Abstract Abstract
The present dataset provides a case study for (SDM) and for model testing in a poorly documented marine region.
The dataset includes spatially-explicit data for echinoid (Echinodermata: Echinoidea) distribution. Echinoids were collected during oceanographic campaigns led around the Kerguelen Plateau (+63°/+81°E; -46°/-56°S) since 1872. In addition to the identification of collection specimens from historical cruises, original data from the recent campaigns POKER II (2010) and PROTEKER 2 to 4 (2013-2015) are also provided. In total, five families, ten genera, and 12 echinoid species are recorded in the region of the Kerguelen Plateau.
The dataset is complemented with environmental descriptors available and relevant for echinoid ecology and SDM. The environmental data was compiled from different sources and was modified to suit the geographic extent of the Kerguelen Plateau, using scripts developed with the R language (R Core Team 2015). Spatial resolution was set at a common 0.1° pixel resolution. Mean seafloor and sea surface temperatures, salinity and their amplitudes, all derived from the World Ocean Database (Boyer et al. 2013) are made available for the six following decades: 1955–1964, 1965–1974, 1975–1984, 1985–1994, 1995–2004, 2005–2012.
Future projections are provided for several parameters: they were modified from the Bio-ORACLE database (Tyberghein et al. 2012). They are based on three IPCC scenarii (B1, AIB, A2) for years 2100 and 2200 (IPCC, 4th report).
Keywords: Echinoidea, environmental descriptors, future projections, historical overview, Kerguelen Plateau, Southern Ocean
Project description
Project title: Temporal, spatial, and sampling heterogeneities in species distribution modelling. A case study for the data-poor area of the Kerguelen Plateau.
Personnel: Charlène Guillaumot, Alexis Martin, Salomé Fabri-Ruiz, Marc Eléaume, Thomas Saucède
Funding: This study is part of a project funded by CNRS laboratory UMR6282 Biogeosciences and by the vERSO program (Ecosystem Responses to global change: a multiscale approach in the Southern Ocean). This is contribution no.14 to the vERSO project (www.versoproject.be), funded by the (BELSPO, contract n°BR/132/A1/vERSO). This is a contribution to the POKER program and the IPEV program 1044 PROTEKER.
Study extent description
The study area of this dataset includes the Kerguelen Plateau, located at the boundary between the Indian and Southern Oceans, in the flow of the Antarctic Circumpolar Current (Park and Vivier 2011). The plateau is the second largest oceanic igneous province on Earth. It is positioned between 46°S and 62°S latitude, between 63°E and 81°E longitude, and it extends over 500 km from East to West and 2,100 km from North to South for a total surface area of 2.106 km2 (Cottin et al. 2011).
The Kerguelen Plateau is subdivided into the Kerguelen Islands shelf in the north and the Heard and McDonalds Islands shelf in the south. The two shelves are separated by a controlling oceanographic barrier: the Polar Front, which position has recurrently been discussed (Park et al. 2014). Topography and currents also strongly control other environmental parameters (temperature, salinity, chlorophyll a concentration) in the vicinity of the Plateau (Graham et al. 2012, Chacko et al. 2014).
The Kerguelen Plateau hosts important economic activities, namely through fishing, generating potential issues for the conservation of marine biodiversity. Exploitation of the marine living resources of the Kerguelen Plateau has been sustainably managed by CCAMLR and by the TAAF in the French EEZ with scientific support from the Muséum national d’Histoire naturelle of Paris since 1978 (Duhamel and Williams 2011). In the Australian EEZ, in the south, a similar management system was established in 1979 and was followed by the designation in 2002 of the PageBreak(HIMI) Marine Protected Area: one of the world’s largest MPA with an area of 65,000 km2 (Welsford et al. 2011).
The Kerguelen Plateau represents a vast marine area challenged by strong anthropogenic and natural pressures. Relatively few scientific programs have studied marine biodiversity of the Kerguelen Plateau, leaving it poorly documented. In this context, environmental descriptors could prove to be useful proxies to infer species distribution when occurrence data are missing (Hemery et al. 2011).
In addition to the study of collection specimens sampled during historical cruises and identified at species level, the present work also provides original data collected during the recent oceanographic campaign POKER II (2010) and during three field summer campaigns of the IPEV program 1044 PROTEKER (2013-2015) led in nearshore areas of the Kerguelen Islands. The spatial extent of the dataset was based on the bathymetric range of echinoids for species distribution modelling to be performed with limited extrapolations.
Design description
Our project aimed at improving the robustness of existing modelling approaches in the case of areas for which only poor and heterogeneous biodiversity data are available, a situation prevailing in the region of the Kerguelen Plateau, and generally in the Southern Ocean (Gutt et al. 2012).
Data compilation from various sources implies temporal heterogeneities that may constitute a critical point when building species distribution models (Aguiar et al. 2015). Spatial and sampling heterogeneities are also likely to introduce biases due to differences in sampling strategies and the gears used during the various cruises. Our objectives were (1) to assess the influence of temporal, spatial, and sampling heterogeneities on species distribution modelling using datasets of echinoid occurrences on the Kerguelen Plateau, (2) to model echinoid distribution on the Kerguelen Plateau for different time periods, and (3) to evaluate potential shifts in species distribution with regards to future projections based on IPCC scenarii (Jueterbock et al. 2013).
Data description
Occurrence data were compiled from many oceanographic campaigns led over a long time-period starting with the Challenger Expedition in 1872 and ending with the recent PROTEKER campaigns that took place between 2013 and 2015 (Table 1). The dataset was modified after Pierrat et al. (2012) and Saucède et al. (2015a). Specimens from recent cruises (POKER II and PROTEKER) were identified at species level and added to the dataset.
Table 1.
Field campaigns during which echinoids of the dataset were collected. MNHN.
| Campaigns | Year | Occurrence Nb | Research vessels | References | Collections |
|---|---|---|---|---|---|
| Challenger Expedition | 1872 | 9 | Challenger | A. Agassiz 1879, 1881 | National History Museum, London |
| Gazelle Expedition | 1874–76 | 1 | Gazelle | Studer 1876 | Museum für Naturkunde, Berlin |
| Deutsche Tiefsee Expedition | 1898–99 | 3 | Valdivia | Döderlein 1906 | Museum für Naturkunde, Berlin |
| Deutsche Südpolar Expedition | 1901–03 | 2 | Gauss | Mortensen 1909 | Museum für Naturkunde, Berlin |
| BANZAR Expedition | 1929 | 9 | Discovery | Mortensen 1950 | National Museum of Australia, Acton |
| Kerguelen 1962–63 | 1962–63 | 8 | - | Grua 1963 | MNHN, Paris |
| Eltanin Expedition | 1962–72 | 1 | Eltanin | Fell 1976 | Smithsonian Institution, Washington |
| Ker72 | 1972 | 5 | Japonaise | Guille 1977 | MNHN, Paris |
| MD03 | 1974 | 32 | Marion Dufresne | De Ridder et al. 1992 | MNHN, Paris |
| MD04 | 1975 | 130 | Marion Dufresne | De Ridder et al. 1992 | MNHN, Paris |
| SIBEX MD42 | 1985 | 13 | Marion Dufresne | Pierrat et al. 2012 | MNHN, Paris |
| 1985 ANARE Expedition | 1985 | 5 | Nella Dan | Burton and Williams 1985 | National Museum of Australia, Acton |
| Benthos/mac | 1991 | 22 | Curieuse | Poulin and Féral 1995 | Banyuls oceanological observatory |
| 1992 ANARE Expedition | 1992 | 18 | Aurora Australis | Green 1993 | National Museum of Australia, Acton |
| Cruise SC26 | 2003 | 2 | Southern Champion | Pierrat et al. 2012 | Australian Antarctic Division, Kingston |
| POKER II | 2010 | 111 | Austral | this study | MNHN, Paris |
| PROTEKER 2 | 2013 | 52 | Curieuse | Féral et al. 2013 | MNHN, Paris |
| PROTEKER 3 | 2014 | 7 | Curieuse | Féral et al. 2014 | MNHN, Paris |
| PROTEKER 4 | 2015 | 5 | Commerson | Saucède et al. 2015b | MNHN, Paris |
Occurrences are presence-only data for which different sampling tools, protocols, and strategies were used. Moreover, the study area was unevenly investigated, sampling effort being stronger in the northern than in the southern part of the Plateau (Figure 1). Accordingly, campaigns and sampling dates are mentioned in the dataset to take into account spatial and time heterogeneities.
Figure 1.
Sampling effort. Red dots depict echinoid occurrences. Black squares correspond to visited sites at which no echinoid was sampled.
The environmental descriptors provided in the dataset were compiled from different sources (Table 2 – see Annex). They were selected according to their relevance to echinoid ecology.
Table 2.
Environmental variables provided in the present data paper. Salinity data are reported in the (PSS) format.
| Environmental layer name | Spatial cover | Unit | Source | URL |
|---|---|---|---|---|
| seafloor_salinity_amplitude_1955_1964 | 46_56°S/63_81°E | PSS | This study. Derived from World Ocean Database (Boyer et al. 2013) surface salinity layers | https://www.nodc.noaa.gov/OC5/woa13/woa13data.html |
| seafloor_salinity_amplitude_1965_1974 | 46_56°S/63_81°E | PSS | ||
| seafloor_salinity_amplitude_1975_1984 | 46_56°S/63_81°E | PSS | ||
| seafloor_salinity_amplitude_1985_1994 | 46_56°S/63_81°E | PSS | ||
| seafloor_salinity_amplitude_1995_2004 | 46_56°S/63_81°E | PSS | ||
| seafloor_salinity_amplitude_2005_2012 | 46_56°S/63_81°E | PSS | ||
| seafloor_salinity_amplitude_1955_2012 | 46_56°S/63_81°E | PSS | ||
| seasurface_salinity_amplitude_1955_1964 | 46_56°S/63_81°E | PSS | World Ocean Database (Boyer et al. 2013) | |
| seasurface_salinity_amplitude_1965_1974 | 46_56°S/63_81°E | PSS | ||
| seasurface_salinity_amplitude_1975_1984 | 46_56°S/63_81°E | PSS | ||
| seasurface_salinity_amplitude_1985_1994 | 46_56°S/63_81°E | PSS | ||
| seasurface_salinity_amplitude_1995_2004 | 46_56°S/63_81°E | PSS | ||
| seasurface_salinity_amplitude_2005_2012 | 46_56°S/63_81°E | PSS | ||
| seasurface_salinity_amplitude_1955_2012 | 46_56°S/63_81°E | PSS | ||
| seasurface_temperature_amplitude_2100_A1B | 46_56°S/63_81°E | °Celsius degrees | BIO-ORACLE (Tyberghein et al. 2012) | http://www.oracle.ugent.be/ |
| seasurface_temperature_amplitude_2100_A2 | 46_56°S/63_81°E | °Celsius degrees | ||
| seasurface_temperature_amplitude_2100_B1 | 46_56°S/63_81°E | °Celsius degrees | ||
| seasurface_temperature_amplitude_2200_A1B | 46_56°S/63_81°E | °Celsius degrees | ||
| seasurface_temperature_amplitude_2200_B1 | 46_56°S/63_81°E | °Celsius degrees | ||
| seafloor_temperature_amplitude_1955_1964 | 46_56°S/63_81°E | °Celsius degrees | This study. Derived from World Ocean Database (Boyer et al. 2013) sea surface temperature layers | https://www.nodc.noaa.gov/OC5/woa13/woa13data.html |
| seafloor_temperature_amplitude_1965_1974 | 46_56°S/63_81°E | °Celsius degrees | ||
| seafloor_temperature_amplitude_1975_1984 | 46_56°S/63_81°E | °Celsius degrees | ||
| seafloor_temperature_amplitude_1985_1994 | 46_56°S/63_81°E | °Celsius degrees | ||
| seafloor_temperature_amplitude_1995_2004 | 46_56°S/63_81°E | °Celsius degrees | ||
| seafloor_temperature_amplitude_2005_2012 | 46_56°S/63_81°E | °Celsius degrees | ||
| seafloor_temperature_amplitude_1955_2012 | 46_56°S/63_81°E | °Celsius degrees | ||
| seasurface_temperature_amplitude_1955_1964 | 46_56°S/63_81°E | °Celsius degrees | World Ocean Database (Boyer et al. 2013) | |
| seasurface_temperature_amplitude_1965_1974 | 46_56°S/63_81°E | °Celsius degrees | ||
| seasurface_temperature_amplitude_1975_1984 | 46_56°S/63_81°E | °Celsius degrees | ||
| seasurface_temperature_amplitude_1985_1994 | 46_56°S/63_81°E | °Celsius degrees | World Ocean Database (Boyer et al. 2013) | https://www.nodc.noaa.gov/OC5/woa13/woa13data.html |
| seasurface_temperature_amplitude_1995_2004 | 46_56°S/63_81°E | °Celsius degrees | ||
| seasurface_temperature_amplitude_2005_2012 | 46_56°S/63_81°E | °Celsius degrees | ||
| seasurface_temperature_amplitude_1955_2012 | 46_56°S/63_81°E | °Celsius degrees | ||
| chlorophyla_summer_mean_2002_2009 | 46_56°S/63_81°E | mg/m3 | MODIS AQUA (NASA) 2010 | http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=ocean_8day |
| geomorphology | 46_56°S/63_81°E | categorial | ATLAS ETOPO2 2014 (Douglass et al. 2014) | |
| depth | 46_56°S/63_81°E | meter | This study. Derived from Smith and Sandwell 1997 | http://topex.ucsd.edu/WWW_html/mar_topo.html |
| seafloor_nitrate_mean_1955_2012 | 46_56°S/63_81°E | µmol/L | This study. Derived from World Ocean Database (Boyer et al. 2013) sea surface nitrate concentration layers | https://www.nodc.noaa.gov/OC5/woa13/woa13data.html |
| seasurface_nitrate_mean_1955_2012 | 46_56°S/63_81°E | µmol/L | World Ocean Circulation Experiment 2013 | |
| seafloor_oxygen_mean_1955_2012 | 46_56°S/63_81°E | mL/L | This study. Derived from World Ocean Database (Boyer et al. 2013) sea surface oxygen concentration layers | |
| seasurface_oxygen_mean_1955_2012 | 46_56°S/63_81°E | mL/L | World Ocean Circulation Experiment 2013 | |
| seafloor_phosphate_mean_1955_2012 | 46_56°S/63_81°E | µmol/L | This study. Derived from World Ocean Database (Boyer et al. 2013) sea surface phosphate concentration layers | |
| seasurface_phosphate_mean_1955_2012 | 46_56°S/63_81°E | µmol/L | World Ocean Circulation Experiment 2013 | |
| roughness | 46_56°S/63_81°E | meter | This study. Derived from bathymetric layer | |
| seafloor_salinity_mean_1955_1964 | 46_56°S/63_81°E | PSS | This study. Derived from World Ocean Database (Boyer et al. 2013) sea surface salinity layers | https://www.nodc.noaa.gov/OC5/woa13/woa13data.html |
| seafloor_salinity_mean_1965_1974 | 46_56°S/63_81°E | PSS | ||
| seafloor_salinity_mean_1975_1984 | 46_56°S/63_81°E | PSS | ||
| seafloor_salinity_mean_1985_1994 | 46_56°S/63_81°E | PSS | ||
| seafloor_salinity_mean_1995_2004 | 46_56°S/63_81°E | PSS | ||
| seafloor_salinity_mean_2005_2012 | 46_56°S/63_81°E | PSS | ||
| seafloor_salinity_mean_1955_2012 | 46_56°S/63_81°E | PSS | ||
| seasurface_salinity_mean_1955_1964 | 46_56°S/63_81°E | PSS | World Ocean Database (Boyer et al. 2013) | |
| seasurface_salinity_mean_1965_1974 | 46_56°S/63_81°E | PSS | ||
| seasurface_salinity_mean_1975_1984 | 46_56°S/63_81°E | PSS | ||
| seasurface_salinity_mean_1985_1994 | 46_56°S/63_81°E | PSS | ||
| seasurface_salinity_mean_1995_2004 | 46_56°S/63_81°E | PSS | ||
| seasurface_salinity_mean_2005_2012 | 46_56°S/63_81°E | PSS | World Ocean Database (Boyer et al. 2013) | https://www.nodc.noaa.gov/OC5/woa13/woa13data.html |
| seasurface_salinity_mean_1955_2012 | 46_56°S/63_81°E | PSS | ||
| seasurface_salinity_mean_2100_A1B | 46_56°S/63_81°E | PSS | BIO-ORACLE (Tyberghein et al. 2012) | http://www.oracle.ugent.be/ |
| seasurface_salinity_mean_2100_A2 | 46_56°S/63_81°E | PSS | ||
| seasurface_salinity_mean_2100_B1 | 46_56°S/63_81°E | PSS | ||
| seasurface_salinity_mean_2200_A1B | 46_56°S/63_81°E | PSS | ||
| seasurface_salinity_mean_2200_B1 | 46_56°S/63_81°E | PSS | ||
| sediments | 46_56°S/63_81°E | categorial | McCoy (1991), updated by Griffiths 2014 (unpublished) | |
| seafloor_silicate_mean_1955_2012 | 46_56°S/63_81°E | µmol/L | This study. Derived from World Ocean Database (Boyer et al. 2013) sea surface silicate concentration layers | https://www.nodc.noaa.gov/OC5/woa13/woa13data.html |
| seasurface_silicate_mean_1955_2012 | 46_56°S/63_81°E | µmol/L | World Ocean Circulation Experiment 2013 | |
| slope | 46_56°S/63_81°E | unitless | Smith and Sandwell 1997 | |
| seafloor_temperature_mean_1955_1964 | 46_56°S/63_81°E | °Celsius degrees | This study. Derived from World Ocean Database (Boyer et al. 2013) sea surface temperature layers | https://www.nodc.noaa.gov/OC5/woa13/woa13data.html |
| seafloor_temperature_mean_1965_1974 | 46_56°S/63_81°E | °Celsius degrees | ||
| seafloor_temperature_mean_1975_1984 | 46_56°S/63_81°E | °Celsius degrees | ||
| seafloor_temperature_mean_1985_1994 | 46_56°S/63_81°E | °Celsius degrees | ||
| seafloor_temperature_mean_1995_2004 | 46_56°S/63_81°E | °Celsius degrees | ||
| seafloor_temperature_mean_2005_2012 | 46_56°S/63_81°E | °Celsius degrees | ||
| seafloor_temperature_mean_1955_2012 | 46_56°S/63_81°E | °Celsius degrees | ||
| seasurface_temperature_mean_1955_1964 | 46_56°S/63_81°E | °Celsius degrees | World Ocean Database (Boyer et al. 2013) | |
| seasurface_temperature_mean_1965_1974 | 46_56°S/63_81°E | °Celsius degrees | ||
| seasurface_temperature_mean_1975_1984 | 46_56°S/63_81°E | °Celsius degrees | ||
| seasurface_temperature_mean_1985_1994 | 46_56°S/63_81°E | °Celsius degrees | ||
| seasurface_temperature_mean_1995_2004 | 46_56°S/63_81°E | °Celsius degrees | ||
| seasurface_temperature_mean_2005_2012 | 46_56°S/63_81°E | °Celsius degrees | ||
| seasurface_temperature_mean_1955_2012 | 46_56°S/63_81°E | °Celsius degrees | ||
| seasurface_temperature_mean_2100_A1B | 46_56°S/63_81°E | °Celsius degrees | BIO-ORACLE (Tyberghein et al. 2012) | http://www.oracle.ugent.be/ |
| seasurface_temperature_mean_2100_A2 | 46_56°S/63_81°E | °Celsius degrees | ||
| seasurface_temperature_mean_2100_B1 | 46_56°S/63_81°E | °Celsius degrees | ||
| seasurface_temperature_mean_2200_A1B | 46_56°S/63_81°E | °Celsius degrees | ||
| seasurface_temperature_mean_2200_B1 | 46_56°S/63_81°E | °Celsius degrees |
Environmental data were formatted with R3.3.0 software (R Core Team 2015) to fit the sampling area of where echinoids occur on the Kerguelen Plateau (+63°/+81°E; -46°/-56°S). They were set up to a 0.1° grid-cell spatial resolution with origin fixed at 0 (top left corner). Seafloor temperature, salinity, oxygen and nutrient concentration data were generated by using the provided data of the World Ocean Database (Boyer et al. 2013) and depth data.
In marine nearshore areas, grid-cells with positive depth values above sea level were corrected for accuracy using ArcGis Raster Editor Tool (ESRI 2011) based on geographic charts (IGN: National Geographic Institute, EAN: 3282110102707, scale 1/200 000) and raw depth values measured in the field (Féral et al. 2013, 2014, Saucède et al. 2015b).
Roughness data were computed using the “terrain” function of the raster package R3.3.0 (Hijmans and van Etten 2012).
The time coverage of the environmental data extends from 1955 to 2012. Mean annual surface and seafloor temperatures, salinity and their respective amplitudes (i.e., amplitude between mean summer (January to March) and mean winter (July to September) surface and seafloor temperatures and salinities) are available for the following six decades: 1955 to 1964, 1965 to 1974, 1975 to 1984, 1985 to 1994, 1995 to 2004, and 2005 to 2014.
Future projections of sea surface temperature, salinity, and amplitude were downloaded from the Bio-ORACLE database (Tyberghein et al. 2012). Projections are based on the IPCC A2, A1B, and B1 scenarii published in the 4th IPCC report (2007). The modelled data correspond to the extrapolated means for two decades: 2087-2096 (here referred to as 2100) and 2187-2196 (here referred to as 2200) (Jueterbock et al. 2013).
All the environmental descriptors and metadata sources are detailed in the data catalog (Table 2) and data are provided in an ascii raster format. N/A was set as the no data reference for missing data.
Quality control description
Specimens sampled during POKER II and PROTEKER 2, 3 and 4 campaigns were all identified by T. Saucède at the species level. Identifications and taxonomic accuracies are based on Anderson (2009), Anderson (2012), David et al. (2005), Kroh and Smith (2010), Pierrat et al. (2012), and Saucède et al. (2015a).
The final compiled dataset was checked for consistency using the WoRMS database (WoRMS Editorial Board 2016) in order to match our data with the most up-to-date taxonomy. The dataset was checked for duplicates and errors due to overlapping origins, georeferencing mistakes, and species synonymy or mis-spelling. Only occurrence data identified at the species level were included.
Environmental data relies on different sources as reported in Table 2. The range of data was studied to check for variables consistencies. Data were not interpolated to limit interpolation biases and missing data were reported as N/A values.
Taxonomic coverage
General taxonomic coverage description:
The present dataset focuses on all species of the class Echinoidea (Echinodermata) occurring on the Kerguelen Plateau.
Echinoids are common species of benthic communities in the Southern Ocean and on the Kerguelen Plateau (David et al. 2005). They are diversified and well-studied. Historical data are available since 1872, starting with the Challenger Expedition, and are completed with recent occurrences collected nearshore areas of the Kerguelen Islands during the PROTEKER campaigns (2013-2015).
Echinoid studies take part in conservation issues. Ctenocidaris nutrix is considered a (VME) indicator species by CCAMLR and is widely distributed on the Kerguelen Plateau.
On the Kerguelen Plateau, the Class Echinoidea includes five families, ten genera, and 12 species. Species distribution is shown in Figure 2.
Figure 2.
Distribution of the 12 echinoid species based on the specimens collected since 1872 on the Kerguelen Plateau.
Phylum: Echinodermata
Class: Echinoidea
Order: Camarodonta, Cidaroida, Holasteroida, Spatangoida
Family: Ctenocidarinae, Echinidae, Plexechinidae, Pourtalesiidae, Schizasteridae
Genus: Abatus, Aporocidaris, Brisaster, Ctenocidaris, Dermechinus, Plexechinus, Pourtalesia, Rhynchocidaris, Sterechinus, Tripylus
Species: Abatus cordatus, Aporocidaris milleri, Brisaster antarcticus, Ctenocidaris nutrix, Dermechinus horridus, Plexechinus sulcatus, Pourtalesia hispida, Pourtalesia debilis, Rhynchocidaris triplopora, Sterechinus diadema, Sterechinus neumayeri, Tripylus abatoides
Spatial coverage
General spatial coverage: the Kerguelen Plateau, Southern Ocean
Coordinates: -46°S and -56°S; +63°E and +81°E
Temporal coverage
Temporal coverage: 1872–2015
Datasets
Dataset occurrence description
Echinoid occurrences available on the Kerguelen Plateau. Data from 1872 to 2015 collected with different sampling strategies and objectives, during different campaigns.
Object name: Echinoids_Kerguelen_Plateau_1872_2015
Character encoding: x-MacRoman
Format name: Darwin Core Archive Format
Format version: 3.0
Distribution: http://ipt.biodiversity.aq/resource.do?r=echinoids_kerguelen_plateau_18- 72_2015
Publication date of data: 12/07/2016
Language: English
Metadata language: English
Date of metadata creation: 12/07/2016
Hierarchy level: Dataset
Dataset of actual environmental parameters description
Environmental variables in the region of the Kerguelen Plateau compiled from different sources and provided in the ascii raster format (Guillaumot et al. 2016). Mean surface and seafloor temperature, salinity and their respective amplitude data are available on the time coverage 1955-2012 and over six decades: 1955 to 1964, 1965 to 1974, 1975 to 1984, 1985 to 1994 and 1995 to 2004, and 2005 to 2012.
Future projections are provided for several parameters: they were modified after the Bio-ORACLE database (Tyberghein et al. 2012). They are based on three IPCC scenarii (B1, AIB, A2) for years 2100 and 2200 (IPCC, 4th report).
Object name: Environmental_Kerguelen_Plateau_1955_2012
Format name: Raster
Format version: 1.0
Distribution: https://data.aad.gov.au/metadata/records/Environmental_Kerguelen_Plateau_1955_2012
Publication date of data: 16/07/2016
Language: English
Metadata language: English
Date of metadata creation: 16/07/2016
Hierarchy level: Dataset
Citation
Guillaumot C, Martin A, Fabri-Ruiz S, Eléaume M, Saucède T (2016) Echinoids of the Kerguelen Plateau – occurrence data and environmental setting for past, present, and future species distribution modelling. ZooKeys 630: 1–17. doi: 10.3897/zookeys.630.9856
References
Referred to in the data paper
- Agassiz A. (1879) Preliminary report on the Echini of the exploring expedition of H.M.S. Challenger, Sir C. Wyville Thomson chief of Civilian Staff. Proceedings of the National Academy of Sciences USA 14: 190–212. doi: 10.2307/25138537 [Google Scholar]
- Agassiz A. (1881) Report on the scientific results of the voyage of H.M.S. Challenger during the years 1873–1876. Zoology 3(9): 1–321. [Google Scholar]
- Aguiar LMS, Rosa ROL, Jones G, Machado RB. (2015) Effect of chronological addition of records to species distribution maps: the case of Tonatia saurophila maresi (Chiroptera, Phyllostomidae) in South America. Austral Ecology 40(7): 836–844. doi: 10.1111/aec.12261 [Google Scholar]
- Anderson OF. (2009) The giant purple pedinid: a new species of Caenopedina (Echinodermata, Echinoidea, Pedinidae) from New Zealand and Australia. Zootaxa 2007: 43–57. [Google Scholar]
- Anderson OF. (2012) A review of New Zealand and southeast Australian echinothuriinids (Echinodermata, Echinothuriidae) with descriptions of seven new species. Zootaxa 3609: 521–567. doi: 10.11646/zootaxa.3609.6.1 [DOI] [PubMed] [Google Scholar]
- Boyer TP, Antonov JI, Baranova OK, Coleman C, Garcia HE, Grodsky A, Johnson DR, Locarnini RA, Mishonov AV, O’Brien TD, Paver CR, Reagan JR, Seidov D, Smolyar IV, Zweng MM. (2013) World Ocean Database 2013, NOAA Atlas NESDIS 72, S. Levitus, Edition, A. Mishonov, Technical Editor; Silver Spring, MD: 209 pp. doi: 10.7289/V5NZ85MT [Google Scholar]
- Burton HR, Williams DL. (1985) Heard Island ANARE 1985 Report. Australian Antarctic Division, Kingston. [Google Scholar]
- Chacko R, Murukesh N, George JV, Anilkumar N. (2014) Observational evidence of the southward transport of water masses in the Indian sector of the Southern Ocean. Current Science 107(9): 1573–1581. [Google Scholar]
- Cottin JY, Michon G, Delpech G. (2011) The Kerguelen volcanic plateau: the second largest oceanic Igneous Province (LIP) on Earth and a witness of the Indian Ocean opening. The Kerguelen Plateau: Marine Ecosystems and Fisheries 2011: 29–42. [Google Scholar]
- David B, Choné T, Mooi R, De Ridder C. (2005) Antarctic Echinoidea. Synopsis of the Antarctic Benthos, 10 pp.
- De Ridder C, David B, Larrain A. (1992) Antarctic and subantarctic echinoids from Marion Dufresne’s expeditions MD03, MD04, MD08 and from the Polarstern’s expedition Epos III. Bulletin du Muséum national d’Histoire naturelle. Section A, Zoologie, Biologie et Ecologie animales 14(2): 405–441. [Google Scholar]
- Döderlein L. (1906) Die Echinoiden der Deutschen Tiefsee-Expedition. Deutsche Tiefsee Expedition 1898–1899 5: 63–290. doi: 10.5962/bhl.title.46999 [Google Scholar]
- Duhamel G, Williams R. (2011) History of whaling, sealing, fishery and aquaculture trials in the area of the Kerguelen Plateau. The Kerguelen Plateau: Marine Ecosystem and Fisheries 2011: 15–28. [Google Scholar]
- ESRI (2011) ArcGIS Desktop. Environmental Systems Research Institute, Redlands, CA. [Google Scholar]
- Fell FJ. (1976) The Cidaroida (Echinodermata: Echinoidea) of Antarctica and the Southern Ocean. PhD Thesis, University of Maine (unpublished), 276 pp. [Google Scholar]
- Féral JP, Marschal C, Marty G, Poulin E, Saucède T. (2013) PROTEKER: report of the 2nd field campaign, 17 pp http://www.proteker.net/IMG/pdf/proteker2013-14_rapport_xs.pdf [In French]
- Féral JP, Marschal C, Marty G, Motreuil S, Roca JC. (2014) PROTEKER: report of the 3rd field campaign, 10 pp http://www.proteker.net/Campagne-dete-2014.html?lang=en [In French]
- Graham RM, Boer AM, Heywood KJ, Chapman MR, Stevens DP. (2012) Southern Ocean fronts: controlled by wind or topography? Journal of Geophysical Research: Oceans 117(C8): 1–14. doi: 10.1029/2012JC007887 [Google Scholar]
- Green K. (1993) Heard Island 1992 ANARE Report. Australian Antarctic Division, Kingston. [Google Scholar]
- Grua P. (1963) Etude de biotopes marins infralittoraux (Kerguelen 1962–63). TAAF 23–24: 69–73. [Google Scholar]
- Guillaumot C, Martin A, Fabri-Ruiz S, Eleaume M, Saucède T. (2016) Environmental parameters (1955–2012) for echinoid distribution modelling on the Kerguelen Plateau. Australian Antarctic Data Centre. doi: 10.4225/15/578ED5A08050F [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guille A. (1977) Bionomie du plateau continental des îles Kerguelen. Stations prospectées et résultats préliminaires. Comité National Français des Recherches Antarctiques (CNFRA) 42: 3–40. [Google Scholar]
- Gutt J, Zurell D, Bracegridle TJ, Cheung W, Clark MS, Convey P, Danis B, David B, De Broyer C, Di Prisco G, Griffiths H. (2012) Correlative and dynamic species distribution modelling for ecological predictions in the Antarctic: a cross-disciplinary concept. Polar Research 31: 11091. doi: 10.3402/polar.v31i0.11091 [Google Scholar]
- Hemery LG, Galton-Fenzi B, Ameziane N, Riddle MJ, Rintoul SR, Beaman RJ, Post AL, Eleaume M. (2011) Predicting habitat preferences for Anthometrina adriani (Echinodermata) on the East Antarctic continental shelf. Marine Ecology Progress Series 441: 105–116. doi: 10.3354/meps09330 [Google Scholar]
- Hijmans R, van Etten J. (2012) ‘raster’: Geographic analysis and modelling with raster data. R package version 2.0-12. http://CRAN.R-project.org/package=raster
- WoRMS Editorial Board (2016) World Register of Marine Species. http://www.marinespecies.org at VLIZ. doi: 10.14284/170 [Accessed 2016-10-08]
- Jueterbock A, Tyberghein L, Verbruggen H, Coyer JA, Olsen JL, Hoarau G. (2013) Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal. Ecology and Evolution 3(5): 1356–1373. doi: 10.1002/ece3.541 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kroh A, Smith AB. (2010) The phylogeny and classification of post-Palaeozoic echinoids. Journal of Systematic Palaeontology 8(2): 147–212. doi: 10.1080/14772011003603556 [Google Scholar]
- Mortensen T. (1909) Die Echinoiden der Deutschen Südpolar Expedition 1901-1903. Deutsche Südpolar Expedition, G. Reimer imprint, Berlin 11, 113 pp. [Google Scholar]
- Mortensen T. (1950) Echinoidea. In: British Australian New Zealand Antarctic Research Expedition, 1929–1931. Report BANZAR Expededition, series B Zoology and Botany 4: 287–310. [Google Scholar]
- Park YH, Vivier F. (2011) Circulation and hydrography over the Kerguelen Plateau. The Kerguelen Plateau: Marine Ecosystems and Fisheries 2011: 43–55. [Google Scholar]
- Park YH, Durand I, Kestenare E, Rougier G, Zhou M, d’Ovidio F, Cotté C, Lee JH. (2014) Polar Front around the Kerguelen Islands: an up-to-date determination and associated circulation of surface/subsurface waters. Journal of Geophysical Research: Oceans 119(10): 6575–6592. doi: 10.1002/2014JC010061 [Google Scholar]
- Pierrat B, Saucède T, Laffont R, De Ridder C, Festeau A, David B. (2012) Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling. Marine Ecology Progress Series 463: 215–230. doi: 10.3354/meps09842 [Google Scholar]
- Poulin E, Féral JP. (1995) Pattern of spatial distribution of a broodprotecting schizasterid echinoid, Abatus cordatus, endemic to the Kerguelen Islands. Marine Ecology Progress Series 118: 179–186. doi: 10.3354/meps118179 [Google Scholar]
- Saucède T, Griffiths H, Moreau C, Jackson JA, Sands C, Downey R, Reed A, Mackenzie M, Geissler P, Linse K. (2015a) East Weddell Sea echinoids from the JR275 expedition. ZooKeys 504: 1–10. doi: 10.3897/zookeys.504.8860 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saucède T, Fabri-Ruiz S, Fournier J, De Ridder C, Marty G. (2015b) PROTEKER 4: report of the 4th field campaign, 33 pp http://www.proteker.net/IMG/pdf/proteker_2015-2016_rapport.v2.pdf [In French]
- R Core Team (2015) R: A language and environment for statistical computing. https://www.R-project.org
- Studer T. (1876) Über Echinodermen aus Antarktischen Meere und zwei neue Seeigel von Papoua-Inseln, gesammelt auf der Reise S.M.S. Gazelle um die Erde. Monatsberichte der Königlichen Preussische Akademie des Wissenschaften zu Berlin, 452–465. [Google Scholar]
- Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O. (2012) Bio‐ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecology and Biogeography 21(2): 272–28. doi: 10.1111/j.1466-8238.2011.00656.x [Google Scholar]
- Welsford DC, Constable AJ, Nowara GB. (2011) The Heard Island and McDonald Islands marine reserve and conservation zone: a model for Southern Ocean marine reserves? The Kerguelen Plateau: Marine Ecosystems and Fisheries 2011: 297–304. [Google Scholar]
Referred to in the datasets
- Agassiz L. (1840) Catalogus systematicus Ectyporum Echinodermatum fossilium Musei Neocomiensis, secundum ordinem zoologicum dispositus; adjectis synonymis recentioribus, nec non stratis et locis in quibus reperiuntur. Sequuntur characteres diagnostici generum novorum vel minus cognitorum. Petitpierre, Neuchâtel, 20 pp. [Google Scholar]
- Agassiz A. (1869) Preliminary report on the Echini and star-fishes dredged in deep water between Cuba and the Florida Reef, by L.F. de Pourtales, Assist. U.S. Coast Survey. Bulletin of the Museum of Comparative Zoology at Harvard College 1: 253–308. [Google Scholar]
- Agassiz A. (1879) Preliminary report on the Echini of the exploring expedition of H.M.S. Challenger, Sir C. Wyville Thomson chief of Civilian Staff. Proceedings of the National Academy of Sciences USA 14: 190–212. doi: 10.2307/25138537 [Google Scholar]
- Agassiz A. (1881) Report on the scientific results of the voyage of H.M.S. Challenger during the years 1873–1876, Zoology 3(9): 321 pp. [Google Scholar]
- Agassiz A. (1898) Reports on the dredging operations off the west coast of Central America to the Galapagos, to the the west coast of Mexico, and in the Gulf of California, in charge of Alexander Agassiz, carried on by the U.S. Fish Commission Streamer “Albatross”, during 1891, Lieut. Commander Z. L. Tanner, U.S.N., Commanding. XXIII. Preliminary report on the Echini. Bulletin of the Museum of Comparative Zoology 32: 71–86. [Google Scholar]
- Agassiz A, Clark HL. (1907) Hawaiian and other Pacific Echini. The Cidaridae. Memoirs of the Museum of Comparative Zoology 24: 42. [Google Scholar]
- Boyer TP, Antonov JI, Baranova OK, Coleman C, Garcia HE, Grodsky A, Johnson DR, Locarnini RA, Mishonov AV, O’Brien TD, Paver CR, Reagan JR, Seidov D, Smolyar IV, Zweng MM, et al. (2013) World Ocean Database 2013. NOAA Atlas NESDIS 72, National Oceanographic Data Center (US), Ocean Climate Laboratory, 209 pp. doi: 10.7289/V5NZ85MT [Google Scholar]
- Burton HR, Williams DL. (1985) Heard Island ANARE 1985 Report. Australian Antarctic Division, Kingston. [Google Scholar]
- Clark HL. (1925) A catalogue of the recent sea urchins (Echinoidea) in the British Museum (Natural History), 250 pp.
- Claus C. (1880) Grundzüge der Zoologie (4th edn). 1: 821 pp, 2: 522 pp. [Google Scholar]
- David B, Mooi R. (2000) A new species of subantarctic Plexechinus and its phylogenetic position within the Holasteroida (Echinodermata, Echinoidea). Polar Biology 23(3): 166–172. doi: 10.1007/s003000050023 [Google Scholar]
- De Ridder C, David B, Larrain A. (1992) Antarctic and subantarctic echinoids from Marion Dufresne’s expeditions MD03, MD04, MD08 and from the Polarstern’s expedition Epos III. Bulletin du Muséum national d’Histoire naturelle. Section A, Zoologie, Biologie et Ecologie animales 14(2): 405–441. [Google Scholar]
- Döderlein L. (1906) Die Echinoiden der Deutschen Tiefsee Expedition. Deutsche Tiefsee Expedition 1898–1899 5: 63–290. doi: 10.5962/bhl.title.46999 [Google Scholar]
- Douglass LL, Turner J, Grantham HS, Kaiser S, Constable A, Nicoll R, Raymond B, Post A, Brandt A, Beaver D. (2014) A hierarchical classification of benthic biodiversity and assessment of protected areas in the Southern Ocean. PLoS ONE 9(7): e100551. doi: 10.1371/journal.pone.0100551 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durham JW, Melville RV. (1957) A classification of echinoids. Journal of Paleontology 31(1): 242–272. [Google Scholar]
- Fell FJ. (1976) The Cidaroida (Echinodermata: Echinoidea) of Antarctica and the Southern Ocean. PhD Thesis, University of Maine, 276 pp [unpublished] [Google Scholar]
- Féral JP, Marschal C, Marty G, Poulin E, Saucède T. (2013) PROTEKER: report of the 2nd field campaign, 17 pp http://www.proteker.net/IMG/pdf/proteker2013-14_rapport_xs.pdf
- Féral JP, Marschal C, Marty G, Motreuil S, Roca JC. (2014) PROTEKER: report of the 3rd field campaign, 10 pp http://www.proteker.net/Campagne-dete-2014.html?lang=en [In French]
- Gray J. (1825) An attempt to divide the Echinida, or sea eggs, into natural families. Annals of Philosophy, new series 10: 423–431. [Google Scholar]
- Gray J. (1855) Catalogue of the Recent Echinida, or sea eggs, in the collection of the British Museum. Part 1: Echinida Irregularia. Woodfall and Kinder, London, 69 pp. [Google Scholar]
- Green K. (1993) Heard Island 1992 ANARE Report. Australian Antarctic Division, Kingston. [Google Scholar]
- Grua P. (1963) Etude de biotopes marins infralittoraux (Kerguelen 1962–63). TAAF, 23–24: 69–73. [Google Scholar]
- Guille A. (1977) Bionomie du plateau continental des îles Kerguelen. Stations prospectées et résultats préliminaires. Comité National Français des Recherches Antarctiques (CNFRA) 42: 3–40. [Google Scholar]
- Jackson RT. (1912) Phylogeny of the Echini with a revision of Palaeozoic species. Memoirs of the Boston Society of Natural History 7: 1–491. doi: 10.5962/bhl.title.4630 [Google Scholar]
- Koehler R. (1901) Résultats du voyage de S.Y. Belgica en 1897-1898-1899. Zoologie: Echinides et ophiures. J.E. Buschmann imprint, Anvers, 42 pp. [Google Scholar]
- Koehler R. (1926) Echinodermata Echinoidea. In: Australasian Antarctic expedition 1911-1914. Scientific Report, Series C, Zoology and Botany 8: 1–134. [Google Scholar]
- Lambert J. (1905) Echinides océaniques de l’Aude et de l’Hérault. Annales de l’Université de Lyon 17: 129–164. [Google Scholar]
- Lovén S. (1883) On Pourtalesia a genus of Echinoidea. Kongliga Svenska Vetenskaps-Akademiens Handlingar 19(7): 1–95. [Google Scholar]
- McCoy FW. (1991) Southern Ocean sediments: circum-Antarctic to 30°S. Marine Geological and Geophysical Atlas of the circum-Antarctic to 30°S. (edited by D.E. Hayes). Antarctic Research Series.
- Meissner M. (1900) Echinoideen. In: Ergebnisse der Hamburger Magalhaensischen Sammelreise 1892/93, Band 1: Allgemeines, Chordonier, Echinodermen und Coelenteraten. L. Friederichsen, Hamburg, 3–18. [Google Scholar]
- Mooi R, David B. (1996) Phylogenetic analysis of extreme morphologies: deep-sea holasteroid echinoids. Journal of Natural History 30(6): 913–953. doi: 10.1080/00222939600770501 [Google Scholar]
- Mortensen T. (1909) Die Echinoiden der Deutschen Südpolar Expedition 1901–1903. Deutsche Südpolar Expedition, G. Reimer imprint, Berlin: 11, 113 pp. [Google Scholar]
- Mortensen T, Kolderup Rosevinge L. (1910) Sur quelques plantes parasites dans les échinodermes. Kongelige Danske videnskabernes selskabs forhandlinger 4: 339–354. [Google Scholar]
- Mortensen T. (1928) Papers from Dr. Th. Mortensen’s Pacific Expedition 1914–16, xliv: New Cidaridae. (Preliminary Notice.). Videnskabelige Meddelelser fra Dansk naturhistorisk Forening i Kobenhavn 85: 65–74. [Google Scholar]
- Mortensen T. (1942) New echinoidea (Camarodonta). Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening i Kobenhavn 106: 225–232. [Google Scholar]
- Mortensen T. (1950) Echinoidea. In: Brit. Australian New Zealand Antarct. Research Expedition, 1929–1931. Report BANZAR Expedition, series B Zoology and Botany 4: 287–310. [Google Scholar]
- Philippi R. (1845) Beschreibung einiger neuer Echinodermen nebst kritischen Bemerckungen über einige weniger bekannte Arten. Archiv fur Naturgeschichte 11: 344–359. [Google Scholar]
- Pierrat B, Saucède T, Laffont R, De Ridder C, Festeau A, David B. (2012) Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling. Marine Ecology Progress Series 463: 215–230. doi: 10.3354/meps09842 [Google Scholar]
- Poulin E, Féral JP. (1995) Pattern of spatial distribution of a broodprotecting schizasterid echinoid, Abatus cordatus, endemic to the Kerguelen Islands. Marine Ecology Progress Series 118: 179–186. doi: 10.3354/meps118179 [Google Scholar]
- Saucède T, Fabri-Ruiz S, Fournier J, De Ridder C, Marty G. (2015) PROTEKER 4: report of the 4th field campaign, 33 pp http://www.proteker.net/IMG/pdf/proteker_2015-2016_rapport.v2.pdf [In French]
- Smith W, Sandwell D. (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277(5334): 1957–1962. doi: 10.1126/science.277.5334.1956 [Google Scholar]
- Studer T. (1876) Über Echinodermen aus Antarkischen Meere und zwei neue Seeigel von Papoua-Inseln, gesammelt auf der Reise S.M.S. Gazelle um die Erde. Monatsberichte der Königlichen Preussische Akademie des Wissenschaften zu Berlin, 452–465.
- Thomson CW. (1876) Notice of some peculiarities in the mode of propagation of certain echinoderms of the southern seas. Journal of the Linnean Society of London 13: 55–79. doi: 10.1111/j.1096-3642.1876.tb00209.x [Google Scholar]
- Troschel F. (1851) Über die Gattung Tripylus. Jahrgang Archiv für Naturgeschichte 17: 67–74. [Google Scholar]
- Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O. (2012) Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecology and Biogeography 21(2): 272–281. doi: 10.1111/j.1466-8238.2011.00656.x [Google Scholar]
- Verrill A. (1876) Contribution to the natural history of Kerguelen Islands. Annelids and Echinoderms. Bulletin US National Museum 3: 64–75. [Google Scholar]


