2-(Chloroselanyl)pyridine 1-oxide represents the first monomeric organoselenenyl chloride stabilized by an intramolecular secondary Se⋯O interaction.
Keywords: crystal structure, synchrotron radiation, organoselenenyl chloride, intramolecular stabilization, secondary interactions
Abstract
The title compound, C5H4ClNOSe, is the product of the reaction of sulfuryl chloride and 2-selanyl-1-pyridine 1-oxide in dichloromethane. The molecule has an almost planar geometry (r.m.s. deviation = 0.012 Å), and its molecular structure is stabilized by an intramolecular secondary Se⋯O interaction of 2.353 (3) Å, closing a four-membered N—C—Se⋯O ring. The title compound represents the first monomeric organoselenenyl chloride stabilized intramolecularly by an interaction of this type. The non-valent attractive Se⋯O interaction results in a substantial distortion of the geometry of the ipso-carbon atom. The endo-cyclic N—C—Se [102.1 (3)°] and exo-cyclic C—C—Se [136.9 (3)°] bond angles deviate significantly from the ideal value of 120° for an sp 2-hybridized carbon atom, the former bond angle being much smaller than the latter. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming zigzag chains propagating along [010]. The chains, which stack along the a-axis direction, are linked by offset π–π interactions [intercentroid distance = 3.960 (3) Å], forming corrugated sheets parallel to the ab plane.
Chemical context
Organoselenenyl halides RSeX (X = Cl, Br) play an important role in modern organic synthesis and are used as reagents for the functionalization of many classes of compounds, including organoselenium compounds with a broad spectrum of biological activities (Ranganathan et al., 2004 ▸; Selvakumar et al., 2010 ▸, 2011 ▸; Ninomiya et al., 2011 ▸; Singh & Wirth, 2011 ▸; Zade & Singh, 2014 ▸; Elsherbini et al., 2016 ▸). An essential aspect of the chemistry of selenenyl halides is the factors responsible for the stability of these reagents (Coles, 2006 ▸; Mukherjee et al., 2010 ▸; Nakanishi et al., 2013 ▸; Takaluoma et al., 2015 ▸). Recently, we have developed a new effective method for the stabilization of heteroarenselenenyl and -tellurenyl chlorides by the transformation of them to T-shaped zwitterionic adducts with hydrochloric acid (Khrustalev et al., 2012 ▸, 2014 ▸, 2016 ▸). Moreover, we have established another stabilization method of heteroarenselenenyl and -tellurenyl chlorides by intermolecular secondary Ch⋯N (Ch = Se, Te) interactions with the formation of dimers (Borisov et al., 2010a
▸,b
▸,c
▸; Khrustalev et al., 2016 ▸). Herein, we report on the synthesis and structural characterization of the first monomeric 2-(chloroselanyl)pyridine 1-oxide stabilized by an intramolecular secondary Se⋯O interaction.
Structural commentary
The title compound, Fig. 1 ▸, is the product of the reaction of sulfuryl chloride and 2-selanyl-1-pyridine 1-oxide in dichloromethane. It has an almost planar geometry (r.m.s. deviation = 0.012 Å), and its molecular structure is stabilized by an intramolecular secondary Se1⋯O1 interaction of 2.353 (3) Å, closing the four-membered N1—C2—Se1⋯O1 ring (Fig. 1 ▸). The non-valent attractive Se1⋯O1 interaction results in the substantial distortion of the geometry of the ipso-C2 carbon atom. The endo-cyclic N1—C2—Se1 [102.1 (3)°] and exo-cyclic C3—C2—Se1 [136.9 (3)°] bond angles deviate significantly from the ideal value of 120° for an sp 2-hybridized carbon atom, the former angle being much smaller than the latter. The title compound represents the first monomeric organoselenenyl chloride stabilized intramolecularly by an interaction of this type. Previously, the analogous stabilization of monomeric organoselenenyl chlorides by intramolecular secondary Se⋯S (Tiecco et al., 2006 ▸) and Se⋯N (Panda et al., 1999 ▸; Klapötke et al., 2004 ▸; Kulcsar et al., 2007 ▸; Pöllnitz et al., 2011 ▸) interactions have been reported.
Figure 1.
The molecular structure of the title compound, with atom labelling and displacement ellipsoids drawn at the 50% probability level. The dashed line indicates the intramolecular secondary attractive Se1⋯O1 interaction.
Supramolecular features
In the crystal, molecules are linked by C—H⋯O hydrogen bonds (Table 1 ▸ and Fig. 2 ▸), forming zigzag chains propagating along the b-axis direction. The chains stack along the a-axis direction and are linked by offset π–π interactions, forming corrugated sheets parallel to the ab plane [Cg⋯Cg i,ii = 3.960 (3) Å, Cg is the centroid of the N1/C2–C6 ring, interplanar distances = 3.590 (2) Å, slippages = 1.671 Å, symmetry codes: (i) x − 1, y, z; (ii) x + 1, y, z].
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C6—H6⋯O1i | 0.95 | 2.34 | 3.101 (6) | 137 |
Symmetry code: (i)
.
Figure 2.
The crystal packing of the title compound viewed along the a axis. The intramolecular secondary Se⋯O interactions and the intermolecular C—H⋯O hydrogen bonds are shown as dashed lines (see Table 1 ▸).
Synthesis and crystallization
The synthesis of the title compound is illustrated in Fig. 3 ▸. It was synthesized according to the procedure described previously by Borisov et al. (2010a ▸,b ▸,c ▸). A solution of sulfuryl chloride (0.27 g, 2 mmol) in dichloromethane (15 ml) was added to a solution of 2-selanyl-1-pyridine 1-oxide (0.35 g, 2 mmol) in dichloromethane (20 ml) at 293 K. After one h it was filtered to give the title compound (yield 0.33 g, 80%). The filtrate was evaporated in vacuo and recrystallization of the residue from dichloromethane solution gave an additional 0.06 g (15%) of the title compound. Colourless prismatic crystals of the title compound were obtained after recrystallization of the crude product from dichloromethane (m.p. 433–435 K). IR (KBr, cm−1), ν 1617, 1462, 1423, 1254, 1151, 836, 748, 621. 1H NMR (DMSO-d 6, 300 MHz, 300 K): δ = 8.28 (d, 1H, 3 J = 5.9, H6); 7.52 (d, 1H, 3 J = 7.3, H3); 7.43 (dd, 1H, 3 J = 7.8, 3 J = 7.3, H4); 7.30 (dd, 1H, 3 J = 7.8, 3 J = 5.9, H5). Analysis calculated for C5H4ClNOSe: C 24.81; H 1.93; N 6.72. Found: 24.43; H 1.83; N 6.65.
Figure 3.
The synthesis of the title compound; the reaction of 2-selanyl-1-pyridine 1-oxide with sulfuryl chloride in dichloromethane.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. The C-bound H atoms were placed in calculated positions and refined as riding: C—H = 0.95 Å with U iso(H) = 1.2U eq(C).
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | C5H4ClNOSe |
| M r | 208.50 |
| Crystal system, space group | Monoclinic, P21/c |
| Temperature (K) | 100 |
| a, b, c (Å) | 3.9601 (8), 7.5102 (15), 22.350 (5) |
| β (°) | 94.32 (3) |
| V (Å3) | 662.8 (2) |
| Z | 4 |
| Radiation type | Synchrotron, λ = 0.96990 Å |
| μ (mm−1) | 13.68 |
| Crystal size (mm) | 0.05 × 0.03 × 0.03 |
| Data collection | |
| Diffractometer | Rayonix SX-165 CCD |
| Absorption correction | Multi-scan (SCALA; Evans, 2006 ▸) |
| T min, T max | 0.550, 0.660 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 5526, 1310, 1121 |
| R int | 0.083 |
| (sin θ/λ)max (Å−1) | 0.636 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.074, 0.175, 1.01 |
| No. of reflections | 1310 |
| No. of parameters | 83 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 1.26, −1.58 |
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016018946/su5337sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016018946/su5337Isup2.hkl
CCDC reference: 1519449
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The work was supported by the Ministry of Education of the Russian Federation (Agreement number 02.a03.21.0008 of June 24, 2016) and the Russian Foundation for Basic Research (Grant No. 14–03-00914).
supplementary crystallographic information
Crystal data
| C5H4ClNOSe | F(000) = 400 |
| Mr = 208.50 | Dx = 2.089 Mg m−3 |
| Monoclinic, P21/c | Synchrotron radiation, λ = 0.96990 Å |
| a = 3.9601 (8) Å | Cell parameters from 600 reflections |
| b = 7.5102 (15) Å | θ = 5.0–35.0° |
| c = 22.350 (5) Å | µ = 13.68 mm−1 |
| β = 94.32 (3)° | T = 100 K |
| V = 662.8 (2) Å3 | Prism, colourless |
| Z = 4 | 0.05 × 0.03 × 0.03 mm |
Data collection
| Rayonix SX-165 CCD diffractometer | 1121 reflections with I > 2σ(I) |
| /f scan | Rint = 0.083 |
| Absorption correction: multi-scan (SCALA; Evans, 2006) | θmax = 38.1°, θmin = 5.0° |
| Tmin = 0.550, Tmax = 0.660 | h = −4→4 |
| 5526 measured reflections | k = −9→9 |
| 1310 independent reflections | l = −28→28 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.074 | H-atom parameters constrained |
| wR(F2) = 0.175 | w = 1/[σ2(Fo2) + (0.06P)2 + 1.6P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.01 | (Δ/σ)max = 0.001 |
| 1310 reflections | Δρmax = 1.26 e Å−3 |
| 83 parameters | Δρmin = −1.58 e Å−3 |
| 0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: difference Fourier map | Extinction coefficient: 0.054 (3) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Se1 | 0.51523 (13) | 0.26936 (7) | 0.34782 (2) | 0.02716 (17) | |
| Cl1 | 0.4514 (3) | 0.18592 (14) | 0.44303 (4) | 0.0331 (3) | |
| O1 | 0.6571 (9) | 0.4577 (4) | 0.26942 (12) | 0.0347 (8) | |
| N1 | 0.7603 (10) | 0.5643 (5) | 0.31523 (14) | 0.0290 (8) | |
| C2 | 0.7093 (11) | 0.4927 (5) | 0.36941 (16) | 0.0266 (9) | |
| C3 | 0.7969 (12) | 0.5838 (6) | 0.42160 (17) | 0.0301 (10) | |
| H3 | 0.7578 | 0.5342 | 0.4596 | 0.036* | |
| C4 | 0.9449 (14) | 0.7515 (6) | 0.4172 (2) | 0.0334 (13) | |
| H4 | 1.0115 | 0.8173 | 0.4524 | 0.040* | |
| C5 | 0.9941 (12) | 0.8213 (7) | 0.36099 (19) | 0.0343 (12) | |
| H5 | 1.0906 | 0.9365 | 0.3579 | 0.041* | |
| C6 | 0.9047 (14) | 0.7257 (5) | 0.3095 (2) | 0.0317 (12) | |
| H6 | 0.9436 | 0.7720 | 0.2710 | 0.038* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Se1 | 0.0427 (4) | 0.0202 (3) | 0.0200 (3) | −0.00320 (19) | 0.0117 (3) | −0.00209 (16) |
| Cl1 | 0.0522 (7) | 0.0277 (5) | 0.0208 (4) | −0.0077 (5) | 0.0122 (4) | 0.0037 (4) |
| O1 | 0.058 (2) | 0.0284 (15) | 0.0190 (12) | −0.0061 (14) | 0.0139 (13) | −0.0045 (12) |
| N1 | 0.044 (2) | 0.0265 (17) | 0.0177 (14) | 0.0022 (16) | 0.0106 (13) | −0.0035 (13) |
| C2 | 0.041 (2) | 0.0217 (19) | 0.0183 (16) | 0.0003 (18) | 0.0111 (15) | −0.0008 (14) |
| C3 | 0.049 (3) | 0.028 (2) | 0.0144 (16) | −0.0006 (19) | 0.0089 (16) | 0.0008 (15) |
| C4 | 0.049 (3) | 0.027 (2) | 0.024 (2) | −0.0035 (19) | 0.004 (2) | −0.0028 (15) |
| C5 | 0.051 (3) | 0.026 (2) | 0.0267 (19) | −0.002 (2) | 0.0033 (19) | −0.0008 (19) |
| C6 | 0.048 (3) | 0.0180 (18) | 0.030 (2) | 0.0009 (18) | 0.009 (2) | 0.0062 (15) |
Geometric parameters (Å, º)
| Se1—C2 | 1.892 (4) | C3—H3 | 0.9500 |
| Se1—Cl1 | 2.2506 (11) | C4—C5 | 1.389 (7) |
| O1—N1 | 1.339 (4) | C4—H4 | 0.9500 |
| N1—C6 | 1.350 (6) | C5—C6 | 1.381 (6) |
| N1—C2 | 1.354 (5) | C5—H5 | 0.9500 |
| C2—C3 | 1.374 (6) | C6—H6 | 0.9500 |
| C3—C4 | 1.395 (6) | ||
| C2—Se1—Cl1 | 94.48 (11) | C5—C4—C3 | 119.6 (4) |
| O1—N1—C6 | 124.8 (3) | C5—C4—H4 | 120.2 |
| O1—N1—C2 | 112.9 (3) | C3—C4—H4 | 120.2 |
| C6—N1—C2 | 122.3 (4) | C6—C5—C4 | 120.9 (4) |
| N1—C2—C3 | 121.0 (4) | C6—C5—H5 | 119.6 |
| N1—C2—Se1 | 102.1 (3) | C4—C5—H5 | 119.6 |
| C3—C2—Se1 | 136.9 (3) | N1—C6—C5 | 118.1 (4) |
| C2—C3—C4 | 118.0 (4) | N1—C6—H6 | 120.9 |
| C2—C3—H3 | 121.0 | C5—C6—H6 | 120.9 |
| C4—C3—H3 | 121.0 | ||
| O1—N1—C2—C3 | −179.4 (4) | Se1—C2—C3—C4 | 178.9 (4) |
| C6—N1—C2—C3 | 1.4 (7) | C2—C3—C4—C5 | 0.9 (7) |
| O1—N1—C2—Se1 | 0.7 (4) | C3—C4—C5—C6 | −1.3 (8) |
| C6—N1—C2—Se1 | −178.5 (4) | O1—N1—C6—C5 | 179.2 (4) |
| Cl1—Se1—C2—N1 | −179.0 (3) | C2—N1—C6—C5 | −1.7 (7) |
| Cl1—Se1—C2—C3 | 1.0 (5) | C4—C5—C6—N1 | 1.6 (8) |
| N1—C2—C3—C4 | −1.0 (7) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C6—H6···O1i | 0.95 | 2.34 | 3.101 (6) | 137 |
Symmetry code: (i) −x+2, y+1/2, −z+1/2.
References
- Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. [DOI] [PMC free article] [PubMed]
- Borisov, A. V., Matsulevich, Zh. V., Fukin, G. K. & Baranov, E. V. (2010a). Russ. Chem. Bull. 59, 581–583.
- Borisov, A. V., Matsulevich, Zh. V. & Osmanov, V. K. (2010b). Chem. Heterocycl. Compd, 46, 775–776.
- Borisov, A. V., Matsulevich, Z. V., Osmanov, V. K., Borisova, G. N. & Fukin, G. K. (2010c). In: Heterocyclic compounds: synthesis, properties and applications edited by K. Nylund, & P. Johansson, pp. 211–218. New York: Nova Science Publishers Inc.
- Coles, M. P. (2006). Curr. Org. Chem. 10, 1993–2005.
- Elsherbini, M., Hamama, W. S. & Zoorob, H. H. (2016). Coord. Chem. Rev. 312, 149–177.
- Evans, P. (2006). Acta Cryst. D62, 72–82. [DOI] [PubMed]
- Khrustalev, V. N., Ismaylova, S. R., Aysin, R. R., Matsulevich, Zh. V., Osmanov, V. K., Peregudov, A. S. & Borisov, A. V. (2012). Eur. J. Inorg. Chem. pp. 5456–5460.
- Khrustalev, V. N., Matsulevich, Zh. V., Aysin, R. R., Lukiyanova, J. M., Fukin, G. K., Zubavichus, Y. V., Askerov, R. K., Maharramov, A. M. & Borisov, A. V. (2016). Struct. Chem. 27, 1733–1741.
- Khrustalev, V. N., Matsulevich, Zh. V., Lukiyanova, J. M., Aysin, R. R., Peregudov, A. S., Leites, L. A. & Borisov, A. V. (2014). Eur. J. Inorg. Chem. pp. 3582–3586.
- Klapötke, T. M., Krumm, B. & Polborn, K. (2004). J. Am. Chem. Soc. 126, 710–711. [DOI] [PubMed]
- Kulcsar, M., Beleaga, A., Silvestru, C., Nicolescu, A., Deleanu, C., Todasca, C. & Silvestru, A. (2007). Dalton Trans. pp. 2187–2196. [DOI] [PubMed]
- MarXperts. (2015). Automar. MarXperts GmbH, D-22844 Norderstedt, Germany.
- Mukherjee, A. J., Zade, S. S., Singh, B. H. & Sunoj, R. B. (2010). Chem. Rev. 110, 4357–4416. [DOI] [PubMed]
- Nakanishi, W., Hayashi, S., Hashimoto, M., Arca, M., Aragoni, M. C. & Lippolis, V. (2013). Organic selenium and tellurium. New York: John Wiley & Sons, Ltd.
- Ninomiya, M., Garud, D. R. & Koketsu, M. (2011). Coord. Chem. Rev. 255, 2968–2990.
- Panda, A., Mugesh, G., Singh, H. B. & Butcher, R. J. (1999). Organometallics, 18, 1986–1993.
- Pöllnitz, A., Lippolis, V., Arca, M. & Silvestru, A. (2011). J. Organomet. Chem. 696, 2837–2844.
- Ranganathan, S., Muraleedharan, K. M., Vaish, N. K. & Jayaraman, N. (2004). Tetrahedron, 60, 5273–5308.
- Selvakumar, K., Singh, H. B. & Butcher, R. J. (2010). Chem. Eur. J. 16, 10576–10591. [DOI] [PubMed]
- Selvakumar, K., Singh, V. P., Shah, P. & Singh, H. B. (2011). Main Group Chem. 10, 141–152.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Singh, F. V. & Wirth, T. (2011). In: Organoselenium Chemistry, edited by T. Wirth, pp. 321–360. Weinheim: Wiley-VCH.
- Takaluoma, E. M., Takaluoma, T. T., Oilunkaniemi, R. & Laitinen, R. S. (2015). Z. Anorg. Allg. Chem. 641, 772–779.
- Tiecco, M., Testaferri, L., Santi, C., Tomassini, C., Santoro, S., Marini, F., Bagnoli, L., Temperini, A. & Costantino, F. (2006). Eur. J. Org. Chem. pp. 4867–4873.
- Zade, S. S. & Singh, H. B. (2014). InThe chemistry of organic selenium and tellurium compounds, Vol. 4, edited by Z. Rappoport, J. F. Liebman, I. Marek, S. Patai, pp. 1–180. New York: Wiley.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016018946/su5337sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016018946/su5337Isup2.hkl
CCDC reference: 1519449
Additional supporting information: crystallographic information; 3D view; checkCIF report



