Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Nov 8;72(Pt 12):1768–1770. doi: 10.1107/S2056989016017618

Crystal structure of fac-[2-(4-methyl-5-phenyl­pyridin-2-yl)phenyl-κ2 C 1,N]bis­[2-(pyridin-2-yl)phenyl-κ2 C 1,N]iridium(III)

Chi-Heon Lee a, Suk-Hee Moon b, Ki-Min Park c,*, Youngjin Kang a,*
PMCID: PMC5137604  PMID: 27980826

The IrIII atom in the title mol­ecule adopts a distorted octa­hedral C3N3 coordination environment, being C,N-chelated by two 2-(pyridin-2-yl)phenyl ligands and one 2-(4-phenyl-5-methyl­pyridin-2-yl)phenyl ligand.

Keywords: crystal structure; iridium(III) complex; C,N-bidentate ligand; fac-C3N3 coordination set; π–π stacking inter­actions

Abstract

In the title compound, [Ir(C11H8N)2(C18H14N)], the IrIII ion adopts a distorted octa­hedral coordination environment defined by three C,N-chelating ligands, one stemming from a 2-(4-phenyl-5-methyl­pyridin-2-yl)phenyl ligand and two from 2-(pyridin-2-yl)phenyl ligands, arranged in a facial manner. The IrIII ion lies almost in the equatorial plane [deviation = 0.0069 (15) Å]. In the crystal, inter­molecular π–π stacking inter­actions, as well as inter­molecular C—H⋯π inter­actions, are present, leading to a three-dimensional network.

Chemical context  

Cyclo­metallated iridium(III) complexes with the chelating ligand 2-phenyl­pyridine (CInline graphicN) are of great inter­est in phospho­rescence organic light-emitting diodes (OLEDs) due to their high quantum efficiency and easy tuning emission energy (Kang et al., 2013). In general, iridium(III) complexes with chelating CInline graphicN ligands can be divided into two groups, homoleptic and heteroleptic complexes, according to the coordination environment of the central IrIII atom. The structural characteristics involving other chemical/electronic properties for both homoleptic Ir(CInline graphicN)3 and heteroleptic Ir(CInline graphicN)2(L Inline graphic X) complexes, where L Inline graphic X is a monoanionic OInline graphicO or NInline graphicO ligand, have been well explored over the past two decades (Chi & Chou, 2010). However, reports of the mol­ecular and crystal structures of heteroleptic IrIII compounds with the same chelating modes, viz. Ir(CInline graphicN)2(CInline graphicN)′, are very scarce compared to those for Ir(CInline graphicN)2(L Inline graphic X) (Jung et al., 2012; Natori et al., 2013). Herein, we describe the structure of the title IrIII complex, fac-{2-[(4-phenyl-5-meth­yl)pyridine-2-yl]phenyl-κ 2 C 1,N}bis­[2-(pyridine-2-yl)phenyl-κ 2 C 1,N]iridium(III), which was synthesized by the reaction of [(CInline graphicN)2Ir(μ-Cl)]2 and 4-methyl-2,5-di­phenyl­pyridine in the presence of AgI.

Structural commentary  

In the title compound, the asymmetric unit comprises of one IrIII ion, two 2-phenyl­pyridine ligands, and one 4-methyl-2,5-di­phenyl­pyridine ligand (Fig. 1). The IrIII ion is six-coordin­ated by the three C,N-bidentate ligands, giving rise to a distorted octa­hedral coordination environment with bond angles falling in the range 79.27 (12) to 97.37 (13)°. As shown in Table 1, the Ir—C and Ir—N bond lengths in the title compound are within the ranges reported for similar IrIII compounds (Jung et al., 2012). The pyridyl N atoms of the three ligands are arranged in a fac-configuration around the octa­hedrally coordinated IrIII ion. The equatorial plane is defined by the N1/N3/C14/C11 atoms, the mean deviation from the least-squares plane being 0.081 Å. The IrIII ion lies almost in the equatorial plane with a deviation of 0.0069 (15) Å. Within the 2-(pyridine-2-yl)phenyl ligands, the dihedral angles between the aromatic rings are 5.6 (2) (between rings N1/C1–C5 and C6–C11) and 5.9 (2)° (between rings N3/C30–C34 and C35–C40). Within the 2-[(4-phenyl-5-meth­yl)pyridine-2-yl]phenyl ligand, the dihedral angles between the central pyridine ring and the phenyl rings at either end are 1.3 (2) and 43.84 (12)° for the C13–C18 and C22–C27 rings, respectively.graphic file with name e-72-01768-scheme1.jpg

Figure 1.

Figure 1

View of the mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Selected geometric parameters (Å, °).

Ir1—C14 2.006 (3) Ir1—N1 2.117 (3)
Ir1—C36 2.010 (3) Ir1—N2 2.122 (3)
Ir1—C11 2.010 (3) Ir1—N3 2.125 (3)
       
C14—Ir1—C36 94.78 (13) C11—Ir1—N2 88.63 (11)
C14—Ir1—C11 97.37 (13) N1—Ir1—N2 96.33 (11)
C36—Ir1—C11 95.40 (13) C14—Ir1—N3 86.75 (11)
C14—Ir1—N1 174.67 (11) C36—Ir1—N3 79.51 (13)
C36—Ir1—N1 89.78 (12) C11—Ir1—N3 173.73 (12)
C11—Ir1—N1 79.41 (12) N1—Ir1—N3 96.81 (10)
C14—Ir1—N2 79.27 (12) N2—Ir1—N3 96.80 (11)
C36—Ir1—N2 173.22 (11)    

Supra­molecular features  

Inter­molecular π–π stacking inter­actions [Cg1⋯Cg1i = 3.838 (2) Å; Cg1 is the centroid of the C22–C27 ring; symmetry code: (i) −x, −y + 2, −z] occur in the crystal structure of the title compound (Fig. 2). In addition, weak inter­molecular C—H⋯π inter­actions (Table 2) contribute to the stabilization of the crystal structure.

Figure 2.

Figure 2

Packing plot of the mol­ecular components in the title compound. Red and black dashed lines represent inter­molecular π–π stacking inter­actions and C—H⋯π inter­actions, respectively. H atoms not involved in inter­molecular inter­actions have been omitted for clarity.

Table 2. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C22–C27 and N1/C1–C5 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C29—H29ACg1i 0.98 2.89 3.589 (4) 136
C39—H39⋯Cg2ii 0.95 2.89 3.796 (5) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Synthesis and crystallization  

The ligand 4-methyl-2,5-di­phenyl­pyridine was synthesized according to a literature procedure (Zhou et al., 2013). The title IrIII complex was also prepared according to a literature protocol (Jung et al., 2012). Crystals of the title complex were obtained by allowing a di­chloro­methane/hexane solution to evaporate slowly at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. A reflection affected by the beamstop (100) was omitted from the final refinement. All H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.95 Å for Csp 2–H, and 0.98 Å for methyl H atoms. For all H atoms, U iso(H) = 1.2U eq of the parent atom.

Table 3. Experimental details.

Crystal data
Chemical formula [Ir(C11H8N)2(C18H14N)]
M r 744.87
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 19.8293 (3), 8.6464 (1), 18.1551 (3)
β (°) 106.715 (1)
V3) 2981.21 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.51
Crystal size (mm) 0.30 × 0.25 × 0.17
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013)
T min, T max 0.521, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 27408, 6855, 6080
R int 0.033
(sin θ/λ)max−1) 0.651
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.026, 0.062, 1.02
No. of reflections 6855
No. of parameters 397
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.77, −0.71

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and DIAMOND (Brandenburg, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989016017618/wm5336sup1.cif

e-72-01768-sup1.cif (842.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016017618/wm5336Isup2.hkl

e-72-01768-Isup2.hkl (544.8KB, hkl)

CCDC reference: 1515004

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This study was supported by a 2016 Research Grant from Kangwon National University (No. 520160312).

supplementary crystallographic information

Crystal data

[Ir(C11H8N)2(C18H14N)] F(000) = 1472
Mr = 744.87 Dx = 1.660 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 19.8293 (3) Å Cell parameters from 9925 reflections
b = 8.6464 (1) Å θ = 2.3–27.5°
c = 18.1551 (3) Å µ = 4.51 mm1
β = 106.715 (1)° T = 173 K
V = 2981.21 (8) Å3 Block, yellow
Z = 4 0.30 × 0.25 × 0.17 mm

Data collection

Bruker APEXII CCD diffractometer 6080 reflections with I > 2σ(I)
φ and ω scans Rint = 0.033
Absorption correction: multi-scan (SADABS; Bruker, 2013) θmax = 27.6°, θmin = 2.2°
Tmin = 0.521, Tmax = 0.746 h = −25→25
27408 measured reflections k = −11→11
6855 independent reflections l = −23→23

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026 H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0283P)2 + 4.5659P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
6855 reflections Δρmax = 1.77 e Å3
397 parameters Δρmin = −0.71 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ir1 0.29220 (2) 0.64276 (2) 0.04767 (2) 0.02005 (5)
N1 0.29261 (14) 0.8427 (3) 0.11505 (15) 0.0229 (6)
N2 0.19761 (13) 0.6951 (3) −0.03909 (15) 0.0221 (5)
N3 0.36253 (15) 0.7274 (3) −0.01184 (16) 0.0278 (6)
C1 0.32224 (19) 0.9782 (4) 0.10758 (19) 0.0292 (7)
H1 0.3448 0.9885 0.0682 0.035*
C2 0.3217 (2) 1.1028 (4) 0.1537 (2) 0.0364 (8)
H2 0.3427 1.1979 0.1459 0.044*
C3 0.2901 (2) 1.0878 (5) 0.2118 (2) 0.0390 (9)
H3 0.2896 1.1721 0.2452 0.047*
C4 0.2595 (2) 0.9492 (4) 0.2208 (2) 0.0343 (8)
H4 0.2379 0.9371 0.2608 0.041*
C5 0.25996 (17) 0.8260 (4) 0.17116 (19) 0.0246 (7)
C6 0.22626 (17) 0.6753 (4) 0.17108 (19) 0.0241 (7)
C7 0.18657 (19) 0.6405 (4) 0.2211 (2) 0.0301 (8)
H7 0.1826 0.7142 0.2585 0.036*
C8 0.15301 (19) 0.4997 (5) 0.2166 (2) 0.0350 (8)
H8 0.1257 0.4762 0.2505 0.042*
C9 0.1596 (2) 0.3924 (4) 0.1620 (2) 0.0342 (8)
H9 0.1371 0.2947 0.1589 0.041*
C10 0.19868 (18) 0.4272 (4) 0.1123 (2) 0.0299 (7)
H10 0.2020 0.3525 0.0751 0.036*
C11 0.23371 (16) 0.5691 (4) 0.11465 (17) 0.0231 (6)
C12 0.17645 (17) 0.5849 (4) −0.09425 (18) 0.0244 (7)
C13 0.22309 (17) 0.4510 (4) −0.08479 (18) 0.0233 (6)
C14 0.28203 (16) 0.4536 (4) −0.01860 (18) 0.0233 (7)
C15 0.32853 (18) 0.3276 (4) −0.0099 (2) 0.0275 (7)
H15 0.3689 0.3247 0.0336 0.033*
C16 0.31741 (19) 0.2077 (4) −0.0626 (2) 0.0310 (8)
H16 0.3504 0.1253 −0.0550 0.037*
C17 0.2591 (2) 0.2069 (4) −0.1257 (2) 0.0312 (8)
H17 0.2515 0.1237 −0.1613 0.037*
C18 0.21153 (19) 0.3280 (4) −0.13697 (19) 0.0280 (7)
H18 0.1709 0.3276 −0.1803 0.034*
C19 0.11442 (18) 0.6060 (4) −0.1549 (2) 0.0294 (8)
H19 0.1004 0.5301 −0.1942 0.035*
C20 0.07314 (17) 0.7395 (4) −0.15741 (18) 0.0259 (7)
C21 0.09467 (17) 0.8491 (4) −0.09800 (19) 0.0239 (7)
C22 0.05436 (17) 0.9901 (4) −0.09133 (17) 0.0249 (7)
C23 0.08800 (19) 1.1305 (4) −0.0697 (2) 0.0306 (8)
H23 0.1374 1.1375 −0.0614 0.037*
C24 0.0506 (2) 1.2615 (5) −0.0599 (2) 0.0373 (9)
H24 0.0746 1.3565 −0.0448 0.045*
C25 −0.0211 (2) 1.2533 (5) −0.0722 (2) 0.0394 (9)
H25 −0.0468 1.3428 −0.0661 0.047*
C26 −0.0557 (2) 1.1141 (5) −0.0935 (2) 0.0367 (9)
H26 −0.1052 1.1082 −0.1022 0.044*
C27 −0.01834 (18) 0.9837 (5) −0.10215 (19) 0.0305 (8)
H27 −0.0424 0.8882 −0.1156 0.037*
C28 0.15737 (17) 0.8197 (4) −0.04181 (18) 0.0234 (7)
H28 0.1729 0.8943 −0.0021 0.028*
C29 0.00979 (19) 0.7602 (5) −0.2259 (2) 0.0345 (8)
H29A 0.0048 0.6701 −0.2597 0.041*
H29B −0.0324 0.7707 −0.2085 0.041*
H29C 0.0157 0.8535 −0.2540 0.041*
C30 0.3439 (2) 0.7941 (4) −0.0815 (2) 0.0360 (8)
H30 0.2953 0.8109 −0.1062 0.043*
C31 0.3921 (3) 0.8394 (5) −0.1188 (3) 0.0489 (11)
H31 0.3773 0.8862 −0.1682 0.059*
C32 0.4622 (3) 0.8150 (6) −0.0825 (3) 0.0596 (14)
H32 0.4968 0.8455 −0.1066 0.072*
C33 0.4820 (2) 0.7464 (6) −0.0116 (3) 0.0534 (12)
H33 0.5305 0.7304 0.0138 0.064*
C34 0.43158 (19) 0.7001 (4) 0.0236 (2) 0.0338 (8)
C35 0.44516 (19) 0.6172 (4) 0.0971 (2) 0.0337 (8)
C36 0.38503 (17) 0.5785 (4) 0.12033 (19) 0.0261 (7)
C37 0.3974 (2) 0.4950 (4) 0.1889 (2) 0.0350 (8)
H37 0.3584 0.4691 0.2072 0.042*
C38 0.4639 (2) 0.4488 (5) 0.2311 (2) 0.0471 (11)
H38 0.4701 0.3916 0.2772 0.057*
C39 0.5216 (2) 0.4860 (6) 0.2059 (3) 0.0525 (12)
H39 0.5674 0.4527 0.2344 0.063*
C40 0.5128 (2) 0.5708 (5) 0.1401 (3) 0.0483 (11)
H40 0.5526 0.5982 0.1236 0.058*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ir1 0.01823 (7) 0.02267 (7) 0.01843 (7) 0.00119 (5) 0.00394 (5) −0.00203 (5)
N1 0.0223 (14) 0.0243 (14) 0.0211 (13) 0.0011 (11) 0.0049 (11) −0.0029 (11)
N2 0.0186 (13) 0.0271 (14) 0.0206 (13) −0.0020 (11) 0.0055 (11) 0.0004 (11)
N3 0.0306 (15) 0.0247 (15) 0.0309 (15) −0.0012 (12) 0.0137 (13) −0.0080 (12)
C1 0.0325 (18) 0.0304 (18) 0.0254 (17) −0.0015 (15) 0.0093 (15) −0.0016 (14)
C2 0.046 (2) 0.0267 (18) 0.037 (2) −0.0028 (16) 0.0114 (18) −0.0050 (15)
C3 0.050 (2) 0.032 (2) 0.036 (2) 0.0037 (18) 0.0148 (18) −0.0109 (16)
C4 0.042 (2) 0.036 (2) 0.0280 (18) 0.0034 (17) 0.0148 (16) −0.0065 (15)
C5 0.0205 (16) 0.0303 (18) 0.0212 (16) 0.0049 (13) 0.0032 (13) −0.0002 (13)
C6 0.0200 (16) 0.0286 (17) 0.0225 (16) 0.0055 (13) 0.0041 (13) 0.0016 (13)
C7 0.0276 (18) 0.038 (2) 0.0260 (17) 0.0079 (15) 0.0090 (14) 0.0017 (14)
C8 0.0306 (19) 0.045 (2) 0.0321 (19) 0.0012 (17) 0.0142 (16) 0.0092 (16)
C9 0.0301 (19) 0.033 (2) 0.040 (2) −0.0039 (15) 0.0112 (16) 0.0051 (16)
C10 0.0278 (17) 0.0333 (19) 0.0283 (17) 0.0003 (15) 0.0076 (14) −0.0035 (15)
C11 0.0201 (15) 0.0285 (17) 0.0193 (15) 0.0060 (14) 0.0034 (12) 0.0048 (13)
C12 0.0264 (16) 0.0287 (17) 0.0194 (15) −0.0038 (14) 0.0084 (13) 0.0006 (13)
C13 0.0246 (16) 0.0254 (17) 0.0211 (15) −0.0030 (13) 0.0084 (13) −0.0005 (12)
C14 0.0214 (15) 0.0269 (17) 0.0233 (16) −0.0027 (13) 0.0093 (13) −0.0009 (13)
C15 0.0264 (17) 0.0321 (19) 0.0236 (17) 0.0010 (14) 0.0068 (14) −0.0015 (13)
C16 0.037 (2) 0.0231 (17) 0.036 (2) 0.0037 (15) 0.0158 (16) −0.0016 (15)
C17 0.043 (2) 0.0247 (17) 0.0277 (18) −0.0050 (16) 0.0133 (16) −0.0093 (14)
C18 0.0310 (18) 0.0303 (18) 0.0228 (17) −0.0074 (14) 0.0080 (14) −0.0036 (13)
C19 0.0266 (18) 0.0332 (19) 0.0254 (17) −0.0091 (14) 0.0027 (14) −0.0098 (14)
C20 0.0232 (16) 0.0369 (19) 0.0178 (15) −0.0037 (14) 0.0063 (13) 0.0024 (13)
C21 0.0198 (15) 0.0308 (18) 0.0214 (16) −0.0021 (13) 0.0063 (13) 0.0040 (13)
C22 0.0209 (16) 0.0358 (19) 0.0167 (15) 0.0039 (14) 0.0034 (12) 0.0048 (13)
C23 0.0271 (18) 0.036 (2) 0.0272 (18) 0.0018 (15) 0.0056 (15) 0.0054 (14)
C24 0.045 (2) 0.035 (2) 0.031 (2) 0.0041 (17) 0.0082 (17) 0.0058 (15)
C25 0.044 (2) 0.043 (2) 0.031 (2) 0.0192 (19) 0.0109 (17) 0.0076 (17)
C26 0.0248 (18) 0.058 (3) 0.0265 (18) 0.0140 (17) 0.0066 (15) 0.0092 (17)
C27 0.0216 (17) 0.043 (2) 0.0251 (17) 0.0008 (15) 0.0045 (14) 0.0063 (15)
C28 0.0242 (16) 0.0267 (17) 0.0190 (15) −0.0016 (13) 0.0057 (13) −0.0016 (12)
C29 0.0263 (18) 0.049 (2) 0.0240 (18) 0.0034 (16) 0.0005 (14) −0.0027 (15)
C30 0.046 (2) 0.0297 (19) 0.038 (2) −0.0017 (17) 0.0203 (18) −0.0042 (16)
C31 0.069 (3) 0.038 (2) 0.053 (3) −0.006 (2) 0.039 (3) −0.0018 (19)
C32 0.062 (3) 0.059 (3) 0.077 (4) −0.012 (2) 0.051 (3) −0.006 (3)
C33 0.034 (2) 0.061 (3) 0.072 (3) −0.007 (2) 0.026 (2) −0.012 (2)
C34 0.0279 (18) 0.0304 (19) 0.046 (2) −0.0045 (15) 0.0156 (17) −0.0129 (17)
C35 0.0236 (17) 0.034 (2) 0.041 (2) 0.0006 (14) 0.0042 (16) −0.0131 (15)
C36 0.0227 (16) 0.0233 (16) 0.0291 (17) 0.0023 (14) 0.0021 (13) −0.0104 (14)
C37 0.036 (2) 0.034 (2) 0.0280 (19) 0.0060 (16) −0.0020 (15) −0.0055 (15)
C38 0.045 (2) 0.045 (2) 0.036 (2) 0.011 (2) −0.0133 (18) −0.0080 (18)
C39 0.029 (2) 0.056 (3) 0.054 (3) 0.012 (2) −0.0163 (19) −0.012 (2)
C40 0.0219 (19) 0.054 (3) 0.063 (3) 0.0017 (19) 0.0020 (18) −0.017 (2)

Geometric parameters (Å, º)

Ir1—C14 2.006 (3) C18—H18 0.9500
Ir1—C36 2.010 (3) C19—C20 1.408 (5)
Ir1—C11 2.010 (3) C19—H19 0.9500
Ir1—N1 2.117 (3) C20—C21 1.407 (5)
Ir1—N2 2.122 (3) C20—C29 1.502 (5)
Ir1—N3 2.125 (3) C21—C28 1.386 (5)
N1—C1 1.335 (4) C21—C22 1.482 (5)
N1—C5 1.363 (4) C22—C23 1.386 (5)
N2—C28 1.333 (4) C22—C27 1.399 (4)
N2—C12 1.359 (4) C23—C24 1.393 (5)
N3—C30 1.342 (5) C23—H23 0.9500
N3—C34 1.356 (5) C24—C25 1.376 (5)
C1—C2 1.367 (5) C24—H24 0.9500
C1—H1 0.9500 C25—C26 1.383 (6)
C2—C3 1.379 (5) C25—H25 0.9500
C2—H2 0.9500 C26—C27 1.382 (5)
C3—C4 1.375 (5) C26—H26 0.9500
C3—H3 0.9500 C27—H27 0.9500
C4—C5 1.396 (5) C28—H28 0.9500
C4—H4 0.9500 C29—H29A 0.9800
C5—C6 1.465 (5) C29—H29B 0.9800
C6—C7 1.395 (5) C29—H29C 0.9800
C6—C11 1.415 (5) C30—C31 1.377 (5)
C7—C8 1.379 (5) C30—H30 0.9500
C7—H7 0.9500 C31—C32 1.372 (7)
C8—C9 1.390 (5) C31—H31 0.9500
C8—H8 0.9500 C32—C33 1.369 (7)
C9—C10 1.383 (5) C32—H32 0.9500
C9—H9 0.9500 C33—C34 1.391 (5)
C10—C11 1.404 (5) C33—H33 0.9500
C10—H10 0.9500 C34—C35 1.469 (6)
C12—C19 1.407 (5) C35—C40 1.403 (5)
C12—C13 1.460 (5) C35—C36 1.415 (5)
C13—C18 1.399 (4) C36—C37 1.399 (5)
C13—C14 1.415 (4) C37—C38 1.379 (5)
C14—C15 1.406 (5) C37—H37 0.9500
C15—C16 1.385 (5) C38—C39 1.388 (7)
C15—H15 0.9500 C38—H38 0.9500
C16—C17 1.374 (5) C39—C40 1.369 (7)
C16—H16 0.9500 C39—H39 0.9500
C17—C18 1.385 (5) C40—H40 0.9500
C17—H17 0.9500
C14—Ir1—C36 94.78 (13) C18—C17—H17 120.2
C14—Ir1—C11 97.37 (13) C17—C18—C13 120.2 (3)
C36—Ir1—C11 95.40 (13) C17—C18—H18 119.9
C14—Ir1—N1 174.67 (11) C13—C18—H18 119.9
C36—Ir1—N1 89.78 (12) C12—C19—C20 120.1 (3)
C11—Ir1—N1 79.41 (12) C12—C19—H19 120.0
C14—Ir1—N2 79.27 (12) C20—C19—H19 120.0
C36—Ir1—N2 173.22 (11) C21—C20—C19 118.8 (3)
C11—Ir1—N2 88.63 (11) C21—C20—C29 123.4 (3)
N1—Ir1—N2 96.33 (11) C19—C20—C29 117.7 (3)
C14—Ir1—N3 86.75 (11) C28—C21—C20 116.8 (3)
C36—Ir1—N3 79.51 (13) C28—C21—C22 118.8 (3)
C11—Ir1—N3 173.73 (12) C20—C21—C22 124.4 (3)
N1—Ir1—N3 96.81 (10) C23—C22—C27 117.8 (3)
N2—Ir1—N3 96.80 (11) C23—C22—C21 121.1 (3)
C1—N1—C5 119.1 (3) C27—C22—C21 120.9 (3)
C1—N1—Ir1 125.9 (2) C22—C23—C24 121.2 (3)
C5—N1—Ir1 115.0 (2) C22—C23—H23 119.4
C28—N2—C12 119.0 (3) C24—C23—H23 119.4
C28—N2—Ir1 126.3 (2) C25—C24—C23 120.1 (4)
C12—N2—Ir1 114.6 (2) C25—C24—H24 120.0
C30—N3—C34 119.3 (3) C23—C24—H24 120.0
C30—N3—Ir1 125.8 (2) C24—C25—C26 119.7 (4)
C34—N3—Ir1 114.8 (2) C24—C25—H25 120.2
N1—C1—C2 123.3 (3) C26—C25—H25 120.2
N1—C1—H1 118.4 C27—C26—C25 120.2 (3)
C2—C1—H1 118.4 C27—C26—H26 119.9
C1—C2—C3 118.7 (4) C25—C26—H26 119.9
C1—C2—H2 120.7 C26—C27—C22 121.0 (4)
C3—C2—H2 120.7 C26—C27—H27 119.5
C4—C3—C2 119.1 (3) C22—C27—H27 119.5
C4—C3—H3 120.5 N2—C28—C21 125.2 (3)
C2—C3—H3 120.5 N2—C28—H28 117.4
C3—C4—C5 120.2 (3) C21—C28—H28 117.4
C3—C4—H4 119.9 C20—C29—H29A 109.5
C5—C4—H4 119.9 C20—C29—H29B 109.5
N1—C5—C4 119.6 (3) H29A—C29—H29B 109.5
N1—C5—C6 114.1 (3) C20—C29—H29C 109.5
C4—C5—C6 126.3 (3) H29A—C29—H29C 109.5
C7—C6—C11 121.9 (3) H29B—C29—H29C 109.5
C7—C6—C5 122.2 (3) N3—C30—C31 122.9 (4)
C11—C6—C5 115.8 (3) N3—C30—H30 118.5
C8—C7—C6 120.3 (3) C31—C30—H30 118.5
C8—C7—H7 119.9 C32—C31—C30 118.1 (4)
C6—C7—H7 119.9 C32—C31—H31 120.9
C7—C8—C9 119.3 (3) C30—C31—H31 120.9
C7—C8—H8 120.4 C33—C32—C31 119.7 (4)
C9—C8—H8 120.4 C33—C32—H32 120.2
C10—C9—C8 120.4 (3) C31—C32—H32 120.2
C10—C9—H9 119.8 C32—C33—C34 120.5 (4)
C8—C9—H9 119.8 C32—C33—H33 119.8
C9—C10—C11 122.4 (3) C34—C33—H33 119.8
C9—C10—H10 118.8 N3—C34—C33 119.5 (4)
C11—C10—H10 118.8 N3—C34—C35 114.3 (3)
C10—C11—C6 115.8 (3) C33—C34—C35 126.1 (4)
C10—C11—Ir1 128.7 (2) C40—C35—C36 121.3 (4)
C6—C11—Ir1 115.5 (2) C40—C35—C34 122.8 (4)
N2—C12—C19 120.0 (3) C36—C35—C34 115.9 (3)
N2—C12—C13 114.7 (3) C37—C36—C35 116.2 (3)
C19—C12—C13 125.2 (3) C37—C36—Ir1 128.3 (3)
C18—C13—C14 121.4 (3) C35—C36—Ir1 115.5 (3)
C18—C13—C12 123.2 (3) C38—C37—C36 122.5 (4)
C14—C13—C12 115.3 (3) C38—C37—H37 118.8
C15—C14—C13 116.0 (3) C36—C37—H37 118.8
C15—C14—Ir1 127.9 (2) C37—C38—C39 119.9 (4)
C13—C14—Ir1 116.0 (2) C37—C38—H38 120.0
C16—C15—C14 122.2 (3) C39—C38—H38 120.0
C16—C15—H15 118.9 C40—C39—C38 120.1 (4)
C14—C15—H15 118.9 C40—C39—H39 120.0
C17—C16—C15 120.6 (3) C38—C39—H39 120.0
C17—C16—H16 119.7 C39—C40—C35 120.1 (4)
C15—C16—H16 119.7 C39—C40—H40 120.0
C16—C17—C18 119.6 (3) C35—C40—H40 120.0
C16—C17—H17 120.2
C5—N1—C1—C2 0.0 (5) C12—C19—C20—C29 176.5 (3)
Ir1—N1—C1—C2 −179.0 (3) C19—C20—C21—C28 2.3 (4)
N1—C1—C2—C3 1.2 (6) C29—C20—C21—C28 −174.9 (3)
C1—C2—C3—C4 −0.9 (6) C19—C20—C21—C22 −176.6 (3)
C2—C3—C4—C5 −0.5 (6) C29—C20—C21—C22 6.2 (5)
C1—N1—C5—C4 −1.5 (5) C28—C21—C22—C23 42.5 (4)
Ir1—N1—C5—C4 177.6 (3) C20—C21—C22—C23 −138.7 (3)
C1—N1—C5—C6 176.9 (3) C28—C21—C22—C27 −133.6 (3)
Ir1—N1—C5—C6 −4.0 (4) C20—C21—C22—C27 45.3 (4)
C3—C4—C5—N1 1.7 (5) C27—C22—C23—C24 −0.8 (5)
C3—C4—C5—C6 −176.5 (4) C21—C22—C23—C24 −177.0 (3)
N1—C5—C6—C7 −175.9 (3) C22—C23—C24—C25 −0.4 (5)
C4—C5—C6—C7 2.4 (5) C23—C24—C25—C26 0.7 (5)
N1—C5—C6—C11 1.3 (4) C24—C25—C26—C27 0.2 (5)
C4—C5—C6—C11 179.6 (3) C25—C26—C27—C22 −1.4 (5)
C11—C6—C7—C8 −0.1 (5) C23—C22—C27—C26 1.7 (5)
C5—C6—C7—C8 176.9 (3) C21—C22—C27—C26 177.9 (3)
C6—C7—C8—C9 0.4 (5) C12—N2—C28—C21 −1.1 (5)
C7—C8—C9—C10 −0.7 (6) Ir1—N2—C28—C21 −178.0 (2)
C8—C9—C10—C11 0.7 (6) C20—C21—C28—N2 −1.4 (5)
C9—C10—C11—C6 −0.3 (5) C22—C21—C28—N2 177.5 (3)
C9—C10—C11—Ir1 −179.5 (3) C34—N3—C30—C31 −1.2 (5)
C7—C6—C11—C10 0.1 (5) Ir1—N3—C30—C31 −176.5 (3)
C5—C6—C11—C10 −177.2 (3) N3—C30—C31—C32 −0.1 (6)
C7—C6—C11—Ir1 179.3 (3) C30—C31—C32—C33 0.4 (7)
C5—C6—C11—Ir1 2.1 (4) C31—C32—C33—C34 0.6 (7)
C28—N2—C12—C19 2.6 (4) C30—N3—C34—C33 2.2 (5)
Ir1—N2—C12—C19 179.9 (2) Ir1—N3—C34—C33 178.0 (3)
C28—N2—C12—C13 −178.2 (3) C30—N3—C34—C35 −176.1 (3)
Ir1—N2—C12—C13 −1.0 (3) Ir1—N3—C34—C35 −0.3 (4)
N2—C12—C13—C18 −177.8 (3) C32—C33—C34—N3 −2.0 (6)
C19—C12—C13—C18 1.2 (5) C32—C33—C34—C35 176.1 (4)
N2—C12—C13—C14 1.9 (4) N3—C34—C35—C40 176.4 (3)
C19—C12—C13—C14 −179.1 (3) C33—C34—C35—C40 −1.8 (6)
C18—C13—C14—C15 1.5 (4) N3—C34—C35—C36 −0.2 (5)
C12—C13—C14—C15 −178.2 (3) C33—C34—C35—C36 −178.3 (4)
C18—C13—C14—Ir1 177.8 (2) C40—C35—C36—C37 1.3 (5)
C12—C13—C14—Ir1 −1.9 (3) C34—C35—C36—C37 177.9 (3)
C13—C14—C15—C16 −0.2 (5) C40—C35—C36—Ir1 −176.1 (3)
Ir1—C14—C15—C16 −176.0 (3) C34—C35—C36—Ir1 0.5 (4)
C14—C15—C16—C17 −0.9 (5) C35—C36—C37—C38 −1.6 (5)
C15—C16—C17—C18 0.7 (5) Ir1—C36—C37—C38 175.4 (3)
C16—C17—C18—C13 0.5 (5) C36—C37—C38—C39 0.4 (6)
C14—C13—C18—C17 −1.7 (5) C37—C38—C39—C40 1.1 (7)
C12—C13—C18—C17 178.0 (3) C38—C39—C40—C35 −1.4 (7)
N2—C12—C19—C20 −1.7 (5) C36—C35—C40—C39 0.2 (6)
C13—C12—C19—C20 179.3 (3) C34—C35—C40—C39 −176.2 (4)
C12—C19—C20—C21 −0.8 (5)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C22–C27 and N1/C1–C5 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C29—H29A···Cg1i 0.98 2.89 3.589 (4) 136
C39—H39···Cg2ii 0.95 2.89 3.796 (5) 160

Symmetry codes: (i) −x, y−1/2, −z−1/2; (ii) −x+1, y−1/2, −z+1/2.

References

  1. Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chi, Y. & Chou, P.-T. (2010). Chem. Soc. Rev. 39, 638–655. [DOI] [PubMed]
  4. Jung, N., Lee, E., Kim, J., Park, H., Park, K.-M. & Kang, Y. (2012). Bull. Korean Chem. Soc. 33, 183–188.
  5. Kang, Y., Chang, Y.-L., Lu, J.-S., Ko, S.-B., Rao, Y., Varlan, M., Lu, Z.-H. & Wang, S. (2013). J. Mater. Chem. C. 1, 441–450.
  6. Natori, I., Natori, S., Kanasashi, A., Tsuchiya, K. & Ogino, K. (2013). Polym. J. 45, 601–605.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  9. Zhou, Q., Zhang, B., Su, L., Jiang, T., Chen, R., Du, T., Ye, Y., Shen, J., Dai, G., Han, D. & Jiang, H. (2013). Tetrahedron, 69, 10996–11003.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989016017618/wm5336sup1.cif

e-72-01768-sup1.cif (842.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016017618/wm5336Isup2.hkl

e-72-01768-Isup2.hkl (544.8KB, hkl)

CCDC reference: 1515004

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES