Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Apr 15;88(8):3024–3028. doi: 10.1073/pnas.88.8.3024

Differential effect of cysteine-to-serine substitutions in metallothionein on cadmium resistance.

M L Chernaik 1, P C Huang 1
PMCID: PMC51376  PMID: 2014225

Abstract

A set of mutant coding sequences for Chinese hamster metallothionein (MT) 2 in which codons for individual cysteines were replaced by serine codons was cloned into a yeast expression system. MT gene expression was placed under control of a constitutive promoter on a multicopy Escherichia coli-yeast shuttle vector. MTs were expressed in a metal-sensitive host that lacks the endogenous MT gene. The expressed MTs conferred increased metal resistance to the yeast host. A sensitive assay for cadmium resistance was developed in which population doubling times were monitored in rich liquid medium supplemented with a sublethal dose of CdCl2. Measurements on mutants with single cysteine replacements at 12 positions revealed two mutant classes. One class (Cys----Ser at position 5, 13, 19, or 33) did not affect the detoxification capacity of MT. A second class (Cys----Ser at position 7, 15, 26, 29, 44, 48, 50, or 60) conferred to the host markedly less resistance to cadmium. Bridging cysteines were more critical to cadmium resistance. All five bridging cysteine mutants studied (at positions 7, 15, 44, 50, and 60) conferred lower cadmium resistance. In contrast, mutation of four out of seven terminal cysteines (at position 5, 13, 19, or 33) was shown to be inconsequential. Mutations tend to be more detrimental in the alpha domain than in the beta domain in conveying cadmium resistance, suggesting that the contribution of individual cysteine to the detoxification function of MT is site specific.

Full text

PDF
3024

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernhard W. R., Vasák M., Kägi J. H. Cadmium binding and metal cluster formation in metallothionein: a differential modification study. Biochemistry. 1986 Apr 22;25(8):1975–1980. doi: 10.1021/bi00356a021. [DOI] [PubMed] [Google Scholar]
  2. Boulanger Y., Armitage I. M., Miklossy K. A., Winge D. R. 113Cd NMR study of a metallothionein fragment. Evidence for a two-domain structure. J Biol Chem. 1982 Nov 25;257(22):13717–13719. [PubMed] [Google Scholar]
  3. Ecker D. J., Butt T. R., Sternberg E. J., Neeper M. P., Debouck C., Gorman J. A., Crooke S. T. Yeast metallothionein function in metal ion detoxification. J Biol Chem. 1986 Dec 25;261(36):16895–16900. [PubMed] [Google Scholar]
  4. Goyer R. A., Miller C. R., Zhu S. Y., Victery W. Non-metallothionein-bound cadmium in the pathogenesis of cadmium nephrotoxicity in the rat. Toxicol Appl Pharmacol. 1989 Nov;101(2):232–244. doi: 10.1016/0041-008x(89)90272-x. [DOI] [PubMed] [Google Scholar]
  5. Hamer D. H. Metallothionein. Annu Rev Biochem. 1986;55:913–951. doi: 10.1146/annurev.bi.55.070186.004405. [DOI] [PubMed] [Google Scholar]
  6. Huang P. C., Morris S., Dinman J., Pine R., Smith B. Role of metallothionein in detoxification and tolerance to transition metals. Experientia Suppl. 1987;52:439–446. doi: 10.1007/978-3-0348-6784-9_43. [DOI] [PubMed] [Google Scholar]
  7. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  9. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  10. Kägi J. H., Schäffer A. Biochemistry of metallothionein. Biochemistry. 1988 Nov 15;27(23):8509–8515. doi: 10.1021/bi00423a001. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Leber A. P., Miya T. S. A mechanism for cadmium- and zinc-induced tolerance to cadmium toxicity: involvement of metallothionein. Toxicol Appl Pharmacol. 1976 Sep;37(3):403–414. doi: 10.1016/0041-008x(76)90202-7. [DOI] [PubMed] [Google Scholar]
  13. Lohrer H., Robson T. Overexpression of metallothionein in CHO cells and its effect on cell killing by ionizing radiation and alkylating agents. Carcinogenesis. 1989 Dec;10(12):2279–2284. doi: 10.1093/carcin/10.12.2279. [DOI] [PubMed] [Google Scholar]
  14. Mills J. W., Ferm V. H. Effect of cadmium on F-actin and microtubules of Madin-Darby canine kidney cells. Toxicol Appl Pharmacol. 1989 Nov;101(2):245–254. doi: 10.1016/0041-008x(89)90273-1. [DOI] [PubMed] [Google Scholar]
  15. Nemer M., Wilkinson D. G., Travaglini E. C., Sternberg E. J., Butt T. R. Sea urchin metallothionein sequence: key to an evolutionary diversity. Proc Natl Acad Sci U S A. 1985 Aug;82(15):4992–4994. doi: 10.1073/pnas.82.15.4992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nielson K. B., Winge D. R. Independence of the domains of metallothionein in metal binding. J Biol Chem. 1985 Jul 25;260(15):8698–8701. [PubMed] [Google Scholar]
  17. Otvos J. D., Armitage I. M. Structure of the metal clusters in rabbit liver metallothionein. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7094–7098. doi: 10.1073/pnas.77.12.7094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Otvos J. D., Engeseth H. R., Nettesheim D. G., Hilt C. R. Interprotein metal exchange reactions of metallothionein. Experientia Suppl. 1987;52:171–178. doi: 10.1007/978-3-0348-6784-9_10. [DOI] [PubMed] [Google Scholar]
  19. Pine R., Cismowski M., Liu S. W., Huang P. C. Construction and characterization of a library of metallothionein coding sequence mutants. DNA. 1985 Apr;4(2):115–126. doi: 10.1089/dna.1985.4.115. [DOI] [PubMed] [Google Scholar]
  20. Rhee I. K., Lee K. S., Huang P. C. Metallothioneins with interdomain hinges expanded by insertion mutagenesis. Protein Eng. 1990 Jan;3(3):205–213. doi: 10.1093/protein/3.3.205. [DOI] [PubMed] [Google Scholar]
  21. Sanger F., Coulson A. R., Barrell B. G., Smith A. J., Roe B. A. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980 Oct 25;143(2):161–178. doi: 10.1016/0022-2836(80)90196-5. [DOI] [PubMed] [Google Scholar]
  22. Schultze P., Wörgötter E., Braun W., Wagner G., Vasák M., Kägi J. H., Wüthrich K. Conformation of [Cd7]-metallothionein-2 from rat liver in aqueous solution determined by nuclear magnetic resonance spectroscopy. J Mol Biol. 1988 Sep 5;203(1):251–268. doi: 10.1016/0022-2836(88)90106-4. [DOI] [PubMed] [Google Scholar]
  23. Stillman M. J., Cai W., Zelazowski A. J. Cadmium binding to metallothioneins. Domain specificity in reactions of alpha and beta fragments, apometallothionein, and zinc metallothionein with Cd2+. J Biol Chem. 1987 Apr 5;262(10):4538–4548. [PubMed] [Google Scholar]
  24. Stillman M. J., Zelazowski A. J. Domain-specificity of Cd2+ and Zn2+ binding to rabbit liver metallothionein 2. Metal ion mobility in the formation of Cd4-metallothionein alpha-fragment. Biochem J. 1989 Aug 15;262(1):181–188. doi: 10.1042/bj2620181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Suissa M. Spectrophotometric quantitation of silver grains eluted from autoradiograms. Anal Biochem. 1983 Sep;133(2):511–514. doi: 10.1016/0003-2697(83)90117-3. [DOI] [PubMed] [Google Scholar]
  26. Thiele D. J., Walling M. J., Hamer D. H. Mammalian metallothionein is functional in yeast. Science. 1986 Feb 21;231(4740):854–856. doi: 10.1126/science.3080806. [DOI] [PubMed] [Google Scholar]
  27. Vallee B. L., Auld D. S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry. 1990 Jun 19;29(24):5647–5659. doi: 10.1021/bi00476a001. [DOI] [PubMed] [Google Scholar]
  28. Vallee B. L., Ulmer D. D. Biochemical effects of mercury, cadmium, and lead. Annu Rev Biochem. 1972;41(10):91–128. doi: 10.1146/annurev.bi.41.070172.000515. [DOI] [PubMed] [Google Scholar]
  29. Vazquez F., Vasák M. Comparative 113Cd-n.m.r. studies on rabbit 113Cd7-, (Zn1,Cd6)- and partially metal-depleted 113Cd6-metallothionein-2a. Biochem J. 1988 Jul 15;253(2):611–614. doi: 10.1042/bj2530611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Winge D. R., Miklossy K. A. Domain nature of metallothionein. J Biol Chem. 1982 Apr 10;257(7):3471–3476. [PubMed] [Google Scholar]
  31. Winge D. R., Nielson K. B., Gray W. R., Hamer D. H. Yeast metallothionein. Sequence and metal-binding properties. J Biol Chem. 1985 Nov 25;260(27):14464–14470. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES