Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Apr 1;88(7):2956–2960. doi: 10.1073/pnas.88.7.2956

Lesions of the hypothalamus and pituitary inhibit volume-expansion-induced release of atrial natriuretic peptide.

J Antunes-Rodrigues 1, M J Ramalho 1, L C Reis 1, J V Menani 1, M Q Turrin 1, J Gutkowska 1, S M McCann 1
PMCID: PMC51359  PMID: 1826369

Abstract

Expansion of the blood volume causes a release of atrial natriuretic peptide (ANP) that is believed to be important in induction of the subsequent natriuresis and diuresis which, in turn, acts to reduce the increase in blood volume. Since stimulation of the anteroventral portion of the third cerebral ventricle (AV3V) induced a rapid elevation of plasma ANP, whereas lesions of the AV3V were followed by a marked decline in plasma concentration of the peptide, we hypothesized that release of ANP from the brain ANP neuronal system might be important to the control of plasma ANP. The perikarya of the ANP-containing neurons are densely distributed in the AV3V and their axons project to the median eminence and neural lobe. To test the hypothesis that these neurons are involved in volume-expansion-induced ANP release, by using electrolysis we destroyed the AV3V, the site of the perikarya, in male rats. Other lesions were made in the median eminence and posterior pituitary, sites of termination of the axons of these neurons, and also hypophysectomy was performed in other animals. In conscious freely moving animals, volume expansion and stimulation of postulated sodium receptors in the hypothalamus were induced by injection of hypertonic NaCl solution [0.5 or 0.3 M NaCl; 2 ml/100 g (body weight)]. Volume expansion alone was induced with the same volume of an isotonic solution (NaCl or glucose). In the sham-operated rats, volume expansion with hypertonic or isotonic solutions caused equivalent rapid increases in plasma ANP that peaked at 5 min and returned nearly to control values by 15 min. Lesions caused a decrease in the initial levels of plasma ANP on comparison with values from the sham-operated rats, and each type of lesion induced a highly significant suppression of the response to volume expansion on testing 1-5 days after lesions were made. Because a common denominator of the lesions was elimination of the brain ANP neuronal system, these results suggest that the brain ANP plays an important role in the mediation of the release of ANP that occurs after volume expansion. Since the content of ANP in this system is much less than that in the atria, there must be a remarkable increase in synthesis and release of brain ANP associated with this stimulus. It is also possible that blockade of volume-expansion-induced release of other neurohypophyseal hormones, such as endothelin, may block release of ANP from atrial myocytes. It is probable that volume expansion detected by stretch of atrial and carotid-aortic baroreceptors causes afferent input to the brain ANP system, thereby causing increased release of the peptide from the median eminence and neural lobe. Our results emphasize the importance of brain ANP to the control of ANP release to the blood.

Full text

PDF
2956

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams S. P. Structure and biologic properties of the atrial natriuretic peptides. Endocrinol Metab Clin North Am. 1987 Mar;16(1):1–17. [PubMed] [Google Scholar]
  2. Andersson B., Jobin M., Olsson K. Stimulation of urinary salt excretion following injections of hypertonic NaCl-solution into the 3rd brain ventricle. Acta Physiol Scand. 1966 May;67(1):127–128. doi: 10.1111/j.1748-1716.1966.tb03293.x. [DOI] [PubMed] [Google Scholar]
  3. Andersson B. Regulation of body fluids. Annu Rev Physiol. 1977;39:185–200. doi: 10.1146/annurev.ph.39.030177.001153. [DOI] [PubMed] [Google Scholar]
  4. Antunes-Rodrigues J., McCann S. M., Rogers L. C., Samson W. K. Atrial natriuretic factor inhibits dehydration- and angiotensin II-induced water intake in the conscious, unrestrained rat. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8720–8723. doi: 10.1073/pnas.82.24.8720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Antunes-Rodrigues J., McCann S. M., Samson W. K. Central administration of atrial natriuretic factor inhibits saline preference in the rat. Endocrinology. 1986 Apr;118(4):1726–1728. doi: 10.1210/endo-118-4-1726. [DOI] [PubMed] [Google Scholar]
  6. Antunes-Rodrigues J., Turrin M. Q., Gutkowska J., McCann S. M. Blockade of volume expansion-induced release of atrial natriuretic peptide by median eminence lesions in the rat. Braz J Med Biol Res. 1990;23(3-4):355–359. [PubMed] [Google Scholar]
  7. Baldissera S., Menani J. W., dos Santos L. F., Favaretto A. L., Gutkowska J., Turrin M. Q., McCann S. M., Antunes-Rodrigues J. Role of the hypothalamus in the control of atrial natriuretic peptide release. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9621–9625. doi: 10.1073/pnas.86.23.9621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bealer S. L., Haywood J. R., Gruber K. A., Buckalew V. M., Jr, Fink G. D., Brody M. J., Johnson A. K. Preoptic-hypothalamic periventricular lesions reduce natriuresis to volume expansion. Am J Physiol. 1983 Jan;244(1):R51–R57. doi: 10.1152/ajpregu.1983.244.1.R51. [DOI] [PubMed] [Google Scholar]
  9. Buggy J., Jonhson A. K. Preoptic-hypothalamic periventricular lesions: thirst deficits and hypernatremia. Am J Physiol. 1977 Jul;233(1):R44–R52. doi: 10.1152/ajpregu.1977.233.1.R44. [DOI] [PubMed] [Google Scholar]
  10. Cogan M. G. Atrial natriuretic factor can increase renal solute excretion primarily by raising glomerular filtration. Am J Physiol. 1986 Apr;250(4 Pt 2):F710–F714. doi: 10.1152/ajprenal.1986.250.4.F710. [DOI] [PubMed] [Google Scholar]
  11. Dorn J., Antunes-Rodrigues J., McCann S. M. Natriuresis in the rat following intraventricular carbachol. Am J Physiol. 1970 Nov;219(5):1292–1298. doi: 10.1152/ajplegacy.1970.219.5.1292. [DOI] [PubMed] [Google Scholar]
  12. Dorn J., Porter J. C. Diencephalic involvement in sodium excretion in the rat. Endocrinology. 1970 May;86(5):1112–1117. doi: 10.1210/endo-86-5-1112. [DOI] [PubMed] [Google Scholar]
  13. Epstein M., Loutzenhiser R., Friedland E., Aceto R. M., Camargo M. J., Atlas S. A. Relationship of increased plasma atrial natriuretic factor and renal sodium handling during immersion-induced central hypervolemia in normal humans. J Clin Invest. 1987 Mar;79(3):738–745. doi: 10.1172/JCI112879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Genest J., Cantin M. The atrial natriuretic factor: its physiology and biochemistry. Rev Physiol Biochem Pharmacol. 1988;110:1–145. doi: 10.1007/BFb0027530. [DOI] [PubMed] [Google Scholar]
  15. Gutkowska J., Horký K., Thibault G., Januszewicz P., Cantin M., Genest J. Atrial natriuretic factor is a circulating hormone. Biochem Biophys Res Commun. 1984 Nov 30;125(1):315–323. doi: 10.1016/s0006-291x(84)80370-8. [DOI] [PubMed] [Google Scholar]
  16. Gutkowska J., Racz K., Debinski W., Thibault G., Garcia R., Kuchel O., Cantin M., Genest J. An atrial natriuretic factor-like activity in rat posterior hypophysis. Peptides. 1987 May-Jun;8(3):461–465. doi: 10.1016/0196-9781(87)90010-6. [DOI] [PubMed] [Google Scholar]
  17. Harms P. G., Ojeda S. R. A rapid and simple procedure for chronic cannulation of the rat jugular vein. J Appl Physiol. 1974 Mar;36(3):391–392. doi: 10.1152/jappl.1974.36.3.391. [DOI] [PubMed] [Google Scholar]
  18. Huang C. L., Lewicki J., Johnson L. K., Cogan M. G. Renal mechanism of action of rat atrial natriuretic factor. J Clin Invest. 1985 Feb;75(2):769–773. doi: 10.1172/JCI111759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jacobowitz D. M., Skofitsch G., Keiser H. R., Eskay R. L., Zamir N. Evidence for the existence of atrial natriuretic factor-containing neurons in the rat brain. Neuroendocrinology. 1985 Jan;40(1):92–94. doi: 10.1159/000124058. [DOI] [PubMed] [Google Scholar]
  20. Marubayashi U., McCann S. M., Antunes-Rodrigues J. Altered gonadotropin and prolactin release induced by median eminence (ME) lesions and pharmacological manipulation of prolactin release: further evidence for separate hypothalamic control of FSH and LH release. Brain Res Bull. 1989 Sep;23(3):193–200. doi: 10.1016/0361-9230(89)90147-0. [DOI] [PubMed] [Google Scholar]
  21. Morris M., McCann S. M., Orias R. Evidence for hormonal participation in the natriuretic and kaliuretic responses to intraventricular hypertonic saline and norepinephrine. Proc Soc Exp Biol Med. 1976 May;152(1):95–98. doi: 10.3181/00379727-152-39336. [DOI] [PubMed] [Google Scholar]
  22. Murai I., Low W. C., Ben-Jonathan N. Microsurgical techniques for studying functional correlates of hypothalamohypophyseal axis. Methods Enzymol. 1989;168:234–254. doi: 10.1016/0076-6879(89)68017-2. [DOI] [PubMed] [Google Scholar]
  23. Palkovits M., Eskay R. L., Antoni F. A. Atrial natriuretic peptide in the median eminence is of paraventricular nucleus origin. Neuroendocrinology. 1987 Dec;46(6):542–544. doi: 10.1159/000124878. [DOI] [PubMed] [Google Scholar]
  24. Phillips M. I. Functions of angiotensin in the central nervous system. Annu Rev Physiol. 1987;49:413–435. doi: 10.1146/annurev.ph.49.030187.002213. [DOI] [PubMed] [Google Scholar]
  25. Saper C. B., Standaert D. G., Currie M. G., Schwartz D., Geller D. M., Needleman P. Atriopeptin-immunoreactive neurons in the brain: presence in cardiovascular regulatory areas. Science. 1985 Mar 1;227(4690):1047–1049. doi: 10.1126/science.2858127. [DOI] [PubMed] [Google Scholar]
  26. Schiebinger R. J., Santora A. C. Stimulation by calcitonin gene-related peptide of atrial natriuretic peptide secretion in vitro and its mechanism of action. Endocrinology. 1989 May;124(5):2473–2479. doi: 10.1210/endo-124-5-2473. [DOI] [PubMed] [Google Scholar]
  27. Stasch J. P., Hirth-Dietrich C., Kazda S., Neuser D. Endothelin stimulates release of atrial natriuretic peptides in vitro and in vivo. Life Sci. 1989;45(10):869–875. doi: 10.1016/0024-3205(89)90200-2. [DOI] [PubMed] [Google Scholar]
  28. Synhorst D. P., Gutkowska J. Atrial distension of isolated rabbit hearts and release of atrial natriuretic factor. Am J Physiol. 1988 Aug;255(2 Pt 2):R232–R236. doi: 10.1152/ajpregu.1988.255.2.R232. [DOI] [PubMed] [Google Scholar]
  29. Yoshizawa T., Shinmi O., Giaid A., Yanagisawa M., Gibson S. J., Kimura S., Uchiyama Y., Polak J. M., Masaki T., Kanazawa I. Endothelin: a novel peptide in the posterior pituitary system. Science. 1990 Jan 26;247(4941):462–464. doi: 10.1126/science.2405487. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES