O14 1.458 (2) C10—C11 1.429 (4)
S1—O12 1.554 (3) C11—C12 1.459 (4)
C1—C11 1.391 (4) C12—N13 1.279 (4)
C1—C2 1.399 (4) C12—H12A 0.9500
C1—H1 0.9500 N13—N14 1.384 (3)
C2—C3 1.375 (4) N14—C15 1.328 (4)
C2—H2 0.9500 N14—H14 0.86 (2)
C3—O4 1.350 (4) C15—N16 1.313 (4)
C3—C5 1.424 (4) C15—S2 1.733 (3)
O4—H4O 0.96 (6) N16—H16B 0.84 (2)
C5—C6 1.420 (4) N16—H16A 0.86 (2)
C5—C10 1.424 (4) C17—S2 1.800 (3)
C6—C7 1.366 (5) C17—H17A 0.9800
C6—H6 0.9500 C17—H17B 0.9800
C7—C8 1.400 (5) C17—H17C 0.9800
C7—H7 0.9500 O12—H12O 0.94 (5)
C8—C9 1.376 (4) O1W—H1WA 0.89 (3)
C8—H8 0.9500 O1W—H1WB 0.86 (2)
O11—S1—O13 112.83 (16) C10—C9—H9 119.6
O11—S1—O14 113.10 (14) C5—C10—C9 117.7 (3)
O13—S1—O14 111.92 (14) C5—C10—C11 119.2 (3)
O11—S1—O12 107.66 (17) C9—C10—C11 123.1 (3)
O13—S1—O12 107.67 (18) C1—C11—C10 119.3 (3)
O14—S1—O12 102.94 (13) C1—C11—C12 120.5 (3)
C11—C1—C2 121.3 (3) C10—C11—C12 120.1 (3)
C11—C1—H1 119.4 N13—C12—C11 121.8 (3)
C2—C1—H1 119.4 N13—C12—H12A 119.1
C3—C2—C1 120.5 (3) C11—C12—H12A 119.1
C3—C2—H2 119.7 C12—N13—N14 114.1 (2)
C1—C2—H2 119.7 C15—N14—N13 118.3 (2)
O4—C3—C2 123.5 (3) C15—N14—H14 122 (3)
O4—C3—C5 116.2 (3) N13—N14—H14 118 (3)
C2—C3—C5 120.3 (3) N16—C15—N14 120.0 (3)
C3—O4—H4O 117 (4) N16—C15—S2 124.7 (2)
C6—C5—C10 120.0 (3) N14—C15—S2 115.3 (2)
C6—C5—C3 120.6 (3) C15—N16—H16B 119 (3)
C10—C5—C3 119.4 (3) C15—N16—H16A 120 (3)
C7—C6—C5 120.3 (3) H16B—N16—H16A 120 (4)
C7—C6—H6 119.9 S2—C17—H17A 109.5
C5—C6—H6 119.9 S2—C17—H17B 109.5
C6—C7—C8 120.4 (3) H17A—C17—H17B 109.5
C6—C7—H7 119.8 S2—C17—H17C 109.5
C8—C7—H7 119.8 H17A—C17—H17C 109.5
C9—C8—C7 120.8 (3) H17B—C17—H17C 109.5
C9—C8—H8 119.6 C15—S2—C17 101.74 (14)
C7—C8—H8 119.6 S1—O12—H12O 114 (3)
C8—C9—C10 120.7 (3) H1WA—O1W—H1WB 108 (5)
C8—C9—H9 119.6
C11—C1—C2—C3 1.5 (5) C8—C9—C10—C5 −2.5 (4)
C1—C2—C3—O4 179.6 (3) C8—C9—C10—C11 176.9 (3)
C1—C2—C3—C5 0.5 (5) C2—C1—C11—C10 −2.0 (5)
O4—C3—C5—C6 −2.3 (4) C2—C1—C11—C12 179.9 (3)
C2—C3—C5—C6 176.9 (3) C5—C10—C11—C1 0.6 (4)
O4—C3—C5—C10 178.9 (3) C9—C10—C11—C1 −178.9 (3)
C2—C3—C5—C10 −1.9 (4) C5—C10—C11—C12 178.6 (3)
C10—C5—C6—C7 0.2 (4) C9—C10—C11—C12 −0.8 (4)
C3—C5—C6—C7 −178.6 (3) C1—C11—C12—N13 −8.9 (4)
C5—C6—C7—C8 −2.0 (5) C10—C11—C12—N13 173.1 (3)
C6—C7—C8—C9 1.5 (5) C11—C12—N13—N14 −179.2 (2)
C7—C8—C9—C10 0.9 (5) C12—N13—N14—C15 179.6 (2)
C6—C5—C10—C9 2.0 (4) N13—N14—C15—N16 4.2 (4)
C3—C5—C10—C9 −179.2 (3) N13—N14—C15—S2 −175.70 (19)
C6—C5—C10—C11 −177.5 (3) N16—C15—S2—C17 7.7 (3)
C3—C5—C10—C11 1.4 (4) N14—C15—S2—C17 −172.4 (2)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of rings C1–C3/C5/C10/C11 and C5–C10, respectively.

D—H···A D—H H···A D···A D—H···A
O1W—H1WA···O13i 0.89 (3) 1.96 (3) 2.791 (4) 155 (5)
O1W—H1WB···O13ii 0.86 (2) 1.88 (3) 2.732 (3) 172 (5)
O4—H4O···O11iii 0.96 (6) 1.84 (6) 2.719 (3) 153 (6)
O12—H12O···O1W 0.94 (5) 1.61 (5) 2.543 (4) 168 (5)
N14—H14···O14 0.86 (2) 2.00 (2) 2.860 (3) 176 (4)
N16—H16A···O1Wiv 0.86 (2) 2.32 (3) 3.046 (4) 142 (4)
N16—H16B···O14v 0.84 (2) 2.20 (3) 2.937 (3) 147 (4)
C6—H6···Cg2vi 0.95 2.67 3.451 (3) 140
C7—H7···Cg1vi 0.95 2.94 3.622 (3) 130

Symmetry codes: (i) x+1, y, z; (ii) x+1/2, −y+1/2, −z+1; (iii) −x+3/2, −y+1, z−1/2; (iv) −x+1, y+1/2, −z+1/2; (v) −x, y+1/2, −z+1/2; (vi) x+1/2, −y+1/2, −z.

References

  1. Abram, S., Maichle-Mössmer, C. & Abram, U. (1998). Polyhedron, 17, 131–143.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Beraldo, H. & Gambinob, D. (2004). Mini Rev. Med. Chem. 4, 159–165. [DOI] [PubMed]
  4. Botoshansky, M., Bourosh, P. N., Revenco, M. D., Korja, I. D., Simonov, Yu. A. & Panfilie, T. (2009). Zh. Strukt. Khim. 50, 188–191.
  5. Bourosh, P. N., Jampolskaia, M. A., Dvorkin, A. A., Gerbeleu, N. V., Simonov, Yu. A. & Malinovskii, T. I. (1990). Dokl. Akad. Nauk SSSR, 311, 1119–1122.
  6. Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Gangadharan, R., Haribabu, J., Karvembu, R. & Sethusankar, K. (2015). Acta Cryst. E71, 305–308. [DOI] [PMC free article] [PubMed]
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Houari, B., Louhibi, S., Boukli-Hacene, L., Roisnel, T. & Taleb, M. (2013). Acta Cryst. E69, o1469. [DOI] [PMC free article] [PubMed]
  10. Joseph, M., Suni, V., Nayar, C. R., Kurup, M. R. P. & Fun, H.-K. (2004). J. Mol. Struct. 705, 63–70.
  11. Klayman, D. L., Scovill, J. P., Bartosevich, J. F. & Bruce, J. J. (1983). J. Med. Chem. 26, 35–39. [DOI] [PubMed]
  12. Pal, I., Basuli, F. & Bhattacharya, S. (2002). J. Chem Sci 114, 255–268.
  13. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Tarasconi, P., Capacchi, S., Pelosi, G., Cornia, M., Albertini, R., Bonati, A., Dall’Aglio, P. P., Lunghi, P. & Pinelli, S. (2000). Bioorg. Med. Chem. 8, 157–162. [DOI] [PubMed]
  17. Teoh, S.-G., Ang, S.-H., Fun, H.-K. & Ong, C.-W. (1999). J. Organomet. Chem. 580, 17–21.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989016013232/su5320sup1.cif

e-72-01326-sup1.cif (644.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016013232/su5320Isup2.hkl

e-72-01326-Isup2.hkl (302KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016013232/su5320Isup3.cml

CCDC reference: 1451398

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES