Abstract
In many social systems, groups of individuals can find remarkably efficient solutions to complex cognitive problems, sometimes even outperforming a single expert. The success of the group, however, crucially depends on how the judgments of the group members are aggregated to produce the collective answer. A large variety of such aggregation methods have been described in the literature, such as averaging the independent judgments, relying on the majority or setting up a group discussion. In the present work, we introduce a novel approach for aggregating judgments—the transmission chain—which has not yet been consistently evaluated in the context of collective intelligence. In a transmission chain, all group members have access to a unique collective solution and can improve it sequentially. Over repeated improvements, the collective solution that emerges reflects the judgments of every group members. We address the question of whether such a transmission chain can foster collective intelligence for binary-choice problems. In a series of numerical simulations, we explore the impact of various factors on the performance of the transmission chain, such as the group size, the model parameters, and the structure of the population. The performance of this method is compared to those of the majority rule and the confidence-weighted majority. Finally, we rely on two existing datasets of individuals performing a series of binary decisions to evaluate the expected performances of the three methods empirically. We find that the parameter space where the transmission chain has the best performance rarely appears in real datasets. We conclude that the transmission chain is best suited for other types of problems, such as those that have cumulative properties.
Introduction
Collective intelligence refers to the ability of groups of individuals to find solutions to complex problems. The term “collective intelligence”–also referred to as “swarm intelligence” or “collective problem-solving”–is used in a surprisingly large diversity of interdisciplinary domains. These include the collective behaviour of animal swarms [1–3], the processes underlying group discussions and brainstorming in business and industry [4,5], the wisdom-of-the-crowds and other methods for combining judgments [6–10], the design of artificial multi-agents systems in robotics and biomimetics [11,12], the behaviour of pedestrian crowds [13–15], networked experiments in social computing [16–18], citizen science [19,20], and numerous online collaborative projects such as Wikipedia and Threadless [21]. All these seemingly disparate domains share the same overarching principle: The collective solution that is produced by the group results from the aggregation of every individual’s judgment. The central question is therefore: What is the best way to aggregate a multitude of individual solutions?
A very large number of such aggregation methods exist in the literature. These can be classified into three major families, depending on the nature of the interactions between the group members.
The first family of aggregation methods concerns situations where group members do not interact with each other. In this case, a third-party decision-maker collects the independent solutions of each individual and aggregates them to produce the collective solution [8,22,23]. Various aggregation methods have been proposed, such as a simple average, a majority rule, a quorum-based decision, or aggregation rules taking into account the confidence level of the individuals, such as the maximum-confidence slating or the confidence-weighted majority [8,23–25]. For instance, the wisdom-of-the-crowds is a prominent method that consists in computing the mean or the median value of all individuals’ judgments [6]. More sophisticated aggregation methods can successfully combine individual solutions even for complex, multi-dimensional problems, such as the traveling salesman problem [26], or ranking problems [27]. In any case, all individual solutions must be independent from one another, since direct or indirect sources of social influence often undermine the power of the aggregation [7].
The above family of aggregation methods has been studied for more than a century [6]. More recently, the understanding of self-organised social systems has demonstrated that groups of people and swarms of animals are also capable to solve complex problems collectively without the intervention of a third-party decision-maker. In this case, the aggregation of the information is supported by the interactions among the individuals [13]. In the ‘90s, biologists studying animal swarms have classified these interactions in two types: direct and indirect interactions [11,12,28,29], which turned out to be applicable to human groups as well. Formally, direct interaction refers to situation where individuals collect information directly from other individuals. In contrast, indirect interaction describes situations where individuals collect information from the collective solution that is emerging, which indirectly reflects what other individuals have done. In the following paragraphs, we describe and illustrate these two processes.
Direct interactions constitute the second family of aggregation methods, and refer to groups in which the individuals collect information directly from other individuals, through visual, acoustic, or electronic signals. Over repeated interactions, the information that each group member possesses flows from individual to individual, and eventually gives rise to an adaptive collective response. In biological systems, fish schools and bird flocks are typical examples of systems that address complex problems through direct interactions. Animals perceive visual and acoustic cues from their neighbors and adapt their behavior accordingly. The propagation of information from individual to individual gives rise to collective patterns, for instance, when detecting and avoiding predators [30–32]. In humans, situations where people directly interact with each other are typically group discussions. During group discussions, all members can freely exchange ideas, suggestions and information, and try to come up with a joint solution to a given problem. Depending on the structure and the composition of the group, the discussion can constitute a powerful means to aggregate judgments [4,33–35], but this method is also subject to various undesirable effects such as opinion herding, groupthink, and the hidden profile effect [5,36,37]. Direct interactions can also take place in social networks. In networked experiments, for instance, all group members can observe the behavior and solution of their neighbours and adapt to it. Over successive rounds of interactions, the group often converges to a collective solution [16,17]. This method has been successfully applied to the graph-coloring problem [16], and other collective exploration problems [18,38].
Finally, the third family of aggregation methods contains situations where the group members indirectly interact with one another. That is, individuals do not directly collect information from each other, but from the current state of the collective solution. In these situations, individuals typically work simultaneously or sequentially on a common collective solution. At any moment, the current state of the collective solution drives the subsequent actions of the individuals. In biological systems, this type of interaction is best illustrated by the nest construction in social insects [39–41]: Each piece of construction material that an insect deposits on the collective construction motivates the other insects to add another piece to the structure. Each individual collects information from the current state of the structure, which reflects the cumulative actions of previous workers. Over time, this process gives rise to small heaps, which become columns and eventually form the complex structure of the nest. In human groups, Wikipedia is one of the most studied examples of such indirect interactions structures. Each article in Wikipedia constitutes a collective solution that results from the repeated updates of different individuals. Indirect interaction methods are usually applied to more complex problems, where the individual contributions accumulate over time to give rise to the collective solution. For instance, in the crisis-mapping task, a group of participants is instructed to annotate a map to indicate the zones of emergency in a particular area after a natural disaster has occurred [42]. Every group member is facing the same map, can see every modification made by the other group members, and is free to update it at any moment. Over time, the map converges to an accurate collective solution that aggregates every group member’s knowledge about the situation.
Group members may also work on the collective solution sequentially rather than simultaneously. In a transmission chain (also called diffusion chain), each group member updates the collective solution only once before passing it to the next individual who can update it in turn, and so forth until the last individual of the group (e.g. [43]). Transmission chains have been widely used in the domain of cultural evolution [44–48], in which evolutionary anthropologists study human’s ability to produce increasingly complex cultural artefacts by improving them sequentially, generation after generation. In fact, cultural evolution can be seen as a process relying, at least in part, on the principles of indirect interactions.
To illustrate these three families of aggregation methods, imagine a group of ten individuals trying to solve a jigsaw puzzle, such as the one studied by Kempe and Mesoudi [45]. The task consists in assembling together a large number of small pieces to produce a complete picture. In the ‘no-interaction’ case, each group member proposes an independent, possibly-incomplete solution to the problem. The individual solutions are later combined by a decision-maker to produce the collective solution. The decision-maker could, for example, follow a majority rule and fill each position of the puzzle with the piece that has been used by the majority of the group members. In the ‘direct interaction’ case, all ten group members would sit around the puzzle and try to solve it together by exchanging ideas and suggestions about where to put each piece and what the final picture could look like. Finally, in the ‘indirect interaction’ case, every group member could sequentially look at the current state of the puzzle, try to improve it by adding new pieces or moving those that are already positioned, and transmit the updated version of the puzzle to the next group member who can update it in turn. This process repeats until the tenth individual.
To date, most of the research on human collective intelligence focuses on aggregation methods that are based on direct interactions (e.g., group discussion and networked experiments), and on those where interaction is absent (e.g. the wisdom-of-the-crowd). In comparison, the mechanisms of indirect interaction methods are much less understood. Such methods are usually studied in very sophisticated forms and applied to very complex problems, which renders the basic processes of indirect interactions difficult to understand. Here, we address the question of whether indirect interactions could constitute an efficient approach for solving elementary problems. For this, we present a series of numerical simulations describing the expected performances of a transmission chain in the case of binary-choice tasks. We deliberately chose a simple aggregation method (i.e. the transmission chain, for which individuals sequentially update a collective solution) and a simple class of problems (i.e., binary-choice tasks, for which any solution is a unidimensional, binary object). We compared the performances of the transmission chain to two other aggregation methods: the majority rule and the confidence-weighted majority rule—two methods assuming the absence of interactions. By varying systematically the structure of the environment and the size of the group, we show that the best method depends on the structure of the environment. Furthermore, the analysis of two real datasets reveals which environmental structure is more likely to be found in the real world.
Methods
In the present work, we will examine the expected performances of the transmission chain as an aggregation method, and compare it to two other methods: The majority rule, which is commonly used for aggregating judgments in discrete choice problems, and confidence-weighted majority (hereafter, weighted-majority) that extends the majority rule by taking the confidence of the individuals into account. For this, we restrain our investigations to binary-choice tasks, where only two options are possible: a correct one and a wrong one.
Sample population
As a starting point, we assume a large sample population in which a proportion q1 of individuals would independently choose the correct solution to the problem in the absence of any interaction or social influence. Reversely, a proportion q0 = 1 − q1 of individuals in the sample population would independently choose the wrong solution. In addition, every individual’s answer is associated with a confidence level c describing how confident the individual is about his or her answer. We define the confidence level as a continuous value ranging from 0 to 1, where c = 0 refers to individuals who are very uncertain about their answer, and c = 1 refers to individuals who are very certain about their answer. In the simulations, we describe the confidence levels of the individuals who give the correct answer with a beta distribution Ω1 that has shape parameters α1 and β1, and the confidence levels of the individuals who give a wrong answer with a beta distribution Ω0 that has shape parameters α0 and β0. That is, the confidence levels follow different distributions depending on whether the associated answer is correct or wrong. For many problems, confidence can be a good proxy for accuracy, but this tendency is not systematic and often non-linear [8,10]. In fact, the shape of these two distributions depends on the nature and the statement of the problem. To begin with, we assume the two distributions Ω1 and Ω0 represented in Fig 1, for which correct answers are on average associated to higher confidence levels than wrong answers, but a considerable overlap exists between the two distributions (i.e. an individual with a wrong answer can possibly be more confident than an individual with the correct answer).
Constitution of the groups
In this environment, we compare the performances of the three aggregation methods for groups of N individuals randomly selected from the sample population. Therefore, each of the N individuals of one group g has a probability q1 to give the correct answer and a probability q0 to give the wrong answer. We call xp the independent solution of one specific individual p in the group, and cp the confidence level of that specific individual. We have xp = 1 if the individual p independently provides a correct answer, and xp = 0 if that individual independently provides a wrong answer. The confidence cp of that individual is then randomly drawn from the distribution Ω1 if xp = 1 (i.e. the blue distribution in Fig 1), and from the distribution Ω2 if xp = 0 (i.e. the red distribution in Fig 1).
Aggregation methods
The outcome of each aggregation method can be computed for any given group g composed of N individuals. We call Mg, Wg, and Cg the outcomes (0 or 1) of the majority rule, the weighted-majority rule, and the transmission chain for that particular group g, respectively. Furthermore, we call M, W, and C the success chance of the three methods for any group g of size N.
For a given group g, the outcome of the majority is Mg = 1 if n1 > n0 and Mg = 0 if n0 > n1, where n1 and n0 correspond to the number of group members independently choosing the correct answer (i.e. those with xp = 1) and the wrong answer (i.e. those with xp = 0), respectively. If n1 = n0 we choose randomly. For computing the outcome of the weighted-majority, we first measure m1 corresponding to the sum of the confidence levels cp of all the group members who chose the correct answer, and m0 corresponding to the sum of the confidence levels cp of all the group members who chose the wrong answer. We then have Wg = 1 if m1 > m0 and Wg = 0 if m0 > m1. If m1 = m0 we choose randomly. For the transmission chain, we first assign each group member to the chain position p. We call Xp the current collective solution in the chain at position p. The first individual located at position 1 initiates the collective solution with his or her independent solution, leading to X1 = x1. For all subsequent chain positions, we assume that the individuals whose confidence level is too low are not confident enough and do not modify the collective solution. In contrast, the individuals whose confidence is sufficiently high replace the collective solution by their own independent solution if they disagree with it. Formally, we define a contribution threshold τ, and have Xp = xp, if cp ≥ τ (i.e. the collective solution is replaced by the individual solution if the confidence is high enough) and Xp = Xp−1, if cp < τ (i.e. the collective solution remains unchanged if the confidence is not high enough). The outcome of the transmission chain for that particular group is then Cg = XN, corresponding to the collective solution that is present in the chain after the update of the last individual.
Unlike the majority and the weighted-majority rules, the definition of the chain method requires a parameter τ. This parameter represents the confidence threshold above which individuals are sufficiently confident to contribute to the collective solution rather than solely forwarding it to the next person. For that reason, we call τ the contribution threshold. The individual p is considered to be a contributor when cp ≥ τ. More specifically, we call positive contributors the group members who bring in the correct answer (i.e., those with cp ≥ τ and xp = 1), and negative contributors those who bring in the wrong answer (i.e., cp ≥ τ and xp = 0).
Example
We illustrate the outcome of each aggregation method in a simple example where q1 = 0.6 and N = 10. That is, we constitute a group g with 10 individuals randomly drawn from a sample population that contains 60% of correct answers. The confidence levels are drawn from the distributions shown in Fig 1. In this example, we assume a contribution threshold τ = 0.6. The independent answers of each group member and their confidence are represented in Fig 2A. In that particular group, five individuals independently provide a correct answer, and five others provide a wrong answer. The majority rule results in a tie and has, therefore, 50% chance to yield a correct answer Mg = 1 and 50% chance to yield a wrong one Mg = 0. In that particular group, the sum of confidence levels among all individuals who provide a correct answer is m1 = 2.39 and the sum of confidence levels among those who provide a wrong answer is m0 = 2.19. The weighted majority rule, therefore, yields a correct answer Wg = 1. In the transmission chain, the first individual initialises the collective solution X1 with a correct answer. At chain position 2, the individual has a wrong answer but is not confident enough (cp < τ) and thus leaves the collective solution unchanged. The first contributor with a confidence level higher than τ appears at the chain position 4. That individual replaces the collective solution by a wrong answer. The individual at position 6 is also a contributor and replaces the collective solution by the correct answer. All subsequent individuals have confidence levels lower than the contribution threshold and thus do not impact the collective solution. The correct answer set by the individual at position 6 remains unchanged until the end of the chain, leading to Cg = 1 for this particular example.
Results
Order effect
As compared to the two majority rules, one specificity of the transmission chain is the spatial structure of the group, that is, the fact that group members are organized in a linear chain. Yet, a large number of different chains can be produced from a unique group of N individuals (precisely, N! different chains), depending on how the group members are ordered. What is the impact of the order in which the group members are positioned? In the example shown in Fig 2, only two group members are contributors (those located at chain position 4 and 6). One of them is a positive contributor whereas the other one is a negative contributor. If the positive contributor is positioned after the negative contributor, the chain yields a correct answer (because all subsequent individuals are neutral). Reversely, if the positive contributor is positioned before the negative contributor, the chain yields a wrong answer because the wrong answer overrides the correct one. In the end, this particular group of individuals has 50% chance to produce a correct answer and 50% chance to produce a wrong one, depending on the ordering of the two contributors, and irrespective of the position of the eight other group members. The ordering, therefore, has a strong impact on the expected outcome of the chain in this example. More generally, for a given group of individuals, the probability that the chain produces a correct answer is the probability that at least one positive contributor appears after the last negative contributor. This probability equals to N1/(N1 + N0), where N1 is the number of positive contributors and N0 is the number of negative contributors. The smaller the difference between N1 and N0 the more the outcome of the chain is sensitive to the ordering of the group members. Therefore, a given group of N individuals does not always produce a unique outcome with the transmission chain. Instead, the outcome of the chain depends, to some extent, on the order in which the group members are positioned.
Contribution threshold
The second specificity of the chain is the presence of social influence. Unlike the two other methods, the chain does not aggregate the independent answers of every group member. Instead, it filters out the answers of those who are confident enough to change the collective solution [49]. The contribution threshold τ is thus an important parameter that determines which individuals are confident enough to contribute to the final solution. What is the impact of the contribution threshold τ? To address this question, we explored the performances of the transmission chain while varying the contribution threshold from τ = 0 to τ = 1. For each value of τ, we generated 1000 groups of size N = 10 with q1 = 0.6 and the confidence distributions shown in Fig 1, and measured the success chance C of the chain (i.e., how often it produced a correct answer). The result is shown in Fig 3. When the contribution threshold is small and approaches τ = 0, every group member is confident enough to contribute. In this case, everyone overrides the previous person’s solution and the outcome of the chain is simply the answer of the last individual of the chain. Because every individual has a probability q1 = 0.6 of being correct, the success chance of the chain is also C = 0.6. Likewise, when the activity threshold approaches τ = 1, none of the group members are confident enough to contribute. In this case, the answer of the first individual of the chain remains unchanged until the end of the chain. Because the first individual has a probability q1 = 0.6 of providing a correct answer, success chance of the chain is also C = 0.6. Between these two extreme values, the performance of the chain reaches a peak for τ = 0.83. At this point, the success chance of the chain is C = 0.93 (i.e. the chain yields a correct answer 93% of the time). In fact, the optimal threshold value maximizes the probability to pick a positive contributor, while at the same time minimizes the probability to pick a negative contributor. Note that this performance measure takes into account the order effect because groups are randomly ordered in each replication. For comparison, the success chance of the majority rule is M = 0.73 under these conditions, and the success chance of the weighted-majority is W = 0.90.
Group size
The weakness of the majority rule in the previous case study was the relatively small group size (N = 10). In fact, the majority of the individuals in the entire sample population do actually provide the correct answer. Yet, the majority of the N = 10 group members has only 73% chance to produce a correct answer because the majority within the group often points toward the wrong answer [25]. Hence, group size matters for the majority rule. How does it impact the outcome of the transmission chain? To address this question, we run an additional series of simulations, this time varying the contribution threshold τ as well as the group size N. We generate again 1000 groups of size N with q1 = 0.6 and the confidence distributions shown in Fig 1, and measure the frequency of correct answers produced by the chain for different values of τ and N. As Fig 4A shows, group size has relatively little influence on the chain performances, which increase rapidly until N ≈ 10 and plateaus for larger group sizes. This result is consistent with the previous result showing that the ratio between positive and negative contributors is more important than the total number of contributors. In addition, the optimal contribution threshold only marginally varies between τ = 0.8 and τ = 0.9 with increasing group size. Fig 4B compares the evolution of the majority, the weighted-majority and the chain with τ = 0.85 for increasing values of N. While the performance of the majority increases slowly with N, the weighted majority and the transmission chain reach higher performances for smaller group size. This weak dependency on N for these two methods results from the fact that they also rely on the individuals’ confidence and can thus extract the correct answer from a smaller number of individuals. The weighted-majority and the transmission chain have relatively similar performances in this environment, with the chain converging slightly faster to its best performance, and the weighted majority converging slower but reaching a slightly higher performance level.
Structure of the environment
In order to generalize our findings, we explored the performances of the three methods for different proportions of correct answers q1 in the sample population, and different confidence distributions. It is difficult, however, to vary systematically the confidence distributions, because these distributions depend on a total of four parameters (i.e., the shape parameters α1, β1 and α0, β0). Therefore, we computed a single confidence indicator from the two distributions Ω1 and Ω0, that we called the confidence utility u. The confidence utility measures the probability that an individual with the correct answer has a higher confidence level than an individual with the wrong answer. In other words, u is the probability that a value drawn from Ω1 (the confidence associated to correct answers) is higher than another value drawn from Ω0 (the confidence associated to wrong answers). For the simulations, we systematically varied the mean values of Ω1 and Ω0 from 0.1 to 0.9 and computed each time the corresponding confidence utility u. In addition, we also varied the proportion of correct answers q1 from 0 to 1. For each combination of u and q1, we generated 1000 groups of size N = 10 and measured the performance of the three aggregation methods. For the sake of simplicity, we chose the contribution threshold τ that maximises the success chance of the chain for each combination of u and q1, such that our results represent the best-case scenario for the chain. The results are shown in Fig 5. Clearly, the majority rule does not depend on u and has success chances that approach M = 1 when q1 > 0.5 and M = 0 when q1 < 0.5. The majority rule amplifies the dominant view in the population. The weighted-majority has a similar pattern but also relies on the group members’ confidence. Therefore, the weighted-majority can yield a correct answer even when the population accuracy q1 is slightly lower than 0.5, but only when the confidence is a useful cue (i.e., when u approaches 1). Reversely, if the confidence is misleading (i.e. when u approaches 0), even a population accuracy higher than 0.5 is not always sufficient to yield a correct collective answer. The performance of the transmission chain exhibits a similar tendency: When confidence is a useful cue (u > 0.5), the chain performs well, even for extremely low values of q1. When confidence is less reliable (u < 0.5), the chain performance equals the population accuracy. This is due to the fact that, when confidence is misleading, the best contribution threshold is such that nobody contributes to the collective solution (i.e. very high value of τ), and the final solution is simply the first individual’s solution. Hence the chain performs relatively well where the majority performs very good, and relatively bad where the majority performs very bad. The best aggregation method, therefore, depends on the values of q1 and u. Roughly speaking, the majority is a better method in the upper-left quarter of the parameter spaces (q1 > 0.5 and u < 0.5), the weighted-majority is better in the upper-right quarter (q1 > 0.5 and u > 0.5), and the chain is better in the lower-right quarter (q1 < 0.5 and u > 0.5). The lower-left quarter (q1 < 0.5 and u < 0.5) is the most difficult environment because the population accuracy and the confidence both point to the wrong answer. In this case, the chain is the least bad method because it preserves a small chance of success where the majority and the weighted-majority tend to be systematically wrong.
Empirical data
An important question that arises from these simulations is what do real environments look like? Knowing the values of q1 and u for a given class of problems would help finding out what is the most efficient aggregation method to use. To address this question, we reanalyzed two datasets of previously published experiments in which people were facing a series of binary-choice tasks. In the first dataset [50], 109 participants were instructed to indicate which of two cities has a larger population, across 1000 pairs of cities. For each pair of cities, the participants indicated their answer and their confidence level on a continuous scale between 0.5 and 1. In the second dataset [22,51], a total of 40 physicians evaluated 108 cases of skin lesions and were instructed to evaluate whether the lesion is cancerous or not-cancerous, and to indicate their confidence level on a Likert scale from 1 to 4. For each of the 1000 instances of the cities dataset and for each of the 108 instances of the doctors dataset, we estimated the population accuracy q1 by measuring the proportion of correct answers among the respondents, and the confidence utility u by measuring the probability that an individual who gave a correct answer reported a higher confidence than an individual who gave a wrong answer. For this, we randomly sampled (1000 times, with replacement) one individual among those who gave a correct answer and one among those who gave a wrong answer, and looked at the frequency at which the first has a higher confidence than the second. In addition, we computed the success chance of the three aggregation method, with groups of size N = 10. The results are presented in Fig 6. The first interesting element is the striking diversity of environmental structures. Within each domain, the observed values of u and q1 vary almost uniformly between 0 and 1. Nevertheless, a correlation is visible between these two variables: confidence is a relevant cue when most people give the correct answer, and a misleading cue when most people give the wrong answer. In other words, confidence tends to be indicative of consensuality rather than accuracy–an important result that has been already suggested in previous research [8,52]. Consequently, confidence adds little information to what is already available by just looking at the individuals' answers. Most cases, therefore, lie in the upper-right and lower-left quarter of the parameter space. As expected from our previous simulations, the majority and weighted-majority perform best in the upper-right quarter, because both the number of individuals and the confidence levels indicate the correct answer. The chain also performs relatively well in this area of the parameter space (see Figs 5 and S1 and S2), but not as good as the two majority rules. In the lower-left quarter, however, all methods exhibit poor performances, because all available information is misleading. In this area, the chain does not amplify the misleading information as the two majority rules do and, thus, preserves a small chance to yield the correct answer.
When using a single method for all the instances of a task, very little difference of performance exist between the three methods. The strengths and weaknesses of each method compensate each other at the aggregate scale, leading to similar overall performances (For the “cities dataset”: M = 74%, W = 75%, and C = 75%; for the “doctors dataset”: M = 65%, W = 65%, and C = 67%). Ideally, one would adaptively choose the most efficient aggregation method for each new instance of the task, depending on the expected values of q1 and u for that instance, but the diversity of observed structures makes it difficult, if not impossible, to anticipate the nature of an upcoming instance of the problem.
Discussion
We have defined and studied the performance of a new aggregation method–the transmission chain–as a tool to improve collective decision-making in binary choice tasks. The transmission chain relies on processes of indirect interactions, for which group members sequentially try to improve a common collective solution without directly interacting with one another. The chain exploits the default heuristic–a common bias in people’s decision-making: When given a decision to make and a default option, people tend to choose the default option unless they have good reasons not to do so [53,54]. In the chain, the “default option” is the current state of the collective solution that has been produced by the preceding group members. Thus, most people choose the default option unless they strongly disagree with it. In the end, the chain functions as a confidence-based filter: the group members who are the most confident contribute to the collective solution whereas those who are unsure have no impact on the collective outcome. When comparing the transmission chain to the majority and the weighted-majority rules, we have found that the chain only outperforms the two other methods for problems of a specific nature, namely, when confidence is a reliable indicator and when the most people give a wrong answer. In the two datasets that we have analyzed, however, instances of such nature are rare.
It is important to note that many behavioural components of our simulations remain uncertain. For instance, we have always studied the best-case scenario in our simulations, where the contribution threshold τ is set to the optimal value for each instance of the problem. However, the contribution threshold is not a parameter but a behavioural variable, for which the experimenter has little control. The exact value of the threshold and whether it is well calibrate is an issue that needs to be addressed experimentally. In S1 and S2 Figs, we compared the chain performances when τ is adjusted for every instance of the problem and when τ is fixed for all instances of the problem. Overall, the difference is minor.
A multitude of implementations can be imagined for the transmission chain. Group members can act simultaneously rather than sequentially (i.e., all group members can see the current state of the collective solution at the same time and update it at any moment), which should mitigate the order effect. Beside, the collective solution can take various forms. Instead of considering only the solution of the predecessor, group members could be exposed to the k previous solutions, or an aggregated form of the k previous solutions. This variation should create a “memory” in the chain. This memory could allow the collective solution to withstand the detrimental influence of a few outliers, but at the same time, increase the risk of opinion herding and groupthink [5,37,55]. Finally, participants could be informed about their position in the chain and about the number of other group members who have previously contributed to the collective solution. This would strengthen the weight of the collective solution at the end of the chain, equivalent to gradually increasing the contribution threshold with chain position in simulations.
With regard to the existing literature and to the present results, the transmission chain seems to be more suited to cumulative, multidimensional problems than simple binary choice tasks. In fact, in complex tasks like writing a Wikipedia article, the group members’ contributions can take various forms and apply to many different components of the collective solution. The contributions to a Wikipedia article, for example, can range from correcting a minor typographical error to changing the entire structure of the article or adding new content to an existing article. As such, the contributions of the group members accumulate over time but rarely override each other (except, e.g. in the case of”edit wars”, see, [56]). The same applies to problems addressed in cultural evolution [46]. In contrast, binary choice tasks are limited to a single possible action of the group members: switch the collective solution to the other answer or not. Thus, every new contribution necessarily overrides the previous ones. The cumulative property is therefore absent. Furthermore, the uncertainty surrounding the contribution threshold is important. If the contribution threshold is well calibrated, the chain is a good candidate for certain types of binary choice tasks. Otherwise, the chain will arguably not outperform a simple majority. The next step, therefore, is to examine the value of the threshold experimentally, explore more sophisticated implementations of the design, and extend the methodology to more complex problems.
Supporting Information
Acknowledgments
We thank Stefan Herzog, Ralf Kurvers, and Max Wolf for fruitful discussions. We are grateful to Shuli Yu, Tim Pleskac, Ralf Kurvers and Guiseppe Argenziano for sharing their experimental data. This research was supported by a grant from the German Research Foundation (DFG) as part of the priority program on New Frameworks of Rationality (SPP 1516) awarded to Ralph Hertwig and Thorsten Pachur (HE 2768/7-2). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Data Availability
All relevant simulation data are within the paper and its Supporting Information files. The authors obtained the experimental data presented in Fig 6 from third parties: The experimental data presented in Fig 6A are from the study Yu et al., J. Exp. Psychol. Gen., 2015 whose authors may be contacted at yu@mpib-berlin.mpg.de. The experimental data presented in Fig 6B are from the study Argenziano et al., J. Am. Acad. Dermatol., 2003, also available in the study Kurvers et al., PNAS, 2016, whose authors may be contacted at giuseppe.argenziano@unina2.it.
Funding Statement
This research was supported by a grant from the German Research Foundation (DFG) as part of the priority programme on New Frameworks of Rationality (SPP 1516) given to Ralph Hertwig and Thorsten Pachur (HE 2768/ 7-2). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
References
- 1.Camazine S. Self-organization in Biological Systems. Princeton University Press; 2003. [Google Scholar]
- 2.Sumpter D. Collective Animal Behavior. Princeton University Press; 2010. [Google Scholar]
- 3.Couzin I. Collective minds. Nature. 2007;445: 715 10.1038/445715a [DOI] [PubMed] [Google Scholar]
- 4.Woolley A, Chabris C, Pentland A, Hashmi N, Malone T. Evidence for a Collective Intelligence Factor in the Performance of Human Groups. Science. 2010;330: 686–688. 10.1126/science.1193147 [DOI] [PubMed] [Google Scholar]
- 5.Kerr N, Tindale S. Group Performance and Decision Making. Annu Rev Psychol. 2004;55: 623–655. 10.1146/annurev.psych.55.090902.142009 [DOI] [PubMed] [Google Scholar]
- 6.Galton F. Vox Populi. Nature. 1907;75: 450–451. [Google Scholar]
- 7.Lorenz J, Rauhut H, Schweitzer F, Helbing D. How social influence can undermine the wisdom of crowd effect. Proceedings of the National Academy of Sciences. 2011;108: 9020–9025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Koriat A. When are two heads better than one and why? Science. 2012;336: 360–362. 10.1126/science.1216549 [DOI] [PubMed] [Google Scholar]
- 9.Soll J, Larrick R. Strategies for revising judgment: how (and how well) people use others’ opinions. J Exp Psychol Learn Mem Cogn. 2009;35: 780–805. 10.1037/a0015145 [DOI] [PubMed] [Google Scholar]
- 10.Moussaïd M, Kämmer JE, Analytis PP, Neth H. Social influence and the collective dynamics of opinion formation. PLoS One. 2013;8: e78433 10.1371/journal.pone.0078433 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Garnier S, Gautrais J, Theraulaz G. The biological principles of swarm intelligence. Swarm Intelligence. Springer New York; 2007;1: 3–31. [Google Scholar]
- 12.Bonabeau E, Dorigo M, Theraulaz G. Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, USA; 1999. [Google Scholar]
- 13.Moussaïd M, Garnier S, Theraulaz G, Helbing D. Collective Information Processing and Pattern Formation in Swarms, Flocks, and Crowds. Top Cogn Sci. 2009;1: 1–29. [DOI] [PubMed] [Google Scholar]
- 14.Moussaïd M, Helbing D, Theraulaz G. How simple rules determine pedestrian behavior and crowd disasters. Proceedings of the National Academy of Sciences. 2011;108: 6884–6888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Helbing D, Molnar P, Farkas IJ, Bolay K. Self-organizing pedestrian movement. Environ Plann B Plann Des. 2001;28: 361–383. [Google Scholar]
- 16.Kearns M, Suri S, Montfort N. An experimental study of the coloring problem on human subject networks. Science. 2006;313: 824–827. 10.1126/science.1127207 [DOI] [PubMed] [Google Scholar]
- 17.Kearns M, Judd S, Tan J, Wortman J. Behavioral experiments on biased voting in networks. Proceedings of the National Academy of Sciences. 2009;106: nas.0808147106–1352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Mason W, Jones A, Goldstone R. Propagation of innovations in networked groups. J Exp Psychol Gen. 2008;137: 422–433. 10.1037/a0012798 [DOI] [PubMed] [Google Scholar]
- 19.Gowers T, Nielsen M. Massively collaborative mathematics. Nature. 2009;461: 879–881. 10.1038/461879a [DOI] [PubMed] [Google Scholar]
- 20.Sørensen JJWH, Pedersen MK, Munch M, Haikka P, Jensen JH, Planke T, et al. Exploring the quantum speed limit with computer games. Nature. 2016;532: 210–213. 10.1038/nature17620 [DOI] [PubMed] [Google Scholar]
- 21.Malone TW, Laubacher R, Dellarocas C. The collective intelligence genome. MIT Sloan Management Review. 2010;51: 21. [Google Scholar]
- 22.Kurvers RHJM, Herzog SM, Hertwig R, Krause J, Carney PA, Bogart A, et al. Boosting medical diagnostics by pooling independent judgments. Proceedings of the National Academy of Sciences. 2016;113: 8777–8782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Bahrami B, Olsen K, Latham PE, Roepstorff A, Rees G, Frith CD. Optimally interacting minds. Science. 2010;329: 1081–1085. 10.1126/science.1185718 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Sumpter DJT, Pratt SC. Quorum responses and consensus decision making. Philos Trans R Soc Lond B Biol Sci. 2009;364: 743–753. 10.1098/rstb.2008.0204 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Boland PJ. Majority Systems and the Condorcet Jury Theorem. The Statistician. 1989;38: 181–189. [Google Scholar]
- 26.Yi SKM, Steyvers M, Lee MD, Dry MJ. The wisdom of the crowd in combinatorial problems. Cogn Sci. 2012;36: 452–470. 10.1111/j.1551-6709.2011.01223.x [DOI] [PubMed] [Google Scholar]
- 27.Steyvers M, Miller B, Hemmer P, Lee MD. The wisdom of crowds in the recollection of order information. Advances in neural information processing systems. 2009. pp. 1785–1793. [Google Scholar]
- 28.Heylighen F. Stigmergy as a universal coordination mechanism I: Definition and components. Cogn Syst Res. 2016/June;38: 4–13. [Google Scholar]
- 29.Theraulaz G, Bonabeau E. A brief history of stigmergy. Artif Life. 1999;5: 97–116. [DOI] [PubMed] [Google Scholar]
- 30.Ward A, Sumpter D, Couzin I, Hart P, Krause J. Quorum decision-making facilitates information transfer in fish shoals. Proceedings of the National Academy of Sciences. 2008;105: 6948–6953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Couzin I. Collective cognition in animal groups. Trends Cogn Sci. 2009;13: 36–43. 10.1016/j.tics.2008.10.002 [DOI] [PubMed] [Google Scholar]
- 32.Couzin I, Krause J, Franks N, Levin S. Effective leadership and decision-making in animal groups on the move. Nature. 2005;433: 513–516. 10.1038/nature03236 [DOI] [PubMed] [Google Scholar]
- 33.Clément RJG, Krause S, von Engelhardt N, Faria JJ, Krause J, Ralf H J. Collective Cognition in Humans: Groups Outperform Their Best Members in a Sentence Reconstruction Task. PLoS One. 2013;8: e77943 10.1371/journal.pone.0077943 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Trouche E, Sander E, Mercier H. Arguments, more than confidence, explain the good performance of reasoning groups. J Exp Psychol Gen. 2014;143: 1958 10.1037/a0037099 [DOI] [PubMed] [Google Scholar]
- 35.Mercier H, Deguchi M, der Henst J-BV, Yama H. The benefits of argumentation are cross-culturally robust: The case of Japan. Think Reason. 2016;22: 1–15. [Google Scholar]
- 36.Stasser G, Stewart D. Discovery of Hidden Profiles by Decision-Making Groups: Solving a Problem Versus Making a Judgment. J Pers Soc Psychol. 1992;63: 426–434. [Google Scholar]
- 37.Stasser G, Titus W. Pooling of Unshared Information in Group Decision Making: Biased Information Sampling During Discussion. J Pers Soc Psychol. 1985;48: 1467–1478. [Google Scholar]
- 38.Mason W, Watts D. Collaborative learning in networks. Proceedings of the National Academy of Sciences. 2012;109: 764–769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Khuong A, Gautrais J, Perna A, Sbaï C, Combe M, Kuntz P, et al. Stigmergic construction and topochemical information shape ant nest architecture. Proc Natl Acad Sci U S A. National Acad Sciences; 2016;113: 1303–1308. 10.1073/pnas.1509829113 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Theraulaz G, Gautrais J, Camazine S, Deneubourg J-L. The formation of spatial patterns in social insects: from simple behaviours to complex structures. Philos Trans A Math Phys Eng Sci. 2003;361: 1263–1282. 10.1098/rsta.2003.1198 [DOI] [PubMed] [Google Scholar]
- 41.Tschinkel WR. The nest architecture of the Florida harvester ant, Pogonomyrmex badius. J Insect Sci. 2004;4: 21 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Mao A, Mason W, Suri S, Watts DJ. An Experimental Study of Team Size and Performance on a Complex Task. PLoS One. 2016;11: e0153048 10.1371/journal.pone.0153048 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Moussaïd M, Brighton H, Gaissmaier W. The amplification of risk in experimental diffusion chains. Proceedings of the National Academy of Sciences. 2015;112: 5631–5636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Caldwell CA, Millen AE. Experimental models for testing hypotheses about cumulative cultural evolution. Evol Hum Behav. 2008/May;29: 165–171. [Google Scholar]
- 45.Kempe M, Mesoudi A. An experimental demonstration of the effect of group size on cultural accumulation. Evol Hum Behav. 2014;35: 285–290. [Google Scholar]
- 46.Kempe M, Mesoudi A. Experimental and theoretical models of human cultural evolution. WIREs Cogn Sci. 2014;5: 317–326. [DOI] [PubMed] [Google Scholar]
- 47.Derex M, Beugin M-P, Godelle B, Raymond M. Experimental evidence for the influence of group size on cultural complexity. Nature. 2013;503: 389–391. 10.1038/nature12774 [DOI] [PubMed] [Google Scholar]
- 48.Derex M, Boyd R. The foundations of the human cultural niche. Nat Commun. 2015;6: 8398 10.1038/ncomms9398 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Madirolas G, de Polavieja GG. Improving Collective Estimations Using Resistance to Social Influence. PLoS Comput Biol. 2015;11: e1004594 10.1371/journal.pcbi.1004594 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Yu S, Pleskac TJ, Zeigenfuse MD. Dynamics of postdecisional processing of confidence. J Exp Psychol Gen. 2015;144: 489–510. 10.1037/xge0000062 [DOI] [PubMed] [Google Scholar]
- 51.Argenziano G, Soyer HP, Chimenti S, Talamini R, Corona R, Sera F, et al. Dermoscopy of pigmented skin lesions: Results of a consensus meeting via the Internet. J Am Acad Dermatol. 2003;48: 679–693. 10.1067/mjd.2003.281 [DOI] [PubMed] [Google Scholar]
- 52.Koriat A. When two heads are better than one and when they can be worse: The amplification hypothesis. J Exp Psychol Gen. 2015;144: 934–950. 10.1037/xge0000092 [DOI] [PubMed] [Google Scholar]
- 53.Johnson EJ, Goldstein D. Do Defaults Save Lives? Science. 2003;302: 1338–1339. 10.1126/science.1091721 [DOI] [PubMed] [Google Scholar]
- 54.Gigerenzer G, Todd P. Simple heuristics that make us smart Oxford University Press; 1999. [DOI] [PubMed] [Google Scholar]
- 55.Whalen A, Buchsbaum D, Griffiths TL. How do you know that? Sensitivity to statistical dependency in social learning. Proceedings of the 35th annual meeting of the Cognitive Science Society. Cognitive Science Society; 2013.
- 56.Yasseri T, Sumi R, Rung A, Kornai A, Kertész J. Dynamics of conflicts in Wikipedia. PLoS One. 2012;7: e38869 10.1371/journal.pone.0038869 [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Data Availability Statement
All relevant simulation data are within the paper and its Supporting Information files. The authors obtained the experimental data presented in Fig 6 from third parties: The experimental data presented in Fig 6A are from the study Yu et al., J. Exp. Psychol. Gen., 2015 whose authors may be contacted at yu@mpib-berlin.mpg.de. The experimental data presented in Fig 6B are from the study Argenziano et al., J. Am. Acad. Dermatol., 2003, also available in the study Kurvers et al., PNAS, 2016, whose authors may be contacted at giuseppe.argenziano@unina2.it.