Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2016 Dec 1;4(6):e01338-16. doi: 10.1128/genomeA.01338-16

Genome Sequence of the Acetogenic Bacterium Butyribacterium methylotrophicum DSM 3468T

Frank R Bengelsdorf a, Anja Poehlein b, Bettina Schiel-Bengelsdorf a, Rolf Daniel b, Peter Dürre a,
PMCID: PMC5137411  PMID: 27908997

Abstract

Butyribacterium methylotrophicum DSM 3468T is an acetogenic methylotrophic, anaerobic, carbon monoxide–oxidizing bacterium that produces acetate, butyrate, and butanol. The genome consists of a single chromosome (4.3 Mb) and harbors 3,989 predicted protein-encoding genes.

GENOME ANNOUNCEMENT

Butyribacterium methylotrophicum DSM 3468T is a Gram-positive, motile bacterium that was isolated from a sewage digester in Marburg (Gemany) by Zeikus et al. in 1980 (1). This autotrophic acetogen can reduce H2 + CO2 and CO using the Wood-Ljungdahl pathway and produces acetate, butyrate, and butanol (2). In general, the metabolic features of B. methylotrophicum appear to be similar to those of Eubacterium limosum ATCC 8486T (3), and phylogenetic analysis of the 16S rRNA gene sequences also indicated a close relationship between both strains (4, 5). B. methylotrophicum and related strains harbor metabolic characteristics, which make these organisms ideal candidates for a syngas fermentation process (6), although B. methylotrophicum was provisionally classified as a risk level 2 organism by the Deutsche Sammlung von Mikroorganismen und Zellkulturen.

Extracted DNA was used to generate Illumina shotgun paired-end sequencing libraries, which were sequenced with a MiSeq instrument and the MiSeq reagent kit version 3, as recommended by the manufacturer (Illumina, San Diego, CA, USA). Quality filtering using Trimmomatic version 0.32 (7) resulted in 4,256,529 paired-end reads with an average read length of 301 bp. The assembly was performed with the SPAdes genome assembler software version 3.5.0 (8). The assembly resulted in 27 contigs (>500 bp) and an average coverage of 94-fold. The assembly was validated and the read coverage determined with QualiMap version 2.1 (9). The draft genome of B. methylotrophicum DSM 3468 consists of a single chromosome (4.3 Mb) with an overall GC content of 47.5%. Automatic gene prediction and identification of rRNA and tRNA genes was performed using the software tool Prokka (10). The draft genome contained nine rRNA genes, 55 tRNA genes, 2,890 protein-encoding genes with function prediction, and 1,099 genes coding for hypothetical proteins.

Genes encoding enzymes of the methyl and carbonyl branches of the Wood-Ljungdahl pathway are conserved within acetogenic bacteria (11). Correspondingly, the genome of B. methylotrophicum harbors a gene cluster that is highly similar to the respective cluster of E. limosum ATCC 8486T and harbors genes encoding the Rnf complex. A comparative genome analysis of the strains E. limosum ATCC 8486T (12) and E. limosum KIST612 (13) with B. methylotrophicum DSM 3468 revealed high average nucleotide identities of 94.6% and 99.7%, respectively. The threshold range for species differentiation is 95 to 96% (14). A further comparison revealed that the genome of strain DSM 3468 (4,256,529 bp) is smaller than that of ATCC 8486T (4,370,113 bp) and of similar size to KIST612 (4,276,902 bp), indicating that B. methylotrophicum is a distinct species compared to E. limosum ATCC 8486T.

Accession number(s).

This whole-genome shotgun project has been deposited at DDBJ/ENA/GenBank under the accession number MIMZ00000000. The version described in this paper is the first version, MIMZ01000000.

ACKNOWLEDGMENTS

Work was supported by grants from the BMBF Gas-Fermentation project (FKZ 031A468A), the ERA-IB 5 project CO2CHEM (FKZ 031A566A), and the MWK-BW project Nachhaltige und effiziente Biosynthesen (AZ 33-7533-6-195/7/9). We thank Kathleen Gollnow and Frauke-Dorothee Meyer for technical support.

Footnotes

Citation Bengelsdorf FR, Poehlein A, Schiel-Bengelsdorf B, Daniel R, Dürre P. 2016. Genome sequence of the acetogenic bacterium Butyribacterium methylotrophicum DSM 3468T. Genome Announc 4(6):e01338-16. doi:10.1128/genomeA.01338-16.

REFERENCES

  • 1.Zeikus JG, Lynd LH, Thompson TE, Krzycki JA, Weimer PJ, Hegge PW. 1980. Isolation and characterization of a new, methylotrophic, acidogenic anaerobe, the Marburg strain. Curr Microbiol 3:381–386. doi: 10.1007/BF02601907. [DOI] [Google Scholar]
  • 2.Grethlein AJ, Worden RM, Jain MK, Datta R. 1991. Evidence for production of n-butanol from carbon monoxide by Butyribacterium methylotrophicum. J Ferment Bioeng 72:58–60. doi: 10.1016/0922-338X(91)90147-9. [DOI] [Google Scholar]
  • 3.Lynd LH, Zeikus JG. 1983. Metabolism of H2-CO2, methanol, and glucose by Butyribacterium methylotrophicum. J Bacteriol 153:1415–1423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Jansen M, Hansen TA. 2001. Non-growth-associated demethylation of dimethylsulfoniopropionate by (homo) acetogenic bacteria. Appl Environ Microbiol 67:300–306. doi: 10.1128/AEM.67.1.300-306.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Bengelsdorf FR, Straub M, Dürre P. 2013. Bacterial synthesis gas (syngas) fermentation. Environ Technol 34:1639–1651. doi: 10.1080/09593330.2013.827747. [DOI] [PubMed] [Google Scholar]
  • 6.Heiskanen H, Virkajärvi I, Viikari L. 2007. The effect of syngas composition on the growth and product formation of Butyribacterium methylotrophicum. Enzyme Microb Technol 41:362–367. doi: 10.1016/j.enzmictec.2007.03.004. [DOI] [Google Scholar]
  • 7.Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi: 10.1093/bioinformatics/btu170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi: 10.1089/cmb.2012.0021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.García-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S, Tarazona S, Dopazo J, Meyer TF, Conesa A. 2012. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 28:2678–2679. doi: 10.1093/bioinformatics/bts503. [DOI] [PubMed] [Google Scholar]
  • 10.Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. BioInformatics 30:2068–2069. doi: 10.1093/bioinformatics/btu153. [DOI] [PubMed] [Google Scholar]
  • 11.Poehlein A, Cebulla M, Ilg MM, Bengelsdorf FR, Schiel-Bengelsdorf B, Whited G, Andreesen JR, Gottschalk G, Daniel R, Dürre P. 2015. The complete genome sequence of Clostridium aceticum: a missing link between Rnf- and cytochrome-containing autotrophic acetogens. mBio 6:e01168-15. doi: 10.1128/mBio.01168-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Song Y, Cho BK. 2015. Draft genome sequence of chemolithoautotrophic acetogenic butanol-producing Eubacterium limosum ATCC 8486. Genome Announc 3(1):e01564-14. doi: 10.1128/genomeA.01564-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Roh H, Ko HJ, Kim D, Choi DG, Park S, Kim S, Chang IS, Choi IG. 2011. Complete genome sequence of a carbon monoxide-utilizing acetogen, Eubacterium limosum KIST612. J Bacteriol 193:307–308. doi: 10.1128/JB.01217-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Kim M, Oh HS, Park SC, Chun J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351. doi: 10.1099/ijs.0.059774-0. [DOI] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES