Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Mar 15;88(6):2441–2445. doi: 10.1073/pnas.88.6.2441

Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells.

B N Cronstein 1, M A Eberle 1, H E Gruber 1, R I Levin 1
PMCID: PMC51248  PMID: 2006182

Abstract

Although commonly used to control a variety of inflammatory diseases, the mechanism of action of a low dose of methotrexate remains a mystery. Methotrexate accumulates intracellularly where it may interfere with purine metabolism. Therefore, we determined whether a 48-hr pretreatment with methotrexate affected adenosine release from [14C]adenine-labeled human fibroblasts and umbilical vein endothelial cells. Methotrexate significantly increased adenosine release by fibroblasts from 4 +/- 1% to 31 +/- 6% of total purine released (EC50, 1 nM) and by endothelial cells from 24 +/- 4% to 42 +/- 7%. Methotrexate-enhanced adenosine release from fibroblasts was further increased to 51 +/- 4% (EC50, 6 nM) and from endothelial cells was increased to 58 +/- 5% of total purine released by exposure to stimulated (fMet-Leu-Phe at 0.1 microM) neutrophils. The effect of methotrexate on adenosine release was not due to cytotoxicity since cells treated with maximal concentrations of methotrexate took up [14C]adenine and released 14C-labeled purine (a measure of cell injury) in a manner identical to control cells. Methotrexate treatment of fibroblasts dramatically inhibited adherence to fibroblasts by both unstimulated neutrophils (IC50, 9 nM) and stimulated neutrophils (IC50, 13 nM). Methotrexate treatment inhibited neutrophil adherence by enhancing adenosine release from fibroblasts since digestion of extracellular adenosine by added adenosine deaminase completely abrogated the effect of methotrexate on neutrophil adherence without, itself, affecting adherence. One hypothesis that explains the effect of methotrexate on adenosine release is that, by inhibition of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase, methotrexate induces the accumulation of AICAR, the nucleoside precursor of which (5-aminoimidazole-4-carboxamide ribonucleoside referred to hereafter as acadesine) has previously been shown to cause adenosine release from ischemic cardiac tissue. We found that acadesine also promotes adenosine release from and inhibits neutrophil adherence to connective tissue cells. The observation that the antiinflammatory actions of methotrexate are due to the capacity of methotrexate to induce adenosine release may form the basis for the development of an additional class of antiinflammatory drugs.

Full text

PDF
2441

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allegra C. J., Drake J. C., Jolivet J., Chabner B. A. Inhibition of phosphoribosylaminoimidazolecarboxamide transformylase by methotrexate and dihydrofolic acid polyglutamates. Proc Natl Acad Sci U S A. 1985 Aug;82(15):4881–4885. doi: 10.1073/pnas.82.15.4881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allegra C. J., Hoang K., Yeh G. C., Drake J. C., Baram J. Evidence for direct inhibition of de novo purine synthesis in human MCF-7 breast cells as a principal mode of metabolic inhibition by methotrexate. J Biol Chem. 1987 Oct 5;262(28):13520–13526. [PubMed] [Google Scholar]
  3. Baggott J. E., Vaughn W. H., Hudson B. B. Inhibition of 5-aminoimidazole-4-carboxamide ribotide transformylase, adenosine deaminase and 5'-adenylate deaminase by polyglutamates of methotrexate and oxidized folates and by 5-aminoimidazole-4-carboxamide riboside and ribotide. Biochem J. 1986 May 15;236(1):193–200. doi: 10.1042/bj2360193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bonnafous J. C., Dornand J., Favero J., Mani J. C. Lymphocyte membrane adenosine receptors coupled to adenylate cyclase: properties and occurrence in various lymphocyte subclasses. J Recept Res. 1981;2(4):347–366. doi: 10.3109/107998981809038872. [DOI] [PubMed] [Google Scholar]
  5. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  6. Cronstein B. N., Kramer S. B., Weissmann G., Hirschhorn R. Adenosine: a physiological modulator of superoxide anion generation by human neutrophils. J Exp Med. 1983 Oct 1;158(4):1160–1177. doi: 10.1084/jem.158.4.1160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cronstein B. N., Kubersky S. M., Weissmann G., Hirschhorn R. Engagement of adenosine receptors inhibits hydrogen peroxide (H2O2-) release by activated human neutrophils. Clin Immunol Immunopathol. 1987 Jan;42(1):76–85. doi: 10.1016/0090-1229(87)90174-7. [DOI] [PubMed] [Google Scholar]
  8. Cronstein B. N., Levin R. I., Belanoff J., Weissmann G., Hirschhorn R. Adenosine: an endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J Clin Invest. 1986 Sep;78(3):760–770. doi: 10.1172/JCI112638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cronstein B. N., Rosenstein E. D., Kramer S. B., Weissmann G., Hirschhorn R. Adenosine; a physiologic modulator of superoxide anion generation by human neutrophils. Adenosine acts via an A2 receptor on human neutrophils. J Immunol. 1985 Aug;135(2):1366–1371. [PubMed] [Google Scholar]
  10. Elliott K. R., Miller P. J., Stevenson H. C., Leonard E. J. Synergistic action of adenosine and fMet-Leu-Phe in raising cAMP content of purified human monocytes. Biochem Biophys Res Commun. 1986 Aug 14;138(3):1376–1382. doi: 10.1016/s0006-291x(86)80435-1. [DOI] [PubMed] [Google Scholar]
  11. Eppell B. A., Newell A. M., Brown E. J. Adenosine receptors are expressed during differentiation of monocytes to macrophages in vitro. Implications for regulation of phagocytosis. J Immunol. 1989 Dec 15;143(12):4141–4145. [PubMed] [Google Scholar]
  12. Furst D. E., Kremer J. M. Methotrexate in rheumatoid arthritis. Arthritis Rheum. 1988 Mar;31(3):305–314. doi: 10.1002/art.1780310301. [DOI] [PubMed] [Google Scholar]
  13. GUBNER R., AUGUST S., GINSBERG V. Therapeutic suppression of tissue reactivity. II. Effect of aminopterin in rheumatoid arthritis and psoriasis. Am J Med Sci. 1951 Feb;221(2):176–182. [PubMed] [Google Scholar]
  14. Gruber H. E., Hoffer M. E., McAllister D. R., Laikind P. K., Lane T. A., Schmid-Schoenbein G. W., Engler R. L. Increased adenosine concentration in blood from ischemic myocardium by AICA riboside. Effects on flow, granulocytes, and injury. Circulation. 1989 Nov;80(5):1400–1411. doi: 10.1161/01.cir.80.5.1400. [DOI] [PubMed] [Google Scholar]
  15. Hanrahan P. S., Russell A. S. Concurrent use of folinic acid and methotrexate in rheumatoid arthritis. J Rheumatol. 1988 Jul;15(7):1078–1080. [PubMed] [Google Scholar]
  16. Henderson J. F., Fraser J. H., McCoy E. E. Methods for the study of purine metabolism in human cells in vitro. Clin Biochem. 1974 Dec;7(4):339–358. doi: 10.1016/s0009-9120(74)92842-2. [DOI] [PubMed] [Google Scholar]
  17. Jaffe E. A., Nachman R. L., Becker C. G., Minick C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973 Nov;52(11):2745–2756. doi: 10.1172/JCI107470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kammer G. M., Birch R. E., Polmar S. H. Impaired immunoregulation in systemic lupus erythematosus: defective adenosine-induced suppressor T lymphocyte generation. J Immunol. 1983 Apr;130(4):1706–1712. [PubMed] [Google Scholar]
  19. Kammer G. M., Rudolph S. A. Regulation of human T lymphocyte surface antigen mobility by purinergic receptors. J Immunol. 1984 Dec;133(6):3298–3302. [PubMed] [Google Scholar]
  20. Lappin D., Whaley K. Adenosine A2 receptors on human monocytes modulate C2 production. Clin Exp Immunol. 1984 Aug;57(2):454–460. [PMC free article] [PubMed] [Google Scholar]
  21. Leonard E. J., Shenai A., Skeel A. Dynamics of chemotactic peptide-induced superoxide generation by human monocytes. Inflammation. 1987 Jun;11(2):229–240. doi: 10.1007/BF00916023. [DOI] [PubMed] [Google Scholar]
  22. Mandler R., Birch R. E., Polmar S. H., Kammer G. M., Rudolph S. A. Abnormal adenosine-induced immunosuppression and cAMP metabolism in T lymphocytes of patients with systemic lupus erythematosus. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7542–7546. doi: 10.1073/pnas.79.23.7542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Marone G., Vigorita S., Triggiani M., Condorelli M. Adenosine receptors on human lymphocytes. Adv Exp Med Biol. 1986;195(Pt B):7–14. doi: 10.1007/978-1-4684-1248-2_2. [DOI] [PubMed] [Google Scholar]
  24. Morgan S. L., Baggott J. E., Vaughn W. H., Young P. K., Austin J. V., Krumdieck C. L., Alarcón G. S. The effect of folic acid supplementation on the toxicity of low-dose methotrexate in patients with rheumatoid arthritis. Arthritis Rheum. 1990 Jan;33(1):9–18. doi: 10.1002/art.1780330102. [DOI] [PubMed] [Google Scholar]
  25. Möser G. H., Schrader J., Deussen A. Turnover of adenosine in plasma of human and dog blood. Am J Physiol. 1989 Apr;256(4 Pt 1):C799–C806. doi: 10.1152/ajpcell.1989.256.4.C799. [DOI] [PubMed] [Google Scholar]
  26. Nesher G., Moore T. L. The in vitro effects of methotrexate on peripheral blood mononuclear cells. Modulation by methyl donors and spermidine. Arthritis Rheum. 1990 Jul;33(7):954–959. doi: 10.1002/art.1780330706. [DOI] [PubMed] [Google Scholar]
  27. Nielson C. P., Vestal R. E. Effects of adenosine on polymorphonuclear leucocyte function, cyclic 3': 5'-adenosine monophosphate, and intracellular calcium. Br J Pharmacol. 1989 Jul;97(3):882–888. doi: 10.1111/j.1476-5381.1989.tb12028.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Riches D. W., Watkins J. L., Henson P. M., Stanworth D. R. Regulation of macrophage lysosomal secretion by adenosine, adenosine phosphate esters, and related structural analogues of adenosine. J Leukoc Biol. 1985 May;37(5):545–557. doi: 10.1002/jlb.37.5.545. [DOI] [PubMed] [Google Scholar]
  29. Roberts P. A., Newby A. C., Hallett M. B., Campbell A. K. Inhibition by adenosine of reactive oxygen metabolite production by human polymorphonuclear leucocytes. Biochem J. 1985 Apr 15;227(2):669–674. doi: 10.1042/bj2270669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schrier D. J., Imre K. M. The effects of adenosine agonists on human neutrophil function. J Immunol. 1986 Nov 15;137(10):3284–3289. [PubMed] [Google Scholar]
  31. Tishler M., Caspi D., Fishel B., Yaron M. The effects of leucovorin (folinic acid) on methotrexate therapy in rheumatoid arthritis patients. Arthritis Rheum. 1988 Jul;31(7):906–908. doi: 10.1002/art.1780310712. [DOI] [PubMed] [Google Scholar]
  32. de la Harpe J., Nathan C. F. Adenosine regulates the respiratory burst of cytokine-triggered human neutrophils adherent to biologic surfaces. J Immunol. 1989 Jul 15;143(2):596–602. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES