Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Nov 15;72(Pt 12):1809–1811. doi: 10.1107/S2056989016017710

Crystal structure of N,N′-di­benzyl­pyromellitic diimide

Hansu Im a, Suk-Hee Moon b, Tae Ho Kim a,*, Ki-Min Park a,*
PMCID: PMC5137614  PMID: 27980836

The title compound, C24H16N2O4 (systematic name: 2,6-di­benzyl­pyrrolo­[3,4-f]iso­indole-1,3,5,7(2H,6H)-tetra­one), lies about a crystallographic inversion center at the center of the pyromellitic di­imide moiety which is planar. In the crystal, inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions lead to the formation of a two-dimensional supra­molecular network.

Keywords: crystal structure, pyromellitic di­imide derivative, hydrogen bonding, two-dimensional network

Abstract

The title compound, C24H16N2O4 [systematic name: 2,6-di­benzyl­pyrrolo­[3,4-f]iso­indole-1,3,5,7(2H,6H)-tetra­one], consists of a central pyromellitic di­imide moiety with terminal benzyl groups at the N-atom positions. The mol­ecule is located about an inversion centre, so the asymmetric unit contains one half-mol­ecule. In the mol­ecule, both terminal phenyl groups, tilted by 72.97 (4)° with respect to the mean plane of the central pyromellitic di­imide moiety (r.m.s. deviation = 0.0145 Å), are oriented away from each other, forming an elongated S-shaped conformation. In the crystal, mol­ecules are connected via weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions, resulting in the formation of supra­molecular layers extending parallel to the ab plane.

Chemical context  

As a result of their potential applications in organic photovoltaics (Huang et al., 2014) and as mol­ecular electronic devices (Guo et al., 2014) and energy storage devices (Song et al., 2010), several π-conjugated, redox-active aromatic di­imides including pyromellitic di­imides, naphthalene di­imides and perylene di­imides have received considerable attention from materials chemists. Additionally, π-conjugated aromatic di­imides and their derivatives are used as rigid structural components in supra­molecular assemblies for the exploitation of supra­molecular inter­actions such as hydrogen-bonding and halogen–π inter­actions (Hay & Custelcean, 2009; Lu et al., 2007; Gamez et al., 2007). Recently, our group reported a copper(I) coordination polymer with a pyromellitic di­imide ligand, namely N,N′-bis­[3-(methyl­thio)­prop­yl]pyromellitic di­imide, and revealed the presence of halogen–π inter­actions between the chlorine atoms of a di­chloro­methane solvent mol­ecule of crystallization and pyromellitic di­imide rings (Park et al., 2011). In an extension of our studies of pyromellitic di­imide derivatives, we have prepared the title compound by the reaction of pyromellitic dianhydride with 2-phenyethyl­amine and we report its crystal structure here.

Structural commentary  

The mol­ecular structure of the title compound consists of a central pyromellitic di­imide ring system with terminal benzyl groups on each of the inversion-related nitro­gen atoms (Fig. 1). As the mol­ecule is located about a crystallographic inversion centre, the asymmetric unit of the compound comprises one half-mol­ecule. Short intramolecular C—H⋯O contacts (Table 1) enclose S(5) rings and may contribute to the planarity of the pyromellitic di­imide ring system (r.m.s. deviation = 0.0145 Å). The two terminal phenyl groups in the mol­ecule are oriented away from each other, forming an elongated S-shaped conformation. The terminal phenyl ring is tilted by 72.97 (4)° with respect to the mean plane of the central pyromellitic di­imide moiety.graphic file with name e-72-01809-scheme1.jpg

Figure 1.

Figure 1

A view of the mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius and yellow dashed lines represent the intra­molecular C—H⋯O short contacts. [Symmetry code; (i) −x + 2, −y + 1, −z.]

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O1 0.99 2.53 2.917 (2) 103
C12—H12⋯O2i 0.95 2.45 3.401 (2) 178
C7—H7BCg1ii 0.99 2.60 3.478 (2) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

In the crystal, adjacent mol­ecules are connected by weak C12—H12⋯O2 hydrogen bonds, Table 1 (yellow dashed lines in Fig. 2), forming inversion dimers. Inversion symmetry links these into a chain propagating along [Inline graphic10]. Neighboring chains are linked through inter­molecular C—H⋯π inter­actions between a methyl­ene H atom and the terminal phenyl ring, resulting in the formation of supra­molecular layers extending parallel to the ab plane (black dashed lines in Fig. 3 and Table 1). These layers are separated from each other by 3.104 (3) Å. No inter­molecular π–π inter­actions are found between the pyromellitic di­imide moieties.

Figure 2.

Figure 2

Chains of the title compound formed through inter­molecular C—H⋯O hydrogen bonds (yellow dashed lines).

Figure 3.

Figure 3

Supra­molecular layers of the title compound formed through inter­molecular C—H⋯π inter­actions (black dashed lines) between the chains generated by inter­molecular C—H⋯O hydrogen bonds (yellow dashed lines). H atoms not involved in inter­molecular inter­actions have been omitted for clarity.

Synthesis and crystallization  

The title compound was synthesized by the reaction of pyromellitic dianhydride with 2-phenyl­ethyl­amine according to a literature procedure (Kang et al., 2015). X-ray quality single crystals were obtained by slow evaporation of a di­chloro­methane solution of the title compound.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically with d(C—H) = 0.95 Å for Csp 2—H and 0.99 Å for methyl­ene, and were refined as riding with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C24H16N2O4
M r 396.39
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 6.1500 (5), 4.7475 (3), 31.002 (2)
β (°) 90.461 (3)
V3) 905.14 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.50 × 0.06 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker 2013)
T min, T max 0.661, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 4593, 2016, 1444
R int 0.034
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.048, 0.119, 1.04
No. of reflections 2016
No. of parameters 136
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.22

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS97 and SHELXTL (Sheldrick 2008), SHELXL2014 (Sheldrick, 2015) and DIAMOND (Brandenburg, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989016017710/sj5513sup1.cif

e-72-01809-sup1.cif (302.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016017710/sj5513Isup2.hkl

e-72-01809-Isup2.hkl (111KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016017710/sj5513Isup3.cml

CCDC reference: 1515263

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported from the National Research Foundation of Korea (NRF) project (2012R1A4A1027750 and 2015R1D1A3A01020410).

supplementary crystallographic information

Crystal data

C24H16N2O4 F(000) = 412
Mr = 396.39 Dx = 1.454 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 6.1500 (5) Å Cell parameters from 874 reflections
b = 4.7475 (3) Å θ = 2.6–24.8°
c = 31.002 (2) Å µ = 0.10 mm1
β = 90.461 (3)° T = 173 K
V = 905.14 (11) Å3 Needle, colourless
Z = 2 0.50 × 0.06 × 0.02 mm

Data collection

Bruker APEXII CCD diffractometer 1444 reflections with I > 2σ(I)
φ and ω scans Rint = 0.034
Absorption correction: multi-scan (SADABS; Bruker 2013) θmax = 27.5°, θmin = 1.3°
Tmin = 0.661, Tmax = 0.746 h = −6→7
4593 measured reflections k = −2→6
2016 independent reflections l = −38→40

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.089P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2016 reflections Δρmax = 0.25 e Å3
136 parameters Δρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.9145 (2) 0.9617 (3) 0.09759 (4) 0.0314 (4)
O2 0.4737 (2) 0.2514 (3) 0.04921 (4) 0.0282 (3)
N1 0.6589 (2) 0.6176 (3) 0.08217 (5) 0.0218 (4)
C1 0.2783 (3) 0.3279 (4) 0.15445 (6) 0.0303 (5)
H1 0.1617 0.3659 0.1350 0.036*
C2 0.2505 (4) 0.1311 (4) 0.18711 (7) 0.0363 (5)
H2 0.1157 0.0354 0.1901 0.044*
C3 0.4206 (4) 0.0760 (4) 0.21524 (7) 0.0399 (6)
H3 0.4021 −0.0568 0.2378 0.048*
C4 0.6175 (4) 0.2130 (4) 0.21071 (6) 0.0356 (5)
H4 0.7346 0.1724 0.2299 0.043*
C5 0.6439 (3) 0.4094 (4) 0.17812 (6) 0.0298 (5)
H5 0.7792 0.5036 0.1751 0.036*
C6 0.4739 (3) 0.4699 (4) 0.14973 (6) 0.0233 (4)
C7 0.4994 (3) 0.6895 (4) 0.11523 (6) 0.0252 (4)
H7A 0.3565 0.7201 0.1011 0.030*
H7B 0.5432 0.8691 0.1290 0.030*
C8 0.8499 (3) 0.7687 (3) 0.07548 (6) 0.0213 (4)
C9 0.9507 (3) 0.6455 (3) 0.03618 (5) 0.0199 (4)
C10 0.8168 (3) 0.4283 (3) 0.02169 (5) 0.0186 (4)
C11 0.6279 (3) 0.4093 (3) 0.05118 (5) 0.0211 (4)
C12 1.1389 (3) 0.7249 (3) 0.01520 (5) 0.0202 (4)
H12 1.2303 0.8725 0.0253 0.024*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0344 (9) 0.0305 (7) 0.0293 (7) −0.0060 (6) 0.0023 (6) −0.0098 (6)
O2 0.0247 (8) 0.0285 (7) 0.0316 (7) −0.0056 (6) 0.0030 (6) −0.0014 (6)
N1 0.0230 (9) 0.0219 (7) 0.0204 (8) 0.0001 (6) 0.0034 (6) −0.0008 (6)
C1 0.0264 (11) 0.0300 (9) 0.0346 (11) 0.0002 (8) 0.0036 (9) −0.0041 (9)
C2 0.0402 (14) 0.0287 (10) 0.0401 (12) −0.0023 (10) 0.0169 (10) −0.0015 (10)
C3 0.0580 (17) 0.0307 (10) 0.0313 (12) 0.0042 (11) 0.0151 (11) 0.0035 (9)
C4 0.0460 (14) 0.0341 (10) 0.0267 (10) 0.0039 (10) −0.0045 (9) 0.0039 (9)
C5 0.0301 (12) 0.0315 (9) 0.0279 (10) −0.0028 (9) −0.0009 (9) −0.0003 (9)
C6 0.0258 (11) 0.0228 (8) 0.0214 (9) 0.0009 (8) 0.0049 (8) −0.0046 (7)
C7 0.0248 (11) 0.0269 (9) 0.0240 (9) 0.0025 (8) 0.0043 (8) −0.0009 (8)
C8 0.0227 (10) 0.0198 (8) 0.0214 (9) 0.0011 (7) −0.0010 (8) 0.0016 (7)
C9 0.0211 (10) 0.0184 (8) 0.0202 (9) 0.0011 (7) −0.0025 (7) 0.0010 (7)
C10 0.0187 (9) 0.0181 (7) 0.0190 (8) 0.0005 (7) 0.0001 (7) 0.0024 (7)
C11 0.0239 (10) 0.0194 (8) 0.0199 (9) 0.0012 (8) −0.0021 (7) 0.0027 (7)
C12 0.0229 (11) 0.0182 (7) 0.0195 (9) −0.0014 (7) −0.0019 (7) 0.0005 (7)

Geometric parameters (Å, º)

O1—C8 1.210 (2) C4—H4 0.9500
O2—C11 1.210 (2) C5—C6 1.391 (2)
N1—C11 1.391 (2) C5—H5 0.9500
N1—C8 1.393 (2) C6—C7 1.503 (2)
N1—C7 1.465 (2) C7—H7A 0.9900
C1—C6 1.387 (3) C7—H7B 0.9900
C1—C2 1.389 (3) C8—C9 1.491 (2)
C1—H1 0.9500 C9—C12 1.385 (2)
C2—C3 1.382 (3) C9—C10 1.392 (2)
C2—H2 0.9500 C10—C12i 1.384 (2)
C3—C4 1.383 (3) C10—C11 1.487 (3)
C3—H3 0.9500 C12—C10i 1.384 (2)
C4—C5 1.385 (3) C12—H12 0.9500
C11—N1—C8 111.98 (15) N1—C7—C6 114.25 (14)
C11—N1—C7 124.05 (15) N1—C7—H7A 108.7
C8—N1—C7 123.68 (14) C6—C7—H7A 108.7
C6—C1—C2 121.05 (19) N1—C7—H7B 108.7
C6—C1—H1 119.5 C6—C7—H7B 108.7
C2—C1—H1 119.5 H7A—C7—H7B 107.6
C3—C2—C1 119.4 (2) O1—C8—N1 125.37 (17)
C3—C2—H2 120.3 O1—C8—C9 128.58 (17)
C1—C2—H2 120.3 N1—C8—C9 106.04 (14)
C2—C3—C4 120.40 (19) C12—C9—C10 122.98 (16)
C2—C3—H3 119.8 C12—C9—C8 129.19 (15)
C4—C3—H3 119.8 C10—C9—C8 107.81 (16)
C3—C4—C5 119.9 (2) C12i—C10—C9 122.44 (16)
C3—C4—H4 120.1 C12i—C10—C11 129.49 (16)
C5—C4—H4 120.1 C9—C10—C11 108.03 (15)
C4—C5—C6 120.59 (19) O2—C11—N1 125.35 (18)
C4—C5—H5 119.7 O2—C11—C10 128.50 (16)
C6—C5—H5 119.7 N1—C11—C10 106.14 (15)
C1—C6—C5 118.72 (17) C10i—C12—C9 114.59 (15)
C1—C6—C7 120.50 (17) C10i—C12—H12 122.7
C5—C6—C7 120.77 (17) C9—C12—H12 122.7
C6—C1—C2—C3 −0.1 (3) N1—C8—C9—C12 178.00 (17)
C1—C2—C3—C4 −0.7 (3) O1—C8—C9—C10 −179.63 (17)
C2—C3—C4—C5 0.8 (3) N1—C8—C9—C10 −0.36 (18)
C3—C4—C5—C6 −0.2 (3) C12—C9—C10—C12i −0.4 (3)
C2—C1—C6—C5 0.7 (3) C8—C9—C10—C12i 178.05 (15)
C2—C1—C6—C7 −177.86 (17) C12—C9—C10—C11 −178.18 (15)
C4—C5—C6—C1 −0.6 (3) C8—C9—C10—C11 0.31 (18)
C4—C5—C6—C7 178.03 (17) C8—N1—C11—O2 −178.89 (16)
C11—N1—C7—C6 71.0 (2) C7—N1—C11—O2 −4.8 (3)
C8—N1—C7—C6 −115.62 (18) C8—N1—C11—C10 −0.08 (18)
C1—C6—C7—N1 −115.50 (19) C7—N1—C11—C10 173.99 (14)
C5—C6—C7—N1 65.9 (2) C12i—C10—C11—O2 1.1 (3)
C11—N1—C8—O1 179.57 (16) C9—C10—C11—O2 178.61 (17)
C7—N1—C8—O1 5.5 (3) C12i—C10—C11—N1 −177.67 (16)
C11—N1—C8—C9 0.27 (18) C9—C10—C11—N1 −0.15 (18)
C7—N1—C8—C9 −173.83 (14) C10—C9—C12—C10i 0.4 (3)
O1—C8—C9—C12 −1.3 (3) C8—C9—C12—C10i −177.73 (16)

Symmetry code: (i) −x+2, −y+1, −z.

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
C7—H7B···O1 0.99 2.53 2.917 (2) 103
C12—H12···O2ii 0.95 2.45 3.401 (2) 178
C7—H7B···Cg1iii 0.99 2.60 3.478 (2) 148

Symmetry codes: (ii) x+1, y+1, z; (iii) x, y+1, z.

References

  1. Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Gamez, P., Mooibroek, T. J., Teat, S. J. & Reedijk, J. (2007). Acc. Chem. Res. 40, 435–444. [DOI] [PubMed]
  4. Guo, X., Facchetti, A. & Marks, T. J. (2014). Chem. Rev. 114, 8943–9021. [DOI] [PubMed]
  5. Hay, B. P. & Custelcean, R. (2009). Cryst. Growth Des. 9, 2539–2545.
  6. Huang, H., Zhou, N., Ortiz, R. P., Chen, Z., Loser, S., Zhang, S., Guo, X., Casado, J., López Navarrete, J. T., Yu, X., Facchetti, A. & Marks, T. J. (2014). Adv. Funct. Mater. 24, 2782–2793.
  7. Kang, G., Jeon, Y., Lee, K. Y., Kim, J. & Kim, T. H. (2015). Cryst. Growth Des. 15, 5183–5187.
  8. Lu, Y.-X., Zou, J.-W., Wang, Y.-H. & Yu, Q.-S. (2007). Chem. Phys. 334, 1–7.
  9. Park, G., Yang, H., Kim, T. H. & Kim, J. (2011). Inorg. Chem. 50, 961–968. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  12. Song, Z., Zhan, H. & Zhou, Y. (2010). Angew. Chem. Int. Ed. 49, 8444–8448. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989016017710/sj5513sup1.cif

e-72-01809-sup1.cif (302.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016017710/sj5513Isup2.hkl

e-72-01809-Isup2.hkl (111KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016017710/sj5513Isup3.cml

CCDC reference: 1515263

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES