Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Mar 15;88(6):2486–2489. doi: 10.1073/pnas.88.6.2486

Regional differences in calcium-release channels from heart.

L Borgatta 1, J Watras 1, A M Katz 1, B E Ehrlich 1
PMCID: PMC51257  PMID: 1706525

Abstract

The heart is a heterogeneous tissue composed of several cell types tailored for specialized functions. We found that intracellular channels also exhibit regional specialization. In cardiac and skeletal muscle these channels are called the calcium-release channel and are identified by activation with either calcium or caffeine and inhibition by the hexavalent cation ruthenium red. The calcium-release channel of the sarcoplasmic reticulum from the interventricular septum has a smaller conductance (31 pS vs. 100 pS) and has longer open and closed times when compared with the channel from left-ventricular free wall. An additional calcium-permeable channel with an even smaller conductance (17 pS) was found in the septum, and this channel is similar to the inositol 1,4,5-trisphosphate-gated channel from smooth muscle and different from the calcium-release channel (ryanodine receptor) from skeletal and cardiac muscle. The inositol 1,4,5-trisphosphate-activated channel may be derived from specialized conducting tissue that is relatively abundant in the septum, whereas the other calcium-release channels may be derived from regionally specialized myocardial cells in the septum and free wall.

Full text

PDF
2486

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Airey J. A., Beck C. F., Murakami K., Tanksley S. J., Deerinck T. J., Ellisman M. H., Sutko J. L. Identification and localization of two triad junctional foot protein isoforms in mature avian fast twitch skeletal muscle. J Biol Chem. 1990 Aug 25;265(24):14187–14194. [PubMed] [Google Scholar]
  2. Armstrong C. M., Matteson D. R. Two distinct populations of calcium channels in a clonal line of pituitary cells. Science. 1985 Jan 4;227(4682):65–67. doi: 10.1126/science.2578071. [DOI] [PubMed] [Google Scholar]
  3. Bouvagnet P., Leger J., Pons F., Dechesne C., Leger J. J. Fiber types and myosin types in human atrial and ventricular myocardium. An anatomical description. Circ Res. 1984 Dec;55(6):794–804. doi: 10.1161/01.res.55.6.794. [DOI] [PubMed] [Google Scholar]
  4. Bugaisky L. B., Anderson P. G., Hall R. S., Bishop S. P. Differences in myosin isoform expression in the subepicardial and subendocardial myocardium during cardiac hypertrophy in the rat. Circ Res. 1990 Apr;66(4):1127–1132. doi: 10.1161/01.res.66.4.1127. [DOI] [PubMed] [Google Scholar]
  5. Ehrlich B. E., Watras J. Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. Nature. 1988 Dec 8;336(6199):583–586. doi: 10.1038/336583a0. [DOI] [PubMed] [Google Scholar]
  6. Katz A. M. Cardiomyopathy of overload. A major determinant of prognosis in congestive heart failure. N Engl J Med. 1990 Jan 11;322(2):100–110. doi: 10.1056/NEJM199001113220206. [DOI] [PubMed] [Google Scholar]
  7. Katz A. M., Katz P. B. Homogeneity out of heterogeneity. Circulation. 1989 Mar;79(3):712–717. doi: 10.1161/01.cir.79.3.712. [DOI] [PubMed] [Google Scholar]
  8. Kimura S., Bassett A. L., Furukawa T., Cuevas J., Myerburg R. J. Electrophysiological properties and responses to simulated ischemia in cat ventricular myocytes of endocardial and epicardial origin. Circ Res. 1990 Feb;66(2):469–477. doi: 10.1161/01.res.66.2.469. [DOI] [PubMed] [Google Scholar]
  9. Litovsky S. H., Antzelevitch C. Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ Res. 1988 Jan;62(1):116–126. doi: 10.1161/01.res.62.1.116. [DOI] [PubMed] [Google Scholar]
  10. Nilius B., Hess P., Lansman J. B., Tsien R. W. A novel type of cardiac calcium channel in ventricular cells. Nature. 1985 Aug 1;316(6027):443–446. doi: 10.1038/316443a0. [DOI] [PubMed] [Google Scholar]
  11. Ondrias K., Borgatta L., Kim D. H., Ehrlich B. E. Biphasic effects of doxorubicin on the calcium release channel from sarcoplasmic reticulum of cardiac muscle. Circ Res. 1990 Nov;67(5):1167–1174. doi: 10.1161/01.res.67.5.1167. [DOI] [PubMed] [Google Scholar]
  12. Ritov V. B., Men'shikova E. V., Kozlov Y. P. Heparin induces Ca2+ release from the terminal cisterns of skeletal muscle sarcoplasmic reticulum. FEBS Lett. 1985 Aug 19;188(1):77–80. doi: 10.1016/0014-5793(85)80878-4. [DOI] [PubMed] [Google Scholar]
  13. Ross C. A., Meldolesi J., Milner T. A., Satoh T., Supattapone S., Snyder S. H. Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons. Nature. 1989 Jun 8;339(6224):468–470. doi: 10.1038/339468a0. [DOI] [PubMed] [Google Scholar]
  14. Rousseau E., Meissner G. Single cardiac sarcoplasmic reticulum Ca2+-release channel: activation by caffeine. Am J Physiol. 1989 Feb;256(2 Pt 2):H328–H333. doi: 10.1152/ajpheart.1989.256.2.H328. [DOI] [PubMed] [Google Scholar]
  15. Rousseau E., Smith J. S., Henderson J. S., Meissner G. Single channel and 45Ca2+ flux measurements of the cardiac sarcoplasmic reticulum calcium channel. Biophys J. 1986 Nov;50(5):1009–1014. doi: 10.1016/S0006-3495(86)83543-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sartore S., Gorza L., Pierobon Bormioli S., Dalla Libera L., Schiaffino S. Myosin types and fiber types in cardiac muscle. I. Ventricular myocardium. J Cell Biol. 1981 Jan;88(1):226–233. doi: 10.1083/jcb.88.1.226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Smith J. S., Coronado R., Meissner G. Single channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum. Activation by Ca2+ and ATP and modulation by Mg2+. J Gen Physiol. 1986 Nov;88(5):573–588. doi: 10.1085/jgp.88.5.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Spach M. S., Dolber P. C., Anderson P. A. Multiple regional differences in cellular properties that regulate repolarization and contraction in the right atrium of adult and newborn dogs. Circ Res. 1989 Dec;65(6):1594–1611. doi: 10.1161/01.res.65.6.1594. [DOI] [PubMed] [Google Scholar]
  19. Vites A. M., Pappano A. Inositol 1,4,5-trisphosphate releases intracellular Ca2+ in permeabilized chick atria. Am J Physiol. 1990 Jun;258(6 Pt 2):H1745–H1752. doi: 10.1152/ajpheart.1990.258.6.H1745. [DOI] [PubMed] [Google Scholar]
  20. Watras J., Benevolensky D. Inositol 1,4,5-trisphosphate-induced calcium release from canine aortic sarcoplasmic reticulum vesicles. Biochim Biophys Acta. 1987 Dec 10;931(3):354–363. doi: 10.1016/0167-4889(87)90227-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES