Skip to main content
Frontiers in Pharmacology logoLink to Frontiers in Pharmacology
. 2016 Nov 28;7:448. doi: 10.3389/fphar.2016.00448

San-Huang-Xie-Xin-Tang Constituents Exert Drug-Drug Interaction of Mutual Reinforcement at Both Pharmacodynamics and Pharmacokinetic Level: A Review

Jiasi Wu 1, Yingfan Hu 1, Li Xiang 1, Sheng Li 2, Yi Yuan 1,2, Xiaomei Chen 3, Yan Zhang 1, Wenge Huang 1, Xianli Meng 1,*, Ping Wang 1,*
PMCID: PMC5124576  PMID: 27965575

Abstract

Inflammatory disorders underlie varieties of human diseases. San-Huang-Xie-xin-Tang (SHXXT), composed with Rhizoma Rhei (Rheum palmatum L.), Rhizoma Coptidis (Coptis chinensis Franch), and Radix Scutellaria (Scutellaria baicalensis Georgi), is a famous formula which has been widely used in the fight against inflammatory abnormalities. Mutual reinforcement is one of the basic theories of traditional Chinese medicine. Here this article reviewed and analyzed the recent research on (1) How the main constituents of SHXXT impact on inflammation-associated signaling pathway molecules. (2) The interaction between the main constituents and efflux pumps or intestinal transporters. The goal of this work was to, (1) Provide evidence to support the theory of mutual reinforcement. (2) Clarify the key targets of SHXXT and suggest which targets need further investigation. (3) Give advice for the clinical use of SHXXT to elevated the absorption of main constituents and eventually promote oral bioavailability. We search literatures in scientific databases with key words of “each main SHXXT constituent,” in combination with “each main inflammatory pathway target molecule” or each main intestinal transporter, respectively. We report the effect of five main constituents on target molecules which lies in three main inflammatory signaling pathways, we as well investigate the interaction between constituents and intestinal transporter. We conclude, (1) The synergistic effect of constituents at both levels confirm the mutual reinforcement theory of TCM as it is proven in this work. (2) The effect of main constituents on downstream targets in nuclear need more further investigation. (3) Drug elevating the absorption of rhein, berberine and baicalein can be employed to promote oral bioavailability of SHXXT.

Keywords: San-Huang-Xie-Xin-Tang, constituents, anti-inflammatory, NF-κB, MAPK, JAK/STAT, intestinal transporter

Introduction

Inflammation, a complex response triggered by pernicious stimuli like pathogens or irritants, verified to be involved in process of many diseases such as Alzheimer Disease, type 2 diabetes, rheumatoid arthritis, etc., (Chiapinotto Spiazzi et al., 2015; Garimella et al., 2015; Saito et al., 2015). Generally, inflammation is classified as acute and chronic type. Acute type only last a few days with neutrophil infiltration, while chronic type can last up to years with infiltrations of lymphocytes and macrophages (Ambrozova et al., 2016). Inflammatory pathways perform a crucial part for signal transduction and recent research provide genuine evidence showing NF-κB, MAPK and JAK/STAT are the three main pathways (Bertolini, 2012; Ottani et al., 2015).

As a famous traditional Chinese medicine (TCM) formula which has been used for centuries, San-Huang-Xie-Xin-Tang (SHXXT) displays good curative activation in the treatment of inflammatory disorders such as atherosclerosis (Wang Y. S. et al., 2011), upper respiratory tract infection (Ma et al., 2009; Kim et al., 2014), diabetic nephropathy (Wu et al., 2015), gastritis, gastric bleeding and peptic ulcers (Lo et al., 2005), and these protective effects are correlated with reactions of weakening inflammatory by suppressing cytokine/chemokine production. SHXXT has a quite simple composition with only three herbals, namely Radix et Rhizoma Rhei (Rheum palmatum L.) [RR, yields anthraquinones like emodin(Emo), rhein(Rhe) and aloe-emodin (Aem)], Rhizoma Coptidis (Coptis chinensis Franch) [RC, yields alkaloids like berberine(Ber) and coptisine(COP)], and Radix Scutellaria (Scutellaria baicalensis Georgi) [RS, yields flavonoids like baicalin(Bai) and baicalein (Bae)]. Previous studies show the basic effective constituents of SHXXT responsible for the anti-inflammatory effect may be Ber, Bai, Emo, Rhe, and Aem (Ma et al., 2009), plus, Bae is considered as a quality control indicator of RS (Zhang et al., 2013b). In regard of the bioavailability of SHXXT, A rapid and sensitive UPLC-ESI/MS method determined 17 active SHXXT constituents with good linearity in a relatively wide concentration ranges, among which, Bai is the most abundant. In bloodstream, the major forms of SHXXT include Bae, Emo, Aem and Rhe, while only the parent form of Rhe can be detected, and the conjugated effect may be accounted for their physicochemical property differences (Li et al., 2010; Shia et al., 2011).

Intestinal transporters (IT), such as P-gp, MRP, BCRP (Sampson et al., 2015), SGLT1 (Asano et al., 2004) and OCT (Bader et al., 2014), play a critical role in the process of intracellular and efflux transport. Numerous evidence illustrate the main constituents in SHXXT are the substrates of efflux transporters which leads to a very low oral bioavailability (Huang S. et al., 2011; He et al., 2014; Wei et al., 2014; Di et al., 2015). However, most studies only concentrate on solitary constituent, whether they have mutual effect on respective absorption remains to be elucidated.

There's growing evidence indicating that all those constituents above, while exclusively dosed, possess anti-inflammation effect by affecting a variety of target molecules in signaling pathways (Shih et al., 2007; Hamsa and Kuttan, 2012; Zhang et al., 2013a; Hu et al., 2014). We are all clear that, Chinese herbal combination should not only improve curative effects and reduce side effects, but also promote the mutual absorption of effective constituents. In this study, we review the recent studies and discuss how the three classic herbals of SHXXT, RS, RR, and RC, reach the goal of synergistic interaction at both pharmacodynamics and pharmacokinetic level.

Pharmacodynamic level

Effect of the active constituents on molecules in NF-κB pathway

TLR-4 is the first described TLRs in mammals, it responds to LPS which can trigger NF-κB activation and pro-inflammatory cytokines secretion (Lee et al., 2010), constituents that can block the binding between TLR-4 and LPS are supposed to be valued in inflammation treatment (Wu et al., 2016). As summarized in Table 1, It is reported that Ber, Bai and Rhe exert inhibitory effect on TLR-4 expression in varies of models (Lee et al., 2010; Li et al., 2011; Cabrera-Benitez et al., 2012; Hou et al., 2012; Chen C. C. et al., 2014; Chen et al., 2015), and the combination of TLR-4 and LPS is observed to be blocked by Ber (Jeong et al., 2014). So, it seems that the anti-inflammatory mechanism of SHXXT begins at a really early stage, ever since LPS are interacting with upstream membrane protein.

Table 1.

Effect of the active constituents on molecules in NF-κB pathway.

Target Animal or cell culture Model building Control (P or N) Drug Dose Treat time Result
TLR-4 Microglial cells IL-1β Vehicle Ber 50 μM 24 h TLR-4 expression↓    Chen C. C. et al., 2014
BALB/c mice LPS Yohimbine Ber 50 mg/kg 3 d TLR-4 mRNA expression in ileum tissue↓    Li et al., 2011
C3H/HeN,C3H/HeJ mice TNBS Vehicle Ber 10–20 mg/kg 3 d TLR-4 expression in colonic epithelial cell↓    Lee et al., 2010
PM cell LPS Mangiferin Ber 10,20 μM 1 h TLR-4 & LPS banding↓    Jeong et al., 2014
Microglial cells OGD Vehicle Bai 40,20.10 ug/ml 24 h TLR-4 mRNA expression↓    Hou et al., 2012
IgAN SD rats BSA, LPS, and CCl4 Vehicle Rhe 400 mg/kg/d 6 w TLR-4 expression in renal↓    Chen et al., 2015
BEAS-2B cell LPS CKT0103 Rhe 10 μM 18 h TLR-4 level↓    Cabrera-Benitez et al., 2012
BALB/c mice LPS TAK-242 Rhe 100 mg/kg TLR-4 expression↓    Zhang et al., 2015
Wistar rats LPS Vehicle Emo 10mg/kg/hr 1,2 h TLR-4 expression↓    Li A. et al., 2013
MyD88 Microglial cells IL-1β Vehicle Ber 50 μM 24 h MyD88 expression↓    Chen C. C. et al., 2014
Microglial cells OGD Vehicle Bai 20 ug/ml 2 h MyD88 activation↓    Hou et al., 2012
C57BL/6 mice DSS Mesalazine Bai 100 mg/kg/12 h 7 d colon MyD88 expression↓    Feng et al., 2014
ICR mice Placebo Ribavirin Bai 375 mg/kg/d 7 d MyD88 mRNA expression↓    Wan et al., 2014
TNFR1 HEK293 cell TNF-α None Ber 25 μmol/L 24 h TNFR1gene expression↓    Pandey et al., 2008
TRADD HEK293 cell TNF-α None Ber 25 μmol/L 24 h TRADD gene expression↓    Pandey et al., 2008
TRAF2 HEK293 cell TNF-α None Ber 25 μmol/L 24 h TRAF2 gene expression↓    Pandey et al., 2008
SAP SD rats ST SO Emo 30 mg/kg 6 h TRAF2 protein expression↓    Wu et al., 2013
TRAF6 Microglial cells OGD Vehicle Bai 40 ug/ml 4 h TRAF6 protein level↓    Hou et al., 2012
NIK HEK293 cell TNF-α None Ber 25 μmol/L 24 h NIK gene expression↓    Pandey et al., 2008
Fischer 344 rats “Age” diet Young rats Bai 10,20 mg/kg/d 10 d NIK phosphorylation↓    Kim et al., 2006
Raf Fischer 344 rats “Age” diet Young rats Bai 10,20 mg/kg/d 10d Raf phosphorylation↓    Kim et al., 2006
U251/U87 cell None Vehicle Ber 15 μM 1-7 d p-Raf phosphorylation↓    Liu et al., 2015
IRAK1 PM cell LPS Mangiferin Ber 10,20 μM 90 min phosphorylation of IRAK1↓    Jeong et al., 2014
IKK PM cell LPS Mangiferin Ber 10,20 μM 90 min phosphorylation of IKK-β↓    Jeong et al., 2014
HEK293 cell TNF-α None Ber 25 μmol/L 24 h IKK-β gene expression↓    Pandey et al., 2008
KM mice HCM diet Vehicle Ber 50 mg/kg 2 w IKKβ phosphorylation in liver and adipose tissue↓    Shang et al., 2010
ARD Wistar rats HCM diet Normal diet Ber 150 mg/kg/d 12 w renal IKKβ protein level↓    Wan et al., 2013
Fischer 344 rats “Age”diet Young rats Bai 10,20 mg/kg/d 10 d p-IKK expression↓    Kim et al., 2006
HBE16 cells LPS Vehicle Bai 10–100μM 24 h p-IKK expression↓    Dong et al., 2015
BALB/c mice cisplatin Vehicle Bae 50 mg/kg/d 15 d p-IKK protein expression↓    Sahu et al., 2015
Raw264.7 cell LPS Vehicle Rhe 17.5,35 μM 2 h IKKβ activity↓    Gao et al., 2014
BALB/c mice LPS CMCS Rhe 20–80 mg/kg/d 7 d p-IKKβ protein expression↓    Yu et al., 2015
IκBα PM cell LPS Yohimbine Ber 2 μM 90 min phosphorylation of IκBα↓    Li et al., 2012
Jurkat cell TNF-α None Ber 50 μmol/L 18 h IκB-α degradation↓    Pandey et al., 2008
Mesangial cell LPS PDTC Ber 30,90 μM 12 h IκBα protein expression↑    Jiang et al., 2011
BALB/c mice DSS CK Ber 100 mg/kg 3 d colon IκBα protein expression↑    Li et al., 2014
C57BL/6 mice LPS Yohimbine Ber 50 mg/mg 3 d spleen IκBα phosphorylation↓    Li et al., 2012
BALB/c mice DSS CK Ber 100 mg/kg 3 d p-IκBα protein expression of in cytoplasm of colon cell↓    Li et al., 2014
Raw264.7 cell LPS BAY11-7082 Bae 10 μM 2 h IκBα phosphorylation↓    Fan et al., 2013
BALB/c mice Cisplatin Vehicle Bae 50 mg/kg/d 15 d p-IκBα protein expression↓    Sahu et al., 2015
C57BL/6 mice Surgery SO Bae 100 mg/kg/d 7 d IκBα degradation↓    Wang W. et al., 2015
WKY rats LPS SO Bae 10 mg/kg 6 h p- IκBα expression↓    Lee et al., 2011
Microglial cells OGD Vehicle Bai 40,20 ug/ml 4 h p-IκBα protein level↓    Hou et al., 2012
DBA/1 mice CII PBS Emo 10 mg/kg 10 d IκBα degradation↓    Hwang et al., 2013
HUVECs LPS DMSO Emo 10–50 μg/ml 30 min IκBα degradation↓    Meng et al., 2010
MEC LPS Vehicle Emo 10,20,40 μg/ml 1 h IκBα degradation↓    Yang Z. et al., 2014
BMMCs PMA+ A23187 PDTC Emo 1–20 μM 1 h p-IκBα / IκBα↓    Lu et al., 2013
Raw264.7 cell LPS Vehicle Rhe 17.5,35 μM 30 min IκBα phosphorylation↓    Gao et al., 2014
Chondrocytes IL-1β Vehicle Rhe 10 μM 18 h IκBα degradation↓    Domagala et al., 2006
Raw264.7 cell LPS BAY11-7082 Aem 10,20 μM 12 h IκBα degradation↓    Hu et al., 2014
BALB/c mice LPS CMCS Rhe 20–80 mg/kg/d 7 d p-IκBα protein expression↓    Yu et al., 2015
NF-κB PM LPS Yohimbine Ber 2 μM 90 min NF-κB translocation and phosphorylation↓    Li et al., 2012
SD rats Surgery Interceed Ber 0.75,1.5 mg/ml 14 d NF-κB phosphorylation↓    Zhang et al., 2014
SD diabets rats STZ Vehicle Ber 200 mg/kg 12 w renal NF-κB expression↓    Xie et al., 2013
Jurkat cell TNF-α None Ber 50 μmol/L 18 h NF-κB activation↓    Pandey et al., 2008
ARD wistar rats HCM diet Normal diet Ber 150 mg/kg/d 12 w Renal NF-κB DNA banding↓    Wan et al., 2013
BALB/cN mice Cisplatin Vehicle Ber 3 mg/kg 2 d NF-κB expression↓    Domitrović et al., 2013
C57BL/6 rats Cigarettes Vehicle Ber 50 mg/kg 4d lung NF-κB DNA banding↓    Lin K. et al., 2013
BALB/c mice LPS Yohimbine Ber 50 mg/Kg 3 d ileum NF-κB activation↓    Li et al., 2011
C3H/HeN, C3H/HeJ rats(colitis) TNBS Vehicle Ber 10,20 mg/kg 3 d colon NF-κB activation↓    Lee et al., 2010
Raw264.7 cell LPS BAY11-7082 Bae 10 μM 2 h NF-κB activation↓    Fan et al., 2013
DBA/1 mice CII PBS Emo 10 mg/kg 10 d NF-κB binding activity↓    Hwang et al., 2013
MEC LPS Vehicle Emo 10,20,40 μg/m 1 h NF-κB activation↓    Yang Z. et al., 2014
SD rats ADM Benazepril Rhe 100 mg/kg/d 6–12 w Renal NF-κB activation↓    Ji et al., 2005
p65 PM cell LPS Mesalazine Ber 10,20 μM 1 h p65 phosphorylation↓    Jeong et al., 2014
Jurkat cell TNF-α None Ber 50 μmol/L 18 h p65 phosphorylation and translocation↓    Pandey et al., 2008
NIT-1 cell LPS Vehicle Ber 2.5,5.0 μM 24 h p65 phosphorylation↓    Hamsa and Kuttan, 2012
Mesangial cell LPS PDTC Ber 30,90 μM 12 h p65 translocation↓    Jiang et al., 2011
B16F-10 cell LPS Vehicle LPS 2 μg/mL 2 h p65 DNA-bound↓    Hamsa and Kuttan, 2012
ARD Wistar rats HCM diet Normal diet Ber 150 mg/kg/d 12 w Renal p65 protein level↓    Wan et al., 2013
C57BL/6 rats Cigarettes Vehicle Ber 50 mg/kg 4 d p65 translocation↓    Lin K. et al., 2013
BALB/c mice DSS CK Ber 100 mg/kg 3 d p65 translocation↓    Li et al., 2014
BALB/c mice Cisplatin Vehicle Bae 50 mg/kg/d 15 d p65 translocation↓    Sahu et al., 2015
C57BL/6 mice Surgery SO Bae 100 mg/kg/d 7 d p65 expression↓    Wang W. et al., 2015
C57BL/6 mice Ang II Vehicle Bae 25 mg/kg 14 d p65 expression↓    Wang A. W. et al., 2014
Raw264.7 cell LPS BAY11-7082 Bae 10 μM 2 h p65 translocation↓    Fan et al., 2013
Cardiomyocytes I/R Vehicle Bae 25 μM 30 min p65 phosphorylation↓    Song et al., 2014
ICR mice Placebo Ribavirin Bai 375 mg/kg/d 7 d p65 protein level↓    Wan et al., 2014
WKY rats LPS SO Bae 10 mg/kg 6 h p-p65 expression↓    Lee et al., 2011
DBA/1 mice CII PBS Emo 10 mg/kg 10 d p65 translocation↓    Hwang et al., 2013
BALB/c mice LPS Saline Emo 100 mg/kg/12h 3.5 d p65 phosphorylation↓    Xiao et al., 2014
Wistar rats LPS Vehicle Emo 10 mg/kg/hr 1,2 h p65 expression↓    Li A. et al., 2013
HUVECs LPS IL-1β Emo 10–50μg/ml 30 min p65 translocation↓    Meng et al., 2010
MEC LPS GW9662 Emo 10,20,40 μg/ml 1 h p-p65 expression↓    Yang Z. et al., 2014
MDA-MB-435s TNF-α Vehicle Rhe 50–200 μM 48 h p65 nuclear translocation↓    Fernand et al., 2011
Raw264.7 cell LPS Vehicle Rhe 17.5,35 μM 1 h p65 level in nuclear↓    Gao et al., 2014
BALB/c mice LPS CMCS Rhe 20–80 mg/kg/d 7 d p-p65 protein expression↓    Yu et al., 2015
p50 B16F-10 cell LPS Vehicle Ber 2 μg/mL 2 h p50 DNA-bound↓    Hamsa and Kuttan, 2012
ARD Wistar rats HCM diet Normal diet Ber 150 mg/kg/d 12 w renal p50 protein level↓    Wan et al., 2013
DBA/1 mice CII PBS Emo 10 mg/kg 10 d p50 translocation↓    Hwang et al., 2013
MDA-MB-435s TNF-α Vehicle Rhe 50–200 μM 48 h p50 nuclear translocation↓    Fernand et al., 2011
GSK3β HT-29/B6 cell TNF-α BAY11-7082, Genistein Ber 50 μM 26,2 h GSK3β phosphorylation↓    Amasheh et al., 2010
IRF3 PM LPS Yohimbine Ber 2 μM 2 h IRF3 phosphorylation↓    Li et al., 2012
BALB/c mice LPS Yohimbine Ber 50 mg/kg 3 d spleen IRF3 phosphorylation↓    Li et al., 2012
DC1.2 cell Poly(I:C) Vehicle Rhe 1–10 μM 5 h p-IRF3 expression↓    Yuan et al., 2015

It has been identified that, MyD88 is recruited by TLR4 at plasma membrane to stimulate the initial activation of IKK, and it may be responsible for the early peak in NF-κB activity (Cheng Z. et al., 2015). Apart from MyD88, there are many other adapter molecules (such as TRAF3, TRAM and TRADD) sharing similar activity. NIK will promote NF-κB activation once combined with TRAF2 (Lee et al., 2014). Among them, MyD88 has been most systemically studied both in vivo and in vitro. In respect of these adaptor molecules, Ber and Bai negatively regulate their protein expressions (Pandey et al., 2008; Hou et al., 2012; Lim et al., 2012; Chen C. C. et al., 2014; Feng et al., 2014; Wan et al., 2014), however the main constituents from RR are rarely mentioned.

Enzyme complex IKK (α-γ) have a crucial role in regulating NF-κB signaling pathway (Bagnéris et al., 2015). In general, IκBα forms a heterodimer with p65 (RELA) and p50 (NF-κb1), making NF-κB sequestered in cytoplasm. Once activated, IκBα goes phosphorylated meanwhile p65 is liberated and translocate into nuclear, which leads to gene transcription (Pandey et al., 2008). Depicted in Figure 1, the majority of current studies focus on upstream molecules from IKK to p65. Data in Table 1 show the main constituents of SHXXT can inhibit (1) the expression and phosphorylation of IKK, (2) the expression, phosphorylation and degradation of IκBα, (3) the expression, phosphorylation and translocation of p65 and (4) the expression, phosphorylation, DNA banding and activation of NF-κB in multiple in-vivo and in-vitro models, such as mesangial (Jiang et al., 2011), RAW264.7 (Fan et al., 2013), MEC (Yang Z. et al., 2014) etc., and ARD rats (Wan et al., 2013), C57BL/6 mice (Wang W. et al., 2015), DBA/1 mice (Hwang et al., 2013), etc.

Figure 1.

Figure 1

The effect of SHXXT alkaloids on inflammatory pathway molecules. 1. The green ellipse represents kinase. 2. The purple ellipse represents transcription factor. 3. The red ellipse represents GTpase. 4. The brown ellipse represents phosphatase. 5. The solid arrow represents direct stimulatory modification. 6. The dotted arrow represents translocation. 7. The dotted “T” represents direct inhibitory modification. 8. The red, yellow and blue cross represents the target influenced by RC, RS, and RR constituents, respectively.

We know that, GSK3β is not active until dephosphorylated, and the activation will promote inflammation process undergoes Alzheimer Disease and diabetes (Venna et al., 2015). IRF3 is a target of TLR-4 signaling pathway, acting as regulating and activating the transcription of interferon which results inflammatory responses (Cheng B. C. Y. et al., 2015). Briefly, phosphorylation of these two downstream molecules are both identified to be reversed by Ber or Rhe treatment in either animal or cell inflammatory model (Amasheh et al., 2010; Li et al., 2012; Yuan et al., 2015), which cover the effect shortage of RS constituents at this part.

Effect of the active constituents on molecules in MAPK pathway

MAPK can be divided into several subfamilies including p38, ERK and JNK (Lou et al., 2011). Upstream TAK1 forms a complex consist of TAB1, TAB2, and TRAF6 and then sequentially activate MKK and JNK. The presence of Ras will activate c-raf, MEK and ERK, followed by c-fos regulation once transported into nucleus. Subsequently, the regulated c-fos recruits c-jun to form AP-1 complex (Figure 1).

Accumulative data shown in Table 2 leads to a conclusion that p38, ERK, and JNK attract the most focus of study in MAPK pathway. In-vitro study results reveal that the increased level of p38, ERK or JNK phosphorylation stimulated by cytokines/chemokines like LPS (Lin Y. et al., 2013), IL-1β (Legendre et al., 2007), oxLDL (Chen J. et al., 2014), PMA (Huang Z. et al., 2011), ischemia (Song et al., 2014), OGD (Hou et al., 2012), HG (Li et al., 2009) and CoCl2 (Fernand et al., 2011), or in-vivo elevated level induced by insulin (Lu et al., 2010), collagen (Wang Z. et al., 2014) and cisplatin (Sahu et al., 2015) can be significantly attenuated by either RR, RC, or RS constituent intervention. To further investigate whether p38, ERK and JNK are the only targets, molecules lied on the upstream and downstream are taken into consideration. Turns out, Ber, Bai as well as Rhe treatments all show inhibitory effect on MEK phosphorylation (Shen et al., 2011; Lim et al., 2012; Liu et al., 2015). Nevertheless, for the enhanced phosphorylation of TAK1, Ber is the only reported SHXXT constituent (Zhang et al., 2014). In addition, Ber, Bai, or Rhe also display markedly suppressing effect on endonuclear translocation factors like c-fos and CREB (Hamsa and Kuttan, 2012), c-jun (Hou et al., 2012), ATF-2(Legendre et al., 2007), CHOP (Zha et al., 2010), or AP-1 complex (Domagala et al., 2006).

Table 2.

Effect of the active constituents on molecules in MAPK pathway.

Target Animal or cell culture Model building Control (P or N) Drug Dose Treat time Result
MEK Fischer 344 rats “Age” diet Young rats Bai 10,20 mg/kg/d 10 d MEK phosphorylation↓    Kim et al., 2006
VSMC PDGF Vehicle Bai 5–40 μM 48 h p-MEK phosphorylation↓    Hu et al., 2010
U251/U87 cell None Vehicle Ber 15 μM 1–7 d p-MEK phosphorylation↓    Liu et al., 2015
Jurkat cell SDF-1β Pyscion Emo 1 μg/ml 1 h p-MEK phosphorylation↓    Shen et al., 2011
TAK1 SD rats Surgery Interceed Ber 0.75,1.5 mg/ml 14 d TAK phosphorylation Zhang et al., 2014
JNK THP-1 cell oxLDL Vehicle Ber 25 μM 1 h JNK phosphorylation↓    Chen J. et al., 2014
RAW264.7 cell, PM LPS Vehicle Ber 5 μM 2 h JNK phosphorylation↓    Jeong et al., 2009
PM LPS Yohimbine Ber 2 μM 90 min JNK activation↓    Li et al., 2012
CIA SD rats Collagen PBS Ber 200 mg/kg 28 d JNK expression↓    Wang Z. et al., 2014
SD rats Surgery Interceed Ber 0.75,1.5 mg/ml 14 d JNK phosphorylation↓    Zhang et al., 2014
BALB/c mice LPS Yohimbine Ber 50 mg/kg 3 d Spleen JNK phosphorylation↓    Li et al., 2012
CIA SD rats Collagen PBS Ber 200 mg/kg 28 d p-JNK expression↓    Wang Z. et al., 2014
NIT-1 cell LPS Vehicle Ber 2.5,5.0 μM 24 h p-JNK expression↓    Hamsa and Kuttan, 2012
Cardiomyocytes I/R Vehicle Bae 25 μM 30 min JNK1/2 phosphorylation↓    Song et al., 2014
Microglial cells OGD Vehicle Bai 40,20 ug/ml 4 h p-JNK protein level↓    Hou et al., 2012
BALB/c mice Cisplatin Vehicle Bae 50 mg/kg/d 15 d p-JNK expression↓    Sahu et al., 2015
C57BL/6 mice Surgery SO Bae 100 mg/kg/d 7 d p-JNK expression↓    Wang W. et al., 2015
TRMs rats None WT Bae 10–40 mg/kg 14 d p-JNK expression↓    Mao et al., 2014
SAP SD rats ST SO Emo 30 mg/kg 6 h p-JNK protein expression↓    Wu et al., 2013
BMMCs PMA+ A23187 SP600125 Emo 1–20 μM 1 h p-JNK/JNK↓    Lu et al., 2013
MEC LPS Vehicle Emo 10,20,40 μg/ml 1 h p-JNK expression↓    Yang Z. et al., 2014
Chondrocytes IL-1β DMSO Rhe 100 μM 18 h JNK activation↓    Legendre et al., 2007
Raw264.7 cell LPS SP600125 Aem 5,10,20 μM 4 h JNK phosphorylation↓    Hu et al., 2014
ERK PM LPS Yohimbine Ber 2 μM 90 min ERK activation↓    Li et al., 2012
HepG2 cell Palmitate PD98059 Ber 10 μM 30 min ERK phosphorylation↓    Lu et al., 2010
BV2 microglial IFN-γ Vehicle Ber 10 μM 30 min ERK phosphorylation↓    Lu et al., 2010
RAW264.7 cell, PM LPS Vehicle Ber 5 μM 2 h ERK phosphorylation↓    Jeong et al., 2009
BALB/c mice LPS Yohimbine Ber 50 mg/kg 3 d Spleen ERK phosphorylation↓    Li et al., 2012
CIA SD rats Collagen PBS Ber 200 mg/kg 28 d p-ERK expression↓    Wang Z. et al., 2014
U266 cells IL-6 PD98059 Bae 50 μM 1 h ERK1/2 phosphorylation↓    Liu et al., 2010
Fischer 344 rats “Age” diet Young rats Bai 10,20 mg/kg/d 10 d p-ERK1/2 expression↓    Kim et al., 2006
BALB/c mice Cisplatin Vehicle Bae 50 mg/kg/d 15 d p-ERK expression↓    Sahu et al., 2015
C57BL/6 mice Surgery SO Bae 100 mg/kg/d 7 d p-ERK expression↓    Wang W. et al., 2015
C57BL/6 mice Ang II Vehicle Bae 25 mg/kg 14 d p-ERK1/2 expression↓    Wang A. W. et al., 2014
Chondrocytes IL-1β Vehicle Rhe 10 μM 18 h ERK1/2 phosphorylation↓    Domagala et al., 2006
Chondrocytes IL-1β DMSO Rhe 100 μM 18 h ERK activation↓    Legendre et al., 2007
BALB/c mice LPS Vehicle Emo 1–4 mg/kg 12 h ERK phosphorylation↓    Li D. et al., 2013
MEC LPS Vehicle Emo 10,20,40 μg/ml 1 h p- ERK expression↓    Yang Z. et al., 2014
BMMCs PMA+ A23187 U0126 Emo 1–20 μM 1 h p- ERK / ERK ↓    Lu et al., 2013
Raw264.7 cell LPS PD98059 Aem 5,10,20 μM 12 h ERK1/2 phosphorylation↓    Hu et al., 2014
P38 THP-1 oxLDL Vehicle Ber 25 μM 1 h p38 phosphorylation↓    Chen J. et al., 2014
THP-1 PMA Vehicle Ber 5–50 μM 1 h Block p38 pathway Huang Z. et al., 2011
RAW264.7 cell, PM LPS Vehicle Ber 5 μM 2 h p38 phosphorylation↓    Jeong et al., 2009
CIA SD rats Collagen PBS Ber 200 mg/kg 28 d p-p38 expression↓    Wang Z. et al., 2014
SD rats LPS Vehicle Ber 100 mg/kg 24 h p38 expression↓    Godugu et al., 2014
BALB/cN mice Cisplatin Vehicle Ber 3 mg/kg 2 d Renal p38 expression↓    Domitrović et al., 2013
Cardiomyocytes I/R Vehicle Bae 25 μM 30 min p38 phosphorylation↓    Song et al., 2014
Microglial cells OGD Vehicle Bai 40, 20 ug/ml 4 h p-p38 protein level↓    Hou et al., 2012
BALB/c mice Cisplatin Vehicle Bae 50 mg/kg/d 15 d p-p38 expression↓    Sahu et al., 2015
C57BL/6 mice Surgery SO Bae 100 mg/kg/d 7 d p-p38 expression↓    Wang W. et al., 2015
TRMs rats None WT Bae 10–40 mg/kg 14 d p-p38 expression↓    Mao et al., 2014
HUVECs LPS Vehicle Rhe 0,5,10,20 μM 24 h p38 phosphorylation↓    Hu et al., 2013
HUVECs LPS ip38 Rhe 20 μM 24 h p38 phosphorylation↓    Lin Y. et al., 2013
SAP SD rats ST SO Emo 30 mg/kg 6 h p-p38 protein expression↓    Wu et al., 2013
HBZY-1 HG SB203580 Emo 30–60 μM 24 h p-p38 protein expression↓    Li et al., 2009
MEC LPS Vehicle Emo 10,20,40 μg/ml 1 h p-p38 protein expression↓    Yang Z. et al., 2014
BMMCs PMA+ A23187 SB203580 Emo 1–20 μM 1 h p-p38 /p38↓    Lu et al., 2013
HUVECs CoCl2 Vehicle Rhe 50 μM 6 h p-ERK acivation↓    Fernand et al., 2011
Raw264.7 cell LPS SB203580 Aem 10,20 μM 4 h p38 phosphorylation↓    Hu et al., 2014
IRS-1 3T3-L1 cell TNF-α Pioglitazone WE 30–100 mg/L 24 h IRS-1 phosphorylation↓    Yuan et al., 2014
HepG2 cell Palmitate SS Ber 0.1–10 μM 30 min IRS-1 phosphorylation↓    Lou et al., 2011
MAPK APK2 HUVECs LPS ip38 Rhe 20 μM 24 h MAPKAPK2 phosphorylation↓    Lin Y. et al., 2013
CREB B16F-10 cell LPS Vehicle Ber 2 μg/ml 2 h CREB DNA-bound↓    Hamsa and Kuttan, 2012
c-Rel B16F-10 cell LPS Vehicle Ber 2 μg/ml 2 h c-Rel DNA-bound↓    Hamsa and Kuttan, 2012
c-fos B16F-10 cell LPS Vehicle Ber 2 μg/ml 2 h c-Fos DNA-bound↓    Hamsa and Kuttan, 2012
c-jun Microglial cells OGD Vehicle Bai 40 ug/ml 4 h p-c-jun protein level↓    Hou et al., 2012
AP-1 Chondrocytes IL-1β DMSO Rhe 100 μM 18 h AP-1 DNA binding↓    Legendre et al., 2007
Chondrocytes IL-1β Vehicle Rhe 10 μM 18 h AP-1 DNA binding↓    Domagala et al., 2006
ICR mice Placebo Ribavirin Bai 375 mg/kg/d 7 d c-jun/AP-1 expression↓    Wan et al., 2014
ATF2 B16F-10 cell LPS Vehicle Ber 2 μg/ml 2 h ATF-2 DNA-bound↓    Hamsa and Kuttan, 2012
CHOP J744A.1 macrophages Protease inhibitor Vehicle Ber 0–2.0 mg/ml 2 h nuclear CHOP expression↓    Zha et al., 2010

Effect of the active constituents on molecules in AMPK pathway

AMPK serves as a cellular energy sensor to modulate lipid metabolism, and it can be activated by upstream kinases like LKB1 and CaMKK (Yang Y. et al., 2014; Li N. S. et al., 2016). There is a mechanism underlined the relationship, thus once AMPK activated, the nuclear translocation of Nrf2 is promoted, which contribute to the diminution of pro-inflammatory cytokines production. Nrf2 can also drive downstream HO-1 expression in with the considerable beneficial protect effect against cell injury from inflammatory response like diabetes mellitus (Agca et al., 2014). PPAR-γ is identified as a primary regulator of gene expression for inflammation and a pharmacological receptor of insulin-sensitizing drugs (Choi et al., 2014).

As summed up in Table 3, the current study status demonstrate that Ber from RC exert the most comprehensive effect compared with other constituents form RR and RS, pathway molecules from upstream to downstream, including CaMKII, LKB1, PPAR-γ (Legendre et al., 2007), AMPK (Lu et al., 2010), Nrf2 and HO-1(Mo et al., 2014) are all verified to be the effective targets of Ber. In addition, Emo (Yang Z. et al., 2014; Wang T. et al., 2015), Bai and Bae (Lim et al., 2012; Ma et al., 2012; Feng et al., 2013; Tsai et al., 2014) as well affect some of those molecules. Given this investigation situation, it seems that constituents from either RR, RS, or RC can block AMPK pathway by cross-talk regulating pathway molecules.

Table 3.

Effect of the active constituents on molecules in AMPK pathway.

Target Animal or cell culture Model building Control (P or N) Drug Dose Treat time Result
CaMK-II BV2 microglial cell LPS or IFN-γ Vehicle Ber 10 μM 2 h CaMKII (Thr286) phosphorylation↑    Lu et al., 2010
LKB1 BV2 microglial cell LPS or IFN-γ Vehicle Ber 10 μM 2 h LKB1 phosphorylation↑    Lu et al., 2010
AMPK BV2 microglial cell LPS or IFN-γ Vehicle Ber 10 μM 2 h AMPK (Thr172) phosphorylation↑    Lu et al., 2010
Hela cell None Compound C Bai 1 μM 3 h AMPK phosphorylation↑    Ma et al., 2012
HO-1 PM LPS Vector Ber 10 μM 24 h HO-1 mRNA expression↑    Mo et al., 2014
SD rats LPS Vehicle Bae 20 mg/kg 7 h HO-1 protein expression↑    Tsai et al., 2014
BALB/c mice Dox Vehicle Bae 25 mg/kg 24 d HO-1 protein expression↑    Sahu et al., 2016
C57BL/6 mice OVA Dex Emo 10 mg/kg 3 d HO-1 mRNA expression↑    Wang T. et al., 2015
Nrf2 PM LPS Vector Ber 10 μM 24 h Nrf2 translocation↑    Mo et al., 2014
SD rats LPS Vehicle Bae 20 mg/kg 7 h Nrf2 nuclear translocation↑    Tsai et al., 2014
BALB/c mice Dox Vehicle Bae 25 mg/kg 24 d Nrf2 protein expression↑    Sahu et al., 2016
PPAR -γ 3T3-L1 cell TNF-a Pioglitazone WE 30 mg/L 24 h PPAR-γ mRNA expression↑Yuan et al., 2014
SD rats LPS SR-202 Bai 25 mg/kg 3 d intestinal PPAR-γ level↓    Feng et al., 2013
Fischer 344 rats Aged TZD;GW9662 Bai 10 mg/kg 3 d PPAR-γ protein expression↓    Lim et al., 2012
HBZY-1 HG SB203580 Emo 30–60 μM 24 h PPAR-γ protein expression↑    Li et al., 2009
MEC LPS Rosiglitazone Emo 10 μg/ml 1 h PPAR-γ activation↑    Yang Z. et al., 2014

Effect of the active constituents on molecules in JAK/STAT pathway

The activation of JAK catalyze Tyr phosphorylation so that STAT can be combined with receptor protein, then transported into nucleus to regulate transcription. It has been reported that STAT1 and STAT5, the downstream molecules of IFN-γ, are also likely to be implicated in inflammation (Chmielewski et al., 2015; Li X. et al., 2015). Akt functions as emerging crucial regulator of multiple cellular processes, such as apoptosis, differentiation, survival, etc., (Piao et al., 2015). Moreover, recent studies indicate PI3K/Akt can lead to an elevated expression level of COX-2 and iNOs in inflammatory macrophages (Liou et al., 2014). Further activated mTOR can regulate cell growth, differentiation as well as transcription and it tends to perform abnormally in diabetes models (Hua and Hu, 2015).

For JAK/STAT pathway, constituents from RC, RS and RR are all showing inhibitory activity, typical targets include JAK (Kim et al., 2011; Qi et al., 2013; Subramaniam et al., 2013), STAT (Cui et al., 2009; Liu et al., 2010; Kim et al., 2015) and Akt (Lou et al., 2011; Hu et al., 2014; Wang A. W. et al., 2014), all of which are proved to be influenced by Ber, Bae, Bae, Emo or Aem in either in-vivo or in-vitro models (Table 4). On the other hand, results in the study concerning about downstream molecular present main RR constituent's effect-weakness on targets like Tyk2. Apparently, RS and RC cover the shortfalls of RR's poor activity in downstream pathway, which partly supports the synergistic theory of drug combination aiming at promoting curative effect.

Table 4.

Effect of the active constituents on molecules in JAK/STAT pathway.

Target Animal or cell culture Model building Control (P or N) Drug Dose Treat time Result
JAK1 Raw264.7 cell LPS Vehicle Bae 20–80 μM 2 h JAK1 phosphorylation↓    Qi et al., 2013
NOP2 cells IL-6 None Bae 50 μM 1 h JAK1 phosphorylation↓    Liu et al., 2010
JAK2 Raw264.7 cell LPS Vehicle Bae 20–80 μM 2 h JAK2 phosphorylation↓    Qi et al., 2013
HepG2 None Vehicle Emo 50 μM 12 h JAK2 phosphorylation↓    Subramaniam et al., 2013
JAK3 Nb2 cell IL-2 Vehicle Ber 1–10 μM 1 h JAK3 phosphorylation↓    Kim et al., 2011
STAT1 NOD rats CD4+ T cell None Vehicle Ber 200 mg/kg 5, 10 μM 2 w STAT1 phosphorylation↓    Cui et al., 2009
BALB/c mice LPS Yohimbine Ber 50 mg/kg 3 d Spleen STAT1 phosphorylation↓    Li et al., 2012
U266 cells IL-6 None Bae 12.5–50 μM 1 h STAT1 phosphorylation↓    Liu et al., 2010
STAT3 NOD rats CD4+ T cell None Vehicle Ber 200 mg/kg 5, 10 μM 2 w STAT3 phosphorylation↓    Cui et al., 2009
U266cells IL-6 None Bae 50,100 μM 1 h STAT3 phosphorylation↓    Liu et al., 2010
GSCs None Vehicle Emo 5 μM 24 h p-STAT3 phosphorylation↓    Kim et al., 2015
RPMI8266 IL-6 Dox Emo 50 μmol/L 12 h STAT3 phosphorylation↓    Muto et al., 2007
STAT5 Nb2 cell IL-2 Vehicle Ber 1,3,7,10 μM 1 h STAT5 phosphorylation↓    Kim et al., 2011
STAT4 NOD rats CD4+ T cell None Vehicle Ber 200 mg/kg 5, 10μM 2 w STAT4 phosphorylation↓    Cui et al., 2009
Arthritis mice kaolin Prednisolone Ber 10–50 mg/kg 6 d synovial expression STAT4↓    Kim et al., 2011
STAT6 Arthritis mice kaolin Prednisolone Ber 10–50 mg/kg 6 d synovial expression STAT6↓    Kim et al., 2011
Tyk2 BALB/c mice LPS Yohimbine Ber 50 mg/kg 3 d Spleen Tyk2 phosphorylation↓    Li et al., 2012
NOP2 cells IL-6 None Bae 25 μM 1 h Tyk2 phosphorylation↓    Liu et al., 2010
Src-P HT-29/B6 cell TNF-α BAY11-7082, Genistein Ber 50 μM 26 h Src-P phosphorylation↓    Amasheh et al., 2010
Akt HT-29/B6 cell TNF-α BAY11-7082, Genistein Ber 50 μM 26 h Akt phosphorylation↓    Amasheh et al., 2010
HepG2 cell Paimitate PD98059,SS, BAY11-7082 Ber 0.1–10 μM 30 min Akt phosphorylation↓    Lou et al., 2011
NOP2 cells IGF-1 None Bae 10 μM 30 min Akt phosphorylation↓    Liu et al., 2010
HUVECs CoCl2 Vehicle Rhe 50 μM 6 h p-Akt activation↓    Fernand et al., 2011
Raw264.7 cell LPS LY294002 Aem 10,20 μM 4 h Akt phosphorylation↓    Hu et al., 2014
C57BL/6 mice Ang II Vehicle Bae 25 mg/kg 14 d p-Akt expression↓    Wang A. W. et al., 2014
SD rats Adjuvant Ibuprofen Rhe 50 mg/kg 21 d p-Akt/Akt level↓    Cong et al., 2012
PI3K HUVECs CoCl2 Vehicle Rhe 50 μM 6 h PI3K activation↓    Fernand et al., 2011
HT-29/B6 cell TNF-α BAY11-7082, Genistein Ber 50 μM 26 h PI3K activation↓    Amasheh et al., 2010
mTOR CRC cells None Vehicle Ber 15–60 μM 24 h mTOR phosphorylation↓    Li W. et al., 2015
C57BL/6 mice Ang II Vehicle Bae 25 mg/kg 14 d p-mTOR expression↓    Wang A. W. et al., 2014

Pharmacokinetic level

Traditional Chinese medicines are frequently orally administrated and the absorption of active constituents are confirmed to be influenced by efflux pumps and intestinal transporters (ITs) (Park et al., 2012; Zumdick et al., 2012). In general, ITs widely distribute in intestinal membrane and can be divided into two categories. One accounts for external substance's intracellular transport, such as OCTs and SGLT1 (Moran et al., 2014; Couroussé and Gautron, 2015). The other one, like P-gp, MRP and BCRP, is functioning as efflux pump to make drug or toxin back to lumen (Yamagata et al., 2007; Juan et al., 2010; Zeng et al., 2015). There are many isolate reports showing SHXXT's main constituents have an unexpectedly low concentration in plasma with oral administration, making it challenged to explain its positive effects in inflammatory therapies.

In-vitro research on the efflux pump and ITs normally use Caco-2 cell or MDCK cell for they both have similar structure of differential intestinal epithelial cell with apical side and basolateral side (Chen et al., 2013; Schexnayder and Stratford, 2015; Obringer et al., 2016). Currently, it is verified that Bai from RS is the substrate of both MRP2 and BCRP (Kalapos-Kovács et al., 2015), and another RS constituent Bae is also pumped out by MRP (Zhang et al., 2007). Rhe, Emo and Aem from RR are substrate of BCRP, MRP and P-gp respectively (Wang J. et al., 2011; Liu et al., 2012; Ye et al., 2013), those ITs at least partly reduce the bioavailability of SHXXT constituents by diminishing their intracellular transport. Similarly, the absorption of Ber, Pal, Cop and Jat form RC is reported to be promoted by OCTs while inhibited by P-gp (Chen et al., 2008; Zhang et al., 2011; Sun et al., 2014). In addition to OCTs, SGLT1 also contributes to uptake (Zhang et al., 2012). Thus, any constituents in SHXXT which suppress the MRP2, BCRP, and P-gp activation or, on the other hand, up-regulate OCTs and SGLT1 activation may be considered to exert mutual reinforcement property by promoting bioavailability.

In return, constituents in SHXXT show retroaction on those efflux pump or ITs. Depicted in Figure 2, Firstly, P-gp, which reduces the absorption of Ber, Pal, Cop, Jar, and Aem, is proved to be inhibited by Bae treatment (Cho et al., 2011). Secondly, Rhe can suppress MRP's activation which may lead the increasing uptake of Aem, Bai, and Bae (Shia et al., 2013). Last but not least, Ber can as well decrease BCRP activation, which is capable of promoting the intracellular concentrations of Bai, Emo, and Rhe (Tan et al., 2013).

Figure 2.

Figure 2

The effect of SHXXT constituents on ITs. Ber, berberine; Cop, coptisine; Pal, palmatine; Jat, jatrorrhizine; Bai, baicalin; Bae, baicalein; Emo, emodin; Aem, aloe-emodin; Rhe, rhein.

Discussion

TCM normally used as prescription so as to recruit active contents from different herbals. Modern mutual reinforcement theory believes pharmacodynamics effect after herbal combination is not simply equal to the summing up of each herbal, but to a certain extent, should be more than that. Under most circumstances, a prescription can bring out more advantages in regards of safety and efficacy aspects than a single herb does (Song et al., 2013). Apart from expanding effect on one specific part, the combination of several herbals can also give rise to respective effect on different parts, which in other words, supplement other herbals' disadvantages or helping other herbals to perform their property in a better way.

Inflammatory signal transduction is quite complex network, and suppression on any intersection can partly contribute to the prevention of inflammation process. SHXXT have been high-lighted based on their widely appearance in inflammation-associated treatment for centuries. Clinically, SHXXT is a preferred drug for “coexistence of cold and heat” (Zhang et al., 2013c). With the constantly deepen researches, it is widely used in the treatment for anti-pathogens, anti-inflammation, gastric mucosal protection, hemostasis, anti-diabetes and so on (Li and Guo, 2010). As depicted in Figure 1, target with three colored “cross” is to be influenced by constituents form all three compositions (TLR-4, ERK, JNK, p38, Akt, etc.), which lead a fold increase of the final effect. On the other hand, target with less than three “cross” suggest at least one composition was not valid at this part. For example,

  1. Ber from RC is reported to affect TAK1 and interaction between LPS and TLR-4, while RR and main RS constituents barely mentioned.

  2. Bae from RS and Ber from RC inhibit Tyk2 phosphorylation, while no main RR constituent has similar effect.

  3. Rhe from RR and Ber from RC reduce IRF3 phosphorylation level, while the effect of main constituent of RS isn't that clear, etc.

The connotative meaning of synergism at pharmacodynamics level is to enhance the effect on a certain target, as well as to expand target-affecting scope, just like what SHXXT constituents have performed. As for the pharmacokinetic level, shown in Figure 2, Ber form RS, Rhe form RR and Bae form RC is capable of improving the uptake or reducing the efflux of constituents from the other composition, which ultimately reaches the goal of synergistically influence inflammatory processes and eventually make this formula's anti-inflammatory action stronger and wider.

Nowadays, elevated attention has been paid to dose-effect relationship. There is a complicated process which can be expressed as “theory-methodology-formulation-medication-dosage” in TCM clinical therapeutics, showing how important for a formula prescription to have a specific herbal dosage (Zha et al., 2015). Basically for western medicine, these is a positive correlation between dose and toxicity. However, TCM at a large dosage tends to have good therapy efficacy with slight side effect (Wang et al., 1983). The dosage of Chinese herbals in clinical cases or experimental studies is usually at a relatively higher level than that documented in ancient TCM records (Peng, 2003; Sun, 2007). RR as an example, the dosage to treat cholestasis in clinical is more than four times the regular dose recommended in the Chinese pharmacopeia (Zhang et al., 2016). For now, the widespread explanation is that drug should be administrated to the patient with the correct disorder indications, otherwise it will produce dosage variety and individual detrimental effect (Zhao et al., 2015). As displayed in Table 5, dosage of constituents from SHXXT has a big range with no obvious rule to follow, it is possibly due to different tested animals or cells may have different drug sensitivities, but still need further clarification.

Table 5.

The dose range of SHXXT constituent used in-vivo and in-vitro.

Constituent Model Dose lower limit Dose upper limit
Ber Cells 0.1 μM Lou et al., 2011 90μM Jiang et al., 2011
Mice 3 mg/kg Domitrović et al., 2013 50mg/kg Li et al., 2011
Rats 50 mg/kg Li et al., 2012 200 mg/kg Muto et al., 2007
Bai Cells 1 μM Ma et al., 2012 100 μM Dong et al., 2015
Mice 100 mg/kg Feng et al., 2014 375 mg/kg Wan et al., 2014
Rats 10 mg/kg Lim et al., 2012 25 mg/kg Feng et al., 2013
Bae Cells 10 μM Fan et al., 2013 80 μM Qi et al., 2013
Mice 25 mg/kg Sahu et al., 2016 100 mg/kg Wang W. et al., 2015
Rats 10 mg/kg Lee et al., 2011 40 mg/kg Mao et al., 2014
Emo Cells 1 μM Lu et al., 2013 182.5 μM Meng et al., 2010
Mice 1 mg/kg Li D. et al., 2013 100 mg/kg Xiao et al., 2014
Rats 10 mg/kg Li A. et al., 2013 30 mg/kg Wu et al., 2013
Alo Cells 5 μM Hu et al., 2014 20 μM Hu et al., 2014
Mice Not reported Not reported
Rats Not reported Not reported
Rhe Cells 10 μM Domagala et al., 2006 200 μM Fernand et al., 2011
Mice 20 mg/kg Yu et al., 2015 80 mg/kg Yu et al., 2015
Rats 100 mg/kg Ji et al., 2005 400 mg/kg Hou et al., 2012

Conclusions

It is easy to find out not all the SHXXT constituents receive deep-enough investigation on their anti-inflammatory effect, the interaction between main SHXXT constituents and targets outside the nucleus get most focus. Besides, any drug elevating the absorption of Rhe, Ber, and Bae can be employed to promote oral bioavailability of SHXXT. Even though evidence shows P-gp, BCRP, and MRP really are inhibited while reports rarely cover the effect of SHXXT constituents on OCTs or SGLT. Hence, further investigation at these two levels is required to fully explain the mutual reinforcement relationship of RR, RC, and RS.

Author contributions

JW: Prepare the manuscript; YH and LX: Search for the literatures; SL and YY: Draw the figures; XC and YZ: Do the summing work and accomplish the tables; WH: Polish language; XM and PW: Corresponding authors.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 81073118, 81274111 and 81473419).

Glossary

Abbreviations

ADM

adriamycin amycin

Akt

Protein kinase B; extracellular signal-regulated kinase

AMPK

5′ AMP-activated protein kinase

Ang II

angiotensin II

AP-1

activator protein 1

ATF

Activating transcription factor

BCRP

breast cancer resistance protein

CaMK

Calcium/calmodulin- dependent kinase

CHOP

C/EBP homologous protein 10

CK

ginsenoside metabolite compound K

CMC-Na

caboxy methyl cellulose

CREB

cAMP response element-binding protein

Dex

Dexamethasone

Dox

Doxorubicin

DSS

dextran sulfate sodium

ERK

extracellular signal-regulated kinase

GSK3β

Glycogen synthase kinase 3 beta

HCM

hypercholesterolemic

HG

high glucose

HO-1

HMOX1heme oxygenase (decycling) 1

I/R

ischemia/reperfusion

IKK

IκBα kinase

IκBα

inhibitor of nuclear factor κBα

iNOS

inducible nitric oxide synthase

IRAK

Interleukin-1 receptor-associated kinase

IRF3

Interferon regulatory factor 3

IRS-1

Insulin receptor substrate 1

JAK

junas kinase

JNK

c-Jun NH2-terminal kinase

LKB1

liver kinase B1

LPS

lipopolysaccharide

MAPK

mitogen-activated protein kinase

MAPKAPK2

MAP kinase-activated protein kinase 2

MEK

Mitogen-activated protein kinase kinase

MRP

multidrug resistance associated protein

mTOR

mammalian target of rapamycin 2

MyD88

Myeloid differentiation primary response gene 88

NIK

NF-κB inducing kinase

Nrf2

Nuclear factor (erythroid-derived 2)-like 2

OCT

organic cation transporter

OGD

oxygen–glucose deprivation

PDTC

Pyrrolidine dithiocarbamate

P-gp

P-glycoprotein

PI3K

phosphoinositide 3-kinase

PMA

Phorbol-12-myristate-13-acetate

Poly(I:C)

Polyinosinic:polycytidylic acid

PPAR-γ

peroxisome proliferator-activated receptor γ

Raf

RAF proto-oncogene serine/threonine-protein kinase

SAP

severe acute pancreatitis

SGLT1

Na+-dependent glucose transporter

SO

sham operation

SS

sodium salicylate

ST

sodium taurocholate

STAT

signal transducer and activator of transcription

TAK1

transforming growth factor-b-activated kinase

TLR-4

toll-like receptor

TNBS, 2, 4

6-trinitrobenzene sulfonic acid

TNFR1

tumor necrosis factor receptor 1

TRADD

Tumor necrosis factor receptor type 1-associated death domain protein

TRAF

TNF receptor associated factors

TRM

epilepsy-like tremor

Tyk2

Non-receptor tyrosine-protein kinase 2

VSMC

vascular smooth muscle cell

WKY

Wistar-Kyoto

WT

wild type.

References

  1. Agca C. A., Tuzcu M., Hayirli A., Sahin K. (2014). Taurine ameliorates neuropathy via regulating NF-κB and Nrf2/HO-1 signaling cascades in diabetic rats. Food Chem. Toxicol. 71, 116–121. 10.1016/j.fct.2014.05.023 [DOI] [PubMed] [Google Scholar]
  2. Amasheh M., Fromm A., Krug S. M., Amasheh S., Andres S., Zeitz M., et al. (2010). TNFα-induced and berberine-antagonized tight junction barrier impairment via tyrosine kinase, Akt and NFκB signaling. J. Cell Sci. 123, 4145–4155. 10.1242/jcs.070896 [DOI] [PubMed] [Google Scholar]
  3. Ambrozova G., Martiskova H., Koudelka A., Ravekes T., Rudolph T. K., Klinke A., et al. (2016). Nitro-oleic acid modulates classical and regulatory activation of macrophages and their involvement in pro-fibrotic responses. Free Radic. Biol. Med. 90, 252–260. 10.1016/j.freeradbiomed.2015.11.026 [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Asano T., Ogihara T., Katagiri H., Sakoda H., Ono H., Fujishiro M., et al. (2004). Glucose transporter and Na+/glucose cotransporter as molecular targets of anti-diabetic drugs. Curr. Med. Chem. 11, 2717–2724. 10.2174/0929867043364360 [DOI] [PubMed] [Google Scholar]
  5. Bader S., Klein J., Diener M. (2014). Choline acetyltransferase and organic cation transporters are responsible for synthesis and propionate-induced release of acetylcholine in colon epithelium. Eur. J. Pharmacol. 733, 23–33. 10.1016/j.ejphar.2014.03.036 [DOI] [PubMed] [Google Scholar]
  6. Bagnéris C., Rogala K. B., Baratchian M., Zamfir V., Kunze M. B., Dagless S., et al. (2015). Probing the solution structure of IκB Kinase (IKK) subunit γ and its interaction with kaposi sarcoma-associated herpes virus flice-interacting protein and IKK subunit β by EPR spectroscopy. J. Biol. Chem. 290, 16539–16549. 10.1074/jbc.M114.622928 [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bertolini A. (2012). Drug-induced activation of the nervous control of inflammation: a novel possibility for the treatment of hypoxic damage. Eur. J. Pharmacol. 679, 1–8. 10.1016/j.ejphar.2012.01.004 [DOI] [PubMed] [Google Scholar]
  8. Cabrera-Benitez N. E., Pérez-Roth E., Casula M., Ramos-Nuez Á., Ríos-Luci C., Rodríguez-Gallego C., et al. (2012). Anti-inflammatory activity of a novel family of aryl ureas compounds in an endotoxin-induced airway epithelial cell injury model. PLoS ONE 7:e48468. 10.1371/journal.pone.0048468 [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen C. C., Hung T. H., Lee C. Y., Wang L. F., Wu C. H., Ke C. H., et al. (2014). Berberine protects against neuronal damage via suppression of glia-mediated inflammation in traumatic brain injury. PLoS ONE 9:e115694. 10.1371/journal.pone.0115694 [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chen J., Cao J., Fang L., Liu B., Zhou Q., Sun Y., et al. (2014). Berberine derivatives reduce atherosclerotic plaque size and vulnerability in apoE−/− mice. J. Transl. Med. 12, 326. 10.1186/s12967-014-0326-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chen X., Peng S., Zeng H., Fu A., Zhu Q. (2015). Toll-like receptor 4 is involved in a protective effect of rhein on immunoglobulin A nephropathy. Indian J. Pharmacol. 47, 27. 10.4103/0253-7613.150319 [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chen Y., Wang X., Sun H., Xing D., Hu J., Wai Z., et al. (2008). Characterization of the transportation of berberine in Coptidis rhizoma extract through rat primary cultured cortical neurons. Biomed. Chromatogr. 22, 28–33. 10.1002/bmc.889 [DOI] [PubMed] [Google Scholar]
  13. Chen Z. Z., Lu Y., Du S. Y., Shang K. X., Cai C. B. (2013). Influence of borneol and muscone on geniposide transport through MDCK and MDCK-MDR1 cells as blood–brain barrier in vitro model. Int. J. Pharm. 456, 73–79. 10.1016/j.ijpharm.2013.08.017 [DOI] [PubMed] [Google Scholar]
  14. Cheng B. C. Y., Yu H., Su T., Fu X. Q., Guo H., Li T., et al. (2015). A herbal formula comprising Rosae Multiflorae Fructus and Lonicerae Japonicae Flos inhibits the production of inflammatory mediators and the IRAK-1/TAK1 and TBK1/IRF3 pathways in RAW 264.7 and THP-1 cells. J. Ethnopharmacol. 174, 195–199. 10.1016/j.jep.2015.08.018 [DOI] [PubMed] [Google Scholar]
  15. Cheng Z., Taylor B., Ourthiague D. R., Hoffmann A. (2015). Distinct single-cell signaling characteristics are conferred by MyD88 and TRIF pathways during TLR4 activation. Sci. Signal. 8:ra69. 10.1126/scisignal.aaa5208 [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Chiapinotto Spiazzi C., Bucco S. M., Pinto I. A., Musacchio V. L., Zanchi M. M., Frasson P. N., et al. (2015). Selenofuranoside ameliorates memory loss in Alzheimer-like sporadic dementia: aChE activity, oxidative stress, and inflammation involvement. Oxid. Med. Cell. Longev. 2015:976908. 10.1155/2015/976908 [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Chmielewski S., Piaszyk-Borychowska A., Wesoly J., Bluyssen H. A. (2015). STAT1 and IRF8 in vascular inflammation and cardiovascular disease: diagnostic and therapeutic potential. Int. Rev. Immunol. 25, 1–21. 10.3109/08830185.2015.1087519 [DOI] [PubMed] [Google Scholar]
  18. Cho Y. A., Choi J. S., Burm J. P. (2011). Effects of the antioxidant baicalein on the pharmacokinetics of nimodipine in rats: a possible role of P-glycoprotein and CYP3A4 inhibition by baicalein. Pharmacol. Rep. 63, 1066–1073. 10.1016/S1734-1140(11)70624-7 [DOI] [PubMed] [Google Scholar]
  19. Choi S. S., Park J., Choi J. H. (2014). Revisiting PPARγ as a target for the treatment of metabolic disorders. BMB Rep. 47, 599–608. 10.5483/BMBRep.2014.47.11.174 [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Cong X. D., Ding M. J., Dai D. Z., Wu Y., Zhang Y., Dai Y. (2012). ER stress, p66shc, and p-Akt/Akt mediate adjuvant-induced inflammation, which is blunted by argirein, a supermolecule and rhein in rats. Inflammation 35, 1031–1040. 10.1007/s10753-011-9407-4 [DOI] [PubMed] [Google Scholar]
  21. Couroussé T., Gautron S. (2015). Role of organic cation transporters (OCTs) in the brain. Pharmacol. Ther. 146, 94–103. 10.1016/j.pharmthera.2014.09.008 [DOI] [PubMed] [Google Scholar]
  22. Cui G., Qin X., Zhang Y., Gong Z., Ge B., Zang Y. Q. (2009). Berberine differentially modulates the activities of ERK, p38 MAPK, and JNK to suppress Th17 and Th1 T cell differentiation in type 1 diabetic mice. J. Biol. Chem. 284, 28420–28429. 10.1074/jbc.M109.012674 [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Di X., Wang X., Liu Y. (2015). Effect of piperine on the bioavailability and pharmacokinetics of emodin rats. J. Pharm. Biomed. Anal. 115, 144–149. 10.1016/j.jpba.2015.06.027 [DOI] [PubMed] [Google Scholar]
  24. Domagala F., Martin G., Bogdanowicz P., Ficheux H., Pujol J. P. (2006). Inhibition of interleukin-1β-induced activation of MEK/ERK pathway and DNA binding of NF-κB and AP-1: Potential mechanism for Diacerein effects in osteoarthritis. Biorheology 43, 577–587. [PubMed] [Google Scholar]
  25. Domitrović R., Cvijanović O., Pernjak-Pugel E., Škoda M., Mikelić L., Crnčević-Orlić Ž., et al. (2013). Berberine exerts nephroprotective effect against cisplatin-induced kidney damage through inhibition of oxidative/nitrosative stress, inflammation, autophagy and apoptosis. Food Chem. Toxicol. 62, 397–406. 10.1016/j.fct.2013.09.003 [DOI] [PubMed] [Google Scholar]
  26. Dong S. J., Zhong Y. Q., Lu W. T., Li G. H., Jiang H. L., Mao B. (2015). Baicalin inhibits lipopolysaccharide-induced inflammation through signaling NF-κB pathway in HBE16 airway epithelial cells. Inflammation 38, 1493–1501. 10.1007/s10753-015-0124-2 [DOI] [PubMed] [Google Scholar]
  27. Fan G. W., Zhang Y., Jiang X., Zhu Y., Wang B., Su L., et al. (2013). Anti-inflammatory activity of baicalein in LPS-stimulated RAW264. 7 macrophages via estrogen receptor and NF-κB-dependent pathways. Inflammation 36, 1584–1591. 10.1007/s10753-013-9703-2 [DOI] [PubMed] [Google Scholar]
  28. Feng A., Zhou G., Yuan X., Huang X., Zhang Z., Zhang T. (2013). Inhibitory effect of baicalin on iNOS and NO expression in intestinal mucosa of rats with acute endotoxemia. PLoS ONE 8:e80997. 10.1371/journal.pone.0080997 [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Feng J., Guo C., Zhu Y., Pang L., Yang Z., Zou Y., et al. (2014). Baicalin down regulates the expression of TLR4 and NFkB-p65 in colon tissue in mice with colitis induced by dextran sulfate sodium. Int. J. Clin. Exp. Med. 7, 4063–4072. [PMC free article] [PubMed] [Google Scholar]
  30. Fernand V. E., Losso J. N., Truax R. E., Villar E. E., Bwambok D. K., Fakayode S. O., et al. (2011). Rhein inhibits angiogenesis and the viability of hormone-dependent and-independent cancer cells under normoxic or hypoxic conditions in vitro. Chem. Biol. Interact. 192, 220–232. 10.1016/j.cbi.2011.03.013 [DOI] [PubMed] [Google Scholar]
  31. Gao Y., Chen X., Fang L., Liu F., Cai R., Peng C., et al. (2014). Rhein exerts pro-and anti-inflammatory actions by targeting IKKβ inhibition in LPS-activated macrophages. Free Radic. Biol. Med. 72, 104–112. 10.1016/j.freeradbiomed.2014.04.001 [DOI] [PubMed] [Google Scholar]
  32. Garimella M. G., Kour S., Piprode V., Mittal M., Kumar A., Rani L., et al. (2015). Adipose-derived mesenchymal stem cells prevent systemic bone loss in collagen-induced arthritis. J. Immunol. 195, 5136–5148. 10.4049/jimmunol.1500332 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Godugu C., Patel A. R., Doddapaneni R., Somagoni J., Singh M. (2014). Approaches to improve the oral bioavailability and effects of novel anticancer drugs berberine and betulinic acid. PLoS ONE 9:e89919. 10.1371/journal.pone.0089919 [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Hamsa T. P., Kuttan G. (2012). Antiangiogenic activity of Berberine is mediated through the downregulation of hypoxia-inducible factor-1, VEGF, and proinflammatory mediators. Drug Chem. Toxicol. 35, 57–70. 10.3109/01480545.2011.589437 [DOI] [PubMed] [Google Scholar]
  35. He W., Liu G., Cai H., Sun X., Hou W., Zhang P., et al. (2014). Integrated pharmacokinetics of five protoBerberine-type alkaloids in normal and insomnic rats after single and multiple oral administration of Jiao-Tai-Wan. J. Ethnopharmacol. 154, 635–644. 10.1016/j.jep.2014.04.040 [DOI] [PubMed] [Google Scholar]
  36. Hou J., Wang J., Zhang P., Li D., Zhang C., Zhao H., et al. (2012). Baicalin attenuates proinflammatory cytokine production in oxygen–glucose deprived challenged rat microglial cells by inhibiting TLR4 signaling pathway. Int. Immunopharmacol. 14, 749–757. 10.1016/j.intimp.2012.10.013 [DOI] [PubMed] [Google Scholar]
  37. Hu B., Zhang H., Meng X., Wang F., Wang P. (2014). Aloe-emodin from rhubarb (Rheum rhabarbarum) inhibits lipopolysaccharide-induced inflammatory responses in RAW264. 7 macrophages. J. Ethnopharmacol. 153, 846–853. 10.1016/j.jep.2014.03.059 [DOI] [PubMed] [Google Scholar]
  38. Hu G., Liu J., Zhen Y. Z., Wei J., Qiao Y., Lin Y. J., et al. (2013). Rhein inhibits the expression of vascular cell adhesion molecule 1 in human umbilical vein endothelial cells with or without lipopolysaccharide stimulation. Am. J. Chin. Med. 41, 473–485. 10.1142/S0192415X13500341 [DOI] [PubMed] [Google Scholar]
  39. Hu H. J., Han M., Sun R. H., Liu B., Wen J. K. (2010). Baicalin inhibits VSMC proliferation and neointimal hyperplasia in rats. Basic Clin. Med. 30, 1252–1256. [Google Scholar]
  40. Hua F., Hu Z. (2015). TRIB3-P62 interaction, diabetes and autophagy. Oncotarget 6, 34061–34062. 10.18632/oncotarget.6108 [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Huang S., Chang S. J., Yang M., Chen J. J., Chang W. H. (2011). Nanoscale hepatoprotective herbal decoction attenuates hepatic stellate cell activity and chloroform-induced liver damage in mice. Int. J. Nanomed. 6, 1365–1371. 10.2147/IJN.S19503 [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Huang Z., Wang L., Meng S., Wang Y., Chen T., Wang C. (2011). Berberine reduces both MMP-9 and EMMPRIN expression through prevention of p38 pathway activation in PMA-induced macrophages. Int. J. Cardiol. 146, 153–158. 10.1016/j.ijcard.2009.06.023 [DOI] [PubMed] [Google Scholar]
  43. Hwang J. K., Noh E. M., Moon S. J., Kim J. M., Kwon K. B., Park B. H., et al. (2013). Emodin suppresses inflammatory responses and joint destruction in collagen-induced arthritic mice. Rheumatology 52, 1583–1591. 10.1093/rheumatology/ket178 [DOI] [PubMed] [Google Scholar]
  44. Jeong H. W., Hsu K. C., Lee J. W., Ham M., Huh J. Y., Shin H. J., et al. (2009). Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am. J. Physiol. Endocrinol. Metab. 296, E955–E964. 10.1152/ajpendo.90599.2008 [DOI] [PubMed] [Google Scholar]
  45. Jeong J. J., Jang S. E., Hyam S. R., Han M. J., Kim D. H. (2014). The rhizome mixture of Anemarrhena asphodeloides and Coptidis chinensis ameliorates acute and chronic colitis in mice by inhibiting the binding of lipopolysaccharide to TLR4 and IRAK1 phosphorylation. Evid. Based Complement. Alternat. Med. 2014:809083. 10.1155/2014/809083 [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Ji Z. Q., Huang C. W., Liang C. J., Sun W. W., Chen B., Tang P. R. (2005). Effects of rhein on activity of caspase-3 in kidney and cell apoptosis on the progression of renal injury in glomerulosclerosis. Zhong Hua Yi Xue Za Zhi 85, 1836–1841. [PubMed] [Google Scholar]
  47. Jiang Q., Liu P., Wu X., Liu W., Shen X., Lan T., et al. (2011). Berberine attenuates lipopolysaccharide-induced extracelluar matrix accumulation and inflammation in rat mesangial cells: involvement of NF-κB signaling pathway. Mol. Cell. Endocrinol. 331, 34–40. 10.1016/j.mce.2010.07.023 [DOI] [PubMed] [Google Scholar]
  48. Juan M. E., González-Pons E., Planas J. M. (2010). Multidrug resistance proteins restrain the intestinal absorption of trans-resveratrol in rats. J. Nutr. 140, 489–495. 10.3945/jn.109.114959 [DOI] [PubMed] [Google Scholar]
  49. Kalapos-Kovács B., Magda B., Jani M., Fekete Z., Szabó P. T., Antal I., et al. (2015). Multiple ABC transporters efflux baicalin. Phytother. Res. 29, 1987–1990. 10.1002/ptr.5477 [DOI] [PubMed] [Google Scholar]
  50. Kim B. H., Kim M., Yin C. H., Jee J. G., Sandoval C., Lee H., et al. (2011). Inhibition of the signalling kinase JAK3 alleviates inflammation in monoarthritic rats. Br. J. Pharmacol. 164, 106–118. 10.1111/j.1476-5381.2011.01353.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Kim B. J., Kim H., Lee G. S., So I., Kim S. J. (2014). Effects of San-Huang-Xie-Xin-tang, a traditional Chinese prescription for clearing away heat and toxin, on the pacemaker activities of interstitial cells of Cajal from the murine small intestine. J. Ethnopharmacol. 155, 744–752. 10.1016/j.jep.2014.06.024 [DOI] [PubMed] [Google Scholar]
  52. Kim D. H., Kim H. K., Park S., Kim J. Y., Zou Y., Cho K. H., et al. (2006). Short-term feeding of baicalin inhibits age-associated NF-κB activation. Mech. Ageing Dev. 127, 719–725. 10.1016/j.mad.2006.05.002 [DOI] [PubMed] [Google Scholar]
  53. Kim J., Lee J. S., Jung J., Lim I., Lee J. Y., Park M. J. (2015). Emodin suppresses maintenance of stemness by augmenting proteosomal degradation of epidermal growth factor receptor/epidermal growth factor receptor variant III in glioma stem cells. Stem Cells Dev. 24, 284–295. 10.1089/scd.2014.0210 [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Lee I. A., Hyun Y. J., Kim D. H. (2010). Berberine ameliorates TNBS-induced colitis by inhibiting lipid peroxidation, enterobacterial growth and NF-κB activation. Eur. J. Pharmacol. 648, 162–170. 10.1016/j.ejphar.2010.08.046 [DOI] [PubMed] [Google Scholar]
  55. Lee S., Challa-Malladi M., Bratton S. B., Wright C. W. (2014). Nuclear factor-κB-inducing kinase (NIK) contains an amino-terminal inhibitor of apoptosis (IAP)-binding motif (IBM) that potentiates NIK degradation by cellular IAP1 (c-IAP1). J. Biol. Chem. 289, 30680–30689. 10.1074/jbc.M114.587808 [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Lee Y. M., Cheng P. Y., Chim L. S., Kung C. W., Ka S. M., Chung M. T., et al. (2011). Baicalein, an active component of Scutellaria baicalensis Georgi, improves cardiac contractile function in endotoxaemic rats via induction of heme oxygenase-1 and suppression of inflammatory responses. J. Ethnopharmacol. 135, 179–185. 10.1016/j.jep.2011.03.009 [DOI] [PubMed] [Google Scholar]
  57. Legendre F., Bogdanowicz P., Martin G., Domagala F., Leclercq S., Pujol J., et al. (2007). Rhein, a diacerhein-derived metabolite, modulates the expression of matrix degrading enzymes and the cell proliferation of articular chondrocytes by inhibiting ERK and JNK-AP-1 dependent pathways. Clin. Exp. Rheumatol. 25, 546–555. [PubMed] [Google Scholar]
  58. Li A., Dong L., Duan M. L., Sun K., Liu Y. Y., Wang M. X., et al. (2013). Emodin improves lipopolysaccharide-induced microcirculatory disturbance in rat mesentery. Microcirculation 20, 617–628. 10.1111/micc.12061 [DOI] [PubMed] [Google Scholar]
  59. Li D., Zhang N., Cao Y., Zhang W., Su G., Sun Y., et al. (2013). Emodin ameliorates lipopolysaccharide-induced mastitis in mice by inhibiting activation of NF-κB and MAPKs signal pathways. Eur. J. Pharmacol. 705, 79–85. 10.1016/j.ejphar.2013.02.021 [DOI] [PubMed] [Google Scholar]
  60. Li H. M., Wang Y. Y., Wang H. D., Cao W. J., Yu X. H., Lu D. X., et al. (2011). Berberine protects against lipopolysaccharide-induced intestinal injury in mice via alpha 2 adrenoceptor-independent mechanisms. Acta Pharmacol. Sin. 32, 1364–1372. 10.1038/aps.2011.102 [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Li H., Wang Y., Zhang H., Jia B., Wang D., Li H., et al. (2012). Yohimbine enhances protection of berberine against LPS-induced mouse lethality through multiple mechanisms. PLoS ONE 7:e52863. 10.1371/journal.pone.0052863 [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Li J., Zhong W., Wang W., Hu S., Yuan J., Zhang B., et al. (2014). Ginsenoside metabolite compound K promotes recovery of dextran sulfate sodium-induced colitis and inhibits inflammatory responses by suppressing NF-κB activation. PLoS ONE 9:e87810. 10.1371/journal.pone.0087810 [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Li N. S., Zou J. R., Lin H., Ke R., He X. L., Xiao L., et al. (2016). LKB1/AMPK inhibits TGF-β1 production and the TGF-β signaling pathway in breast cancer cells. Tumor Biol. 37, 8249–8258. 10.1007/s13277-015-4639-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Li W., Hua B., Saud S. M., Lin H., Hou W., Matter M. S., et al. (2015). Berberine regulates AMP-activated protein kinase signaling pathways and inhibits colon tumorigenesis in mice. Mol. Carcinog. 54, 1096–1109. 10.1002/mc.22179 [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Li X., Liu W., Wang Q., Liu P., Deng Y., Lan T., et al. (2009). Emodin suppresses cell proliferation and fibronectin expression via p38MAPK pathway in rat mesangial cells cultured under high glucose. Mol. Cell. Endocrinol. 307, 157–162. 10.1016/j.mce.2009.03.006 [DOI] [PubMed] [Google Scholar]
  66. Li X., Wang J., Cao J., Ma L., Xu J. (2015). Immunoregulation of bone marrow-derived mesenchymal stem cells on the chronic cigarette smoking-induced lung inflammation in rats. Biomed. Res. Int. 2015:932923. 10.1155/2015/932923 [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Li C. Y., Hu Y. C., Lee Chao P. D., Shia C. S., Hsu I. C., Fang S. H. (2010). Potential ex vivo immunomodulatory effects of San-Huang-Xie-Xin-Tang and its component herbs on mice and humans. J. Ethnopharmacol. 127, 292–298. 10.1016/j.jep.2009.11.006 [DOI] [PubMed] [Google Scholar]
  68. Li Y., Guo C. (2010). The progress of modern pharmacological research of Sanhuang Xiexin decoction. Chin. Pharm. 21, 1048–1050. [Google Scholar]
  69. Lim H. A., Lee E. K., Kim J. M., Park M. H., Kim D. H., Choi Y. J., et al. (2012). PPARγ activation by baicalin suppresses NF-κB-mediated inflammation in aged rat kidney. Biogerontology 13, 133–145. 10.1007/s10522-011-9361-4 [DOI] [PubMed] [Google Scholar]
  70. Lin K., Liu S., Shen Y., Li Q. (2013). Berberine attenuates cigarette smoke-induced acute lung inflammation. Inflammation 36, 1079–1086. 10.1007/s10753-013-9640-0 [DOI] [PubMed] [Google Scholar]
  71. Lin Y., Zhen Y., Liu J., Wei J., Tu P., Hu G. (2013). Rhein lysinate inhibits monocyte adhesion to human umbilical vein endothelial cells by blocking p38 signaling pathway. Arch. Pharm. Res. 36, 1410–1418. 10.1007/s12272-013-0156-9 [DOI] [PubMed] [Google Scholar]
  72. Liou C. J., Len W. B., Wu S. J., Lin C. F., Wu X. L., Huang W. C. (2014). Casticin inhibits COX-2 and iNOS expression via suppression of NF-κB and MAPK signaling in lipopolysaccharide-stimulated mouse macrophages. J. Ethnopharmacol. 158, 310–316. 10.1016/j.jep.2014.10.046 [DOI] [PubMed] [Google Scholar]
  73. Liu Q., Xu X., Zhao M., Wei Z., Li X., Zhang X., et al. (2015). Berberine Induces Senescence of Human Glioblastoma Cells by Downregulating the EGFR–MEK–ERK Signaling Pathway. Mol. Cancer Ther. 14, 355–363. 10.1158/1535-7163.MCT-14-0634 [DOI] [PubMed] [Google Scholar]
  74. Liu S., Ma Z., Cai H., Li Q., Rong W., Kawano M. (2010). Inhibitory effect of baicalein on IL-6-mediated signaling cascades in human myeloma cells. Eur. J. Haematol. 84, 137–144. 10.1111/j.1600-0609.2009.01365.x [DOI] [PubMed] [Google Scholar]
  75. Liu W., Feng Q., Li Y., Ye L., Hu M., Liu Z. (2012). Coupling of UDP-glucuronosyltransferases and multidrug resistance-associated proteins is responsible for the intestinal disposition and poor bioavailability of emodin. Toxicol. Appl. Pharmacol. 265, 316–324. 10.1016/j.taap.2012.08.032 [DOI] [PubMed] [Google Scholar]
  76. Lo Y. C., Lin Y. L., Yu K. L., Lai Y. H., Wu Y. C., Ann L. M., et al. (2005). San-Huang-Xie-Xin-Tang attenuates inflammatory responses in lipopolysaccharide-exposed rat lungs. J. Ethnopharmacol. 101, 68–74. 10.1016/j.jep.2005.03.015 [DOI] [PubMed] [Google Scholar]
  77. Lou T., Zhang Z., Xi Z., Liu K., Li L., Liu B., et al. (2011). Berberine inhibits inflammatory response and ameliorates insulin resistance in hepatocytes. Inflammation 34, 659–667. 10.1007/s10753-010-9276-2 [DOI] [PubMed] [Google Scholar]
  78. Lu D. Y., Tang C. H., Chen Y. H., Wei I. H. (2010). Berberine suppresses neuroinflammatory responses through AMP-activated protein kinase activation in BV-2 microglia. J. Cell. Biochem. 110, 697–705. 10.1002/jcb.22580 [DOI] [PubMed] [Google Scholar]
  79. Lu Y., Jeong Y. T., Li X., Kim M. J., Park P. H., Hwang S. L., et al. (2013). Emodin isolated from Polygoni cuspidati Radix inhibits TNF-α and IL-6 release by blockading NF-κB and MAP kinase pathways in mast cells stimulated with PMA plus A23187. Biomol. Ther. (Seoul). 21, 435–441. 10.4062/biomolther.2013.068 [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Ma B. L., Ma Y. M., Yan D. M., Zhou H., Shi R., Wang T. M., et al. (2009). Effective constituents in Xiexin Decoction for anti-inflammation. J. Ethnopharmacol. 125, 151–156. 10.1016/j.jep.2009.05.035 [DOI] [PubMed] [Google Scholar]
  81. Ma Y., Yang F., Wang Y., Du Z., Liu D., Guo H., et al. (2012). CaMKKβ is involved in AMP-activated protein kinase activation by baicalin in LKB1 deficient cell lines. PLoS ONE 7:e47900. 10.1371/journal.pone.0047900 [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Mao X., Cao Y., Li X., Yin J., Wang Z., Zhang Y., et al. (2014). Baicalein ameliorates cognitive deficits in epilepsy-like tremor rat. Neurol. Sci. 35, 1261–1268. 10.1007/s10072-014-1695-7 [DOI] [PubMed] [Google Scholar]
  83. Meng G., Liu Y., Lou C., Yang H. (2010). Emodin suppresses lipopolysaccharide-induced pro-inflammatory responses and NF-κB activation by disrupting lipid rafts in CD14-negative endothelial cells. Br. J. Pharmacol. 161, 1628–1644. 10.1111/j.1476-5381.2010.00993.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Mo C., Wang L., Zhang J., Numazawa S., Tang H., Tang X., et al. (2014). The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-sked mice. Antioxid. Redox Signal. 20, 574–588. 10.1089/ars.2012.5116 [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Moran A. W., Al-Rammahi M., Zhang C., Bravo D., Calsamiglia S., Shirazi-Beechey S. P. (2014). Sweet taste receptor expression in ruminant intestine and its activation by artificial sweeteners to regulate glucose absorption. J. Dairy Sci. 97, 4955–4972. 10.3168/jds.2014-8004 [DOI] [PubMed] [Google Scholar]
  86. Muto A., Hori M., Sasaki Y., Saitoh A., Yasuda I., Maekawa T., et al. (2007). Emodin has a cytotoxic activity against human multiple myeloma as a Janus-activated kinase 2 inhibitor. Mol. Cancer Ther. 6, 987–994. 10.1158/1535-7163.MCT-06-0605 [DOI] [PubMed] [Google Scholar]
  87. Obringer C., Manwaring J., Goebel C., Hewitt N. J., Rothe H. (2016). Suitability of the in vitro Caco-2 assay to predict the oral absorption of aromatic amine hair dyes. Toxicol. In vitro 32, 1–7. 10.1016/j.tiv.2015.11.007 [DOI] [PubMed] [Google Scholar]
  88. Ottani A., Giuliani D., Neri L., Calevro A., Canalini F., Vandini E., et al. (2015). NDP-α-MSH attenuates heart and liver responses to myocardial reperfusion via the vagus nerve and JAK/ERK/STAT signaling. Eur. J. Pharmacol. 769, 22–32. 10.1016/j.ejphar.2015.10.022 [DOI] [PubMed] [Google Scholar]
  89. Pandey M. K., Sung B., Kunnumakkara A. B., Sethi G., Chaturvedi M. M., Aggarwal B. B. (2008). Berberine modifies cysteine 179 of IκBα kinase, suppresses nuclear factor-κB–regulated antiapoptotic gene products, and potentiates apoptosis. Cancer Res. 68, 5370–5379. 10.1158/0008-5472.CAN-08-0511 [DOI] [PubMed] [Google Scholar]
  90. Park J. H., Park J. H., Hur H. J., Woo J. S., Lee H. J. (2012). Effects of silymarin and formulation on the oral bioavailability of paclitaxel in rats. Eur. J. Pharm. Sci. 45, 296–301. 10.1016/j.ejps.2011.11.021 [DOI] [PubMed] [Google Scholar]
  91. Peng Z. F. (2003). Medicine theory from Yi Xue Zhong Zhong Can Xi Lu of Zhang Xichun. Chin. J. Basic Med. Trad. Chin. Med. 9, 62–65. [Google Scholar]
  92. Piao Y., Li Y., Xu Q., Liu J. W., Xing C. Z., Xie X. D., et al. (2015). Association of MTOR and AKT gene polymorphisms with susceptibility and survival of gastric cancer. PLoS ONE 10:e0136447. 10.1371/journal.pone.0136447 [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Qi Z., Yin F., Lu L., Shen L., Qi S., Lan L., et al. (2013). Baicalein reduces lipopolysaccharide-induced inflammation via suppressing JAK/STATs activation and ROS production. Inflamm. Res. 62, 845–855. 10.1007/s00011-013-0639-7 [DOI] [PubMed] [Google Scholar]
  94. Sahu B. D., Kumar J. M., Kuncha M., Borkar R. M., Srinivas R., Sistla R. (2016). Baicalein alleviates doxorubicin-induced cardiotoxicity via suppression of myocardial oxidative stress and apoptosis in mice. Life Sci. 144, 8–18. 10.1016/j.lfs.2015.11.018 [DOI] [PubMed] [Google Scholar]
  95. Sahu B. D., Mahesh Kumar J., Sistla R. (2015). Baicalein, a bioflavonoid, prevents cisplatin-induced acute kidney injury by up-regulating antioxidant defenses and down-regulating the MAPKs and NF-κB pathways. PLoS ONE 10:e0134139. 10.1371/journal.pone.0134139 [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Saito T., Hasegawa-Moriyama M., Kurimoto T., Yamada T., Inada E., Kanmura Y. (2015). Resolution of inflammation by resolvin D1 Is essential for peroxisome proliferator–activated receptor-γ–mediated analgesia during postincisional pain development in type 2 diabetes. J. Am. Soc. Anesthesiol. 123, 1420–1434. 10.1097/aln.0000000000000892 [DOI] [PubMed] [Google Scholar]
  97. Sampson K. E., Brinker A., Pratt J., Venkatraman N., Xiao Y., Blasberg J., et al. (2015). Zinc finger nuclease–mediated gene knockout results in loss of transport activity for P-glycoprotein, BCRP, and MRP2 in Caco-2 cells. Drug Metab. Dispos. 43, 199–207. 10.1124/dmd.114.057216 [DOI] [PubMed] [Google Scholar]
  98. Schexnayder C., Stratford R. E. (2015). Genistein and Glyceollin Effects on ABCC2 (MRP2) and ABCG2 (BCRP) in Caco-2 Cells. Int. J. Environ. Res. Public Health 13:17. 10.3390/ijerph13010017 [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Shang W., Liu J., Yu X., Zhao J. (2010). Effects of berberine on serum levels of inflammatory factors and inflammatory signaling pathway in obese mice induced by high fat diet. Zhongguo Zhong Yao Za Zhi 35, 1474–1477. [PubMed] [Google Scholar]
  100. Shen M. Y., Liu Y. J., Don M. J., Liu H. Y., Chen Z. W., Mettling C., et al. (2011). Combined phytochemistry and chemotaxis assays for identification and mechanistic analysis of anti-inflammatory phytochemicals in Fallopia japonica. PLoS ONE 6:e27480. 10.1371/journal.pone.0027480 [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Shia C. S., Hou Y. C., Juang S. H., Tsai S. Y., Hsieh P. H., Ho L. C., et al. (2011). Metabolism and pharmacokinetics of San-Huang-Xie-Xin-Tang, a polyphenol-rich Chinese medicine formula, in rats and ex-vivo antioxidant activity. Evid. Based Complement. Alternat. Med. 2011:721293. 10.1093/ecam/nep124 [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Shia C. S., Juang S. H., Tsai S. Y., Lee Chao P. D., Hou Y. C. (2013). Interaction of rhubarb and methotrexate in rats: in vivo and ex vivo approaches. Am. J. Chin. Med. 41, 1427–1438. 10.1142/S0192415X1350095X [DOI] [PubMed] [Google Scholar]
  103. Shih Y. T., Wu D. C., Liu C. M., Yang Y. C., Chen J., Lo Y. C. (2007). San-Huang-Xie-Xin-Tang inhibits Helicobacter pylori-induced inflammation in human gastric epithelial AGS cells. J. Ethnopharmacol. 112, 537–544. 10.1016/j.jep.2007.04.015 [DOI] [PubMed] [Google Scholar]
  104. Song L., Yang H., Wang H. X., Tian C., Liu Y., Zeng X. J., et al. (2014). Inhibition of 12/15 lipoxygenase by baicalein reduces myocardial ischemia/reperfusion injury via modulation of multiple signaling pathways. Apoptosis 19, 567–580. 10.1007/s10495-013-0946-z [DOI] [PubMed] [Google Scholar]
  105. Song J., Li J., Ji Y., Wang H., Zheng S., Gao J. (2013). Pharmacokinetic–pharmacodynamic evaluation of the major component astragaloside IV on the immunomodulatory effects of Yu-ping-feng prescription. Eur. J. Drug Metab. Pharmacokinet. 39, 103–110. 10.1007/s13318-013-0161-x [DOI] [PubMed] [Google Scholar]
  106. Subramaniam A., Shanmugam M. K., Ong T. H., Li F., Perumal E., Chen L., et al. (2013). Emodin inhibits growth and induces apoptosis in an orthotopic hepatocellular carcinoma model by blocking activation of STAT3. Br. J. Pharmacol. 170, 807–821. 10.1111/bph.12302 [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Sun Q. X. (2007). The dosage of radix aconiti lateralis and its decoction method. Trad. Chin. Med. J. 6, 11–16. [Google Scholar]
  108. Sun Y. H., He X., Yang X. L., Dong C. L., Zhang C. F., Song Z. J., et al. (2014). Absorption characteristics of the total alkaloids from Mahonia bealei in an in situ single-pass intestinal perfusion assay. Chin. J. Nat. Med. 12, 554–560. 10.,1016/s1875-5364(14)60085-6 [DOI] [PubMed] [Google Scholar]
  109. Tan K. W., Li Y., Paxton J. W., Birch N. P., Scheepens A. (2013). Identification of novel dietary phytochemicals inhibiting the efflux transporter breast cancer resistance protein (BCRP/ABCG2). Food Chem. 138, 2267–2274. 10.1016/j.foodchem.2012.12.021 [DOI] [PubMed] [Google Scholar]
  110. Tsai C. L., Lin Y. C., Wang H. M., Chou T. C. (2014). Baicalein, an active component of Scutellaria baicalensis, protects against lipopolysaccharide-induced acute lung injury in rats. J. Ethnopharmacol. 153, 197–206. 10.1016/j.jep.2014.02.010 [DOI] [PubMed] [Google Scholar]
  111. Venna V. R., Benashski S. E., Chauhan A., McCullough L. D. (2015). Inhibition of glycogen synthase kinase-3β enhances cognitive recovery after stroke: the role of TAK1. Learn. Mem. 22, 336–343. 10.1101/lm.038083.115 [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Wan Q., Wang H., Han X., Lin Y., Yang Y., Gu L., et al. (2014). Baicalin inhibits TLR7/MYD88 signaling pathway activation to suppress lung inflammation in mice infected with influenza A virus. Biomed. Rep. 2, 437–441. 10.3892/br.2014.253 [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Wan X., Chen X., Liu L., Zhao Y., Huang W. J., Zhang Q., et al. (2013). Berberine ameliorates chronic kidney injury caused by atherosclerotic renovascular disease through the suppression of NFκB signaling pathway in rats. PLoS ONE 8:e59794. 10.1371/journal.pone.0059794 [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Wang C. B., He J. P., Lei Z. Y., Chen J. M. (1983). Treatment of paeoniae radix rubra by the method of cooling and activating blood with paeoniae radix rubra use in large dose. J. Tradit. Chin. Med. 6, 30–33. 10.1186/1749-8546-6-30 [DOI] [Google Scholar]
  115. Wang J., Wang P., Yang Y., Meng X., Zhang Y. (2011). Intestinal absorption of aloe-emodin using single-passintestinal perfusion method in rat. Zhongguo Zhong Yao Za Zhi 36, 2393–2398. [PubMed] [Google Scholar]
  116. Wang Y. S., Lin R. T., Cheng H. Y., Yang S. F., Chou W. W., Hank Juo S. H. (2011). Anti-atherogenic effect of San-Huang-Xie-Xin-Tang, a traditional Chinese medicine, in cultured human aortic smooth muscle cells. J. Ethnopharmacol. 133, 442–447. 10.1016/j.jep.2010.10.018 [DOI] [PubMed] [Google Scholar]
  117. Wang T., Zhong X. G., Li Y. H., Jia X., Zhang S. J., Gao Y. S., et al. (2015). Protective effect of emodin against airway inflammation in the ovalbumin-induced mouse model. Chin. J. Integr. Med. 21, 431–437. 10.1007/s11655-014-1898-z [DOI] [PubMed] [Google Scholar]
  118. Wang W., Zhou P. H., Xu C. G., Zhou X. J., Hu W., Zhang J. (2015). Baicalein attenuates renal fibrosis by inhibiting inflammation via down-regulating NF-κB and MAPK signal pathways. J. Mol. Histol. 46, 283–290. 10.1007/s10735-015-9621-8 [DOI] [PubMed] [Google Scholar]
  119. Wang A. W., Song L., Miao J., Wang H. X., Tian C., Jiang X., et al. (2014). Baicalein attenuates angiotensin II-induced cardiac remodeling via inhibition of AKT/mTOR, ERK1/2, NF-κB, and calcineurin signaling pathways in mice. Am. J. Hypertens. 28, 518–526. 10.1093/ajh/hpu194 [DOI] [PubMed] [Google Scholar]
  120. Wang Z., Chen Z., Yang S., Wang Y., Huang Z., Gao J., et al. (2014). Berberine ameliorates collagen-induced arthritis in rats associated with anti-inflammatory and anti-angiogenic effects. Inflammation 37, 1789–1798. 10.1007/s10753-014-9909-y [DOI] [PubMed] [Google Scholar]
  121. Wei Y., Guo J., Zheng X., Wu J., Zhou Y., Yu Y., et al. (2014). Preparation, pharmacokinetics and biodistribution of baicalin-loaded liposomes. Int. J. Nanomedicine 9, 3623. 10.2147/IJN.S66312 [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Wu J. S., Shi R., Lu X., Ma Y. M., Cheng N. N. (2015). Combination of active components of xiexin decoction ameliorates renal fibrosis through the inhibition of NF-κB and TGF-β1/smad pathways in db/db diabetic mice. PLoS ONE 10:e0122661. 10.1371/journal.pone.0122661 [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Wu J., Zhang H., Hu B., Yang L., Wang P., Wang F., et al. (2016). Coptisine from Coptis chinensis inhibits production of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. Eur. J. Pharmacol. 780, 106–114. 10.1016/j.ejphar.2016.03.037 [DOI] [PubMed] [Google Scholar]
  124. Wu L., Cai B., Zheng S., Liu X., Cai H., Li H. (2013). Effect of emodin on endoplasmic reticulum stress in rats with severe acute pancreatitis. Inflammation 36, 1020–1029. 10.1007/s10753-013-9634-y [DOI] [PubMed] [Google Scholar]
  125. Xiao M., Zhu T., Zhang W., Wang T., Shen Y. C., Wan Q. F., et al. (2014). Emodin ameliorates LPS-induced acute lung injury, involving the inactivation of NF-κB in mice. Int. J. Mol. Sci. 15, 19355–19368. 10.3390/ijms151119355 [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Xie X., Chang X., Chen L., Huang K., Huang J., Wang S., et al. (2013). Berberine ameliorates experimental diabetes-induced renal inflammation and fibronectin by inhibiting the activation of RhoA/ROCK signaling. Mol. Cell. Endocrinol. 381, 56–65. 10.1016/j.mce.2013.07.019 [DOI] [PubMed] [Google Scholar]
  127. Yamagata T., Kusuhara H., Morishita M., Takayama K., Benameur H., Sugiyama Y. (2007). Improvement of the oral drug absorption of topotecan through the inhibition of intestinal xenobiotic efflux transporter, breast cancer resistance protein, by excipients. Drug Metab. Dispos. 35, 1142–1148. 10.1124/dmd.106.014217 [DOI] [PubMed] [Google Scholar]
  128. Yang Y., Li W., Liu Y., Sun Y., Li Y., Yao Q., et al. (2014). Alpha-lipoic acid improves high-fat diet-induced hepatic steatosis by modulating the transcription factors SREBP-1, FoxO1 and Nrf2 via the SIRT1/LKB1/AMPK pathway. J. Nutr. Biochem. 25, 1207–1217. 10.1016/j.jnutbio.2014.06.001 [DOI] [PubMed] [Google Scholar]
  129. Yang Z., Zhou E., Wei D., Li D., Wei Z., Zhang W., et al. (2014). Emodin inhibits LPS-induced inflammatory response by activati ng PPAR-γ in mouse mammary epithelial cells. Int. Immunopharmacol. 21, 354–360. 10.1016/j.intimp.2014.05.019 [DOI] [PubMed] [Google Scholar]
  130. Ye L., Lu L., Li Y., Zeng S., Yang X., Chen W., et al. (2013). Potential role of ATP-binding cassette transporters in the intestinal transport of rhein. Food Chem. Toxicol. 58, 301–305. 10.1016/j.fct.2013.04.044 [DOI] [PubMed] [Google Scholar]
  131. Yu C., Qi D., Sun J. F., Li P., Fan H. Y. (2015). Rhein prevents endotoxin-induced acute kidney injury by inhibiting NF-κB activities. Sci. Rep. 5:11822. 10.1038/srep11822 [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Yuan Y., Li X., Zaidi S. A., Arnatt C. K., Yu X., Guo C., et al. (2015). Small molecule inhibits activity of scavenger receptor A: lead identification and preliminary studies. Bioorg. Med. Chem. Lett. 25, 3179–3183. 10.1016/j.bmcl.2015.05.090 [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Yuan Y., Wang X., Lu X., Marunaka Y., Wang X. (2014). Effect of Coptidis Rhizoma extracts in a water-based solution on insulin resistance in 3T3-L1 adipocytes. Biomed. Res. 35, 321–327. 10.2220/biomedres.35.321 [DOI] [PubMed] [Google Scholar]
  134. Zeng X. Y., Dong S., He N. N., Jiang C. J., Dai Y., Xia Y. F. (2015). Comparative pharmacokinetics of arctigenin in normal and type 2 diabetic rats after oral and intravenous administration. Fitoterapia 105, 119–126. 10.1016/j.fitote.2015.06.014 [DOI] [PubMed] [Google Scholar]
  135. Zha L. H., He L. S., Lian F. M., Zhen Z., Ji H. Y., Xu L. P., et al. (2015). Clinical strategy for optimal traditional Chinese medicine (TCM) herbal dose selection in disease therapeutics: expert consensus on classic TCM herbal formula dose conversion. Am. J. Chin. Med. 43, 1515–1524. 10.1142/S0192415X1550086X [DOI] [PubMed] [Google Scholar]
  136. Zhang C. E., Niu M., Li R. Y., Feng W. W., Ma X., Dong Q., et al. (2016). Untargeted metabolomics reveals dose-response characteristics for effect of rhubarb in a rat model of cholestasis. Front. Pharmacol. 7:85. 10.3389/fphar.2016.00085 [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Zha W., Liang G., Xiao J., Studer E. J., Hylemon P. B., Pandak W. M., Jr., et al. (2010). Berberine inhibits HIV protease inhibitor-induced inflammatory response by modulating ER stress signaling pathways in murine macrophages. PLoS ONE 5:e9069. 10.1371/journal.pone.0009069 [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Zhang K., Jiao X. F., Li J. X., Wang X. W. (2015). Rhein inhibits lipopolysaccharide-induced intestinal injury during sepsis by blocking the toll-like receptor 4 nuclear factor-κB pathway. Mol. Med. Rep. 12, 4415–4421. 10.3892/mmr.2015.3925 [DOI] [PubMed] [Google Scholar]
  139. Zhang L., Lin G., Kovács B., Jani M., Krajcsi P., Zuo Z. (2007). Mechanistic study on the intestinal absorption and disposition of baicalein. Eur. J. Pharm. Sci. 31, 221–231. 10.1016/j.ejps.2007.04.001 [DOI] [PubMed] [Google Scholar]
  140. Zhang Q., Ma Y. M., Wang Z. T., Wang C. H. (2013a). Differences in pharmacokinetics and anti-inflammatory effects between decoction and maceration of Sanhuang Xiexin Tang in rats and mice. Planta Med. 79, 1666–1673. 10.1055/s-0033-1350959 [DOI] [PubMed] [Google Scholar]
  141. Zhang Q., Wang C. H., Ma Y. M., Zhu E. Y., Wang Z. T. (2013b). UPLC-ESI/MS determination of 17 active constituents in two categorized formulas of traditional Chinese medicine, Sanhuang Xiexin Tang and Fuzi Xiexin Tang: application in comparing the differences in decoctions and macerations. Biomed. Chromatogr. 27, 1079–1088. 10.1002/bmc.2910 [DOI] [PubMed] [Google Scholar]
  142. Zhang Q., Wang C. H., Ma Y. M., Wang Z. T. (2013c). Preparative method of Sanhuang Xiexin Decoction and Fuzi Xiexin Decoction: research advances. J. Int. Pharm. Res. 40, 295–303. [Google Scholar]
  143. Zhang X., Qiu F., Jiang J., Gao C., Tan Y. (2011). Intestinal absorption mechanisms of berberine, palmatine, jateorhizine, and coptisine: involvement of P-glycoprotein. Xenobiotica 41, 290–296. 10.3109/00498254.2010.529180 [DOI] [PubMed] [Google Scholar]
  144. Zhang Y., Li X., Zhang Q., Li J., Ju J., Du N., et al. (2014). berberine hydrochloride prevents postsurgery intestinal adhesion and inflammation in rats. J. Pharmacol. Exp. Ther. 349, 417–426. 10.1124/jpet.114.212795 [DOI] [PubMed] [Google Scholar]
  145. Zhang Y., Zhu H. X., Guo L. W. (2012). Intestinal absorption of berberine alone and in combinations by rats single pass intestinal perfusion in situ. Yao Xue Xue Xao 47, 233–238. [PubMed] [Google Scholar]
  146. Zhao Y., Ma X., Wang J., Wen R., Jia L., Zhu Y., et al. (2015). Large dose means significant effect–dose and effect relationship of Chi-Dan-Tui-Huang decoction on alpha-naphthylisothiocyanate-induced cholestatic hepatitis in rats. BMC Complement. Altern. Med. 15:104. 10.1186/s12906-015-0637-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Zumdick S., Deters A., Hensel A. (2012). In vitro intestinal transport of oligomeric procyanidins (DP 2 to 4) across monolayers of Caco-2 cells. Fitoterapia 83, 1210–1217. 10.1016/j.fitote.2012.06.013 [DOI] [PubMed] [Google Scholar]

Articles from Frontiers in Pharmacology are provided here courtesy of Frontiers Media SA

RESOURCES