Abstract
Glu-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Purified mutant rhodopsin pigments were prepared in which Glu-113 was replaced individually by Gln (E113Q), Asp (E113D), Asn (E113N), or Ala (E113A). E113Q, E113N, and E113A existed as pH-dependent equilibrium mixtures of unprotonated and protonated Schiff base (PSB) forms. The Schiff base pKa values determined by spectrophotometric titration were 6.00 (E113Q), 6.71 (E113N), and 5.70 (E113A). Thus, mutation of Glu-113 markedly reduced the Schiff base pKa. The addition of NaCl promoted the formation of a PSB in E113Q and E113A. An exogenously supplied solute anion replaced Glu-113 to compensate for the positive charge of the PSB in these mutants. The lambda max values of the PSB forms of the mutants in NaCl were 496 nm (E113Q), 506 nm (E113A), 510 nm (E113D), and 520 nm (E113N). To evaluate the effect of different types of solute anions on lambda max values, mutants were prepared in sodium salts of halides, perchlorate, and a series of carboxylic acids of various sizes and acidity. The lambda max values of E113Q and E113A depended on the solute anion present and ranged from 488 nm to 522 nm for E113Q and from 486 nm to 528 nm for E113A. The solute anion affected the lambda max values of E113N and E113D to lesser degrees. The reactivities of the mutants to hydroxylamine were also studied. Whereas rhodopsin was stable to hydroxylamine in the dark, E113N reacted slowly and E113Q reacted rapidly under these conditions, indicating structural differences in the Schiff base environments. The lambda max values and solute anion dependencies of the Glu-113 mutants indicate that interactions between Schiff base and its counterion play a significant role in determining the lambda max of rhodopsin.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blatz P. E., Mohler J. H., Navangul H. V. Anion-induced wavelength regulation of absorption maxima of Schiff bases of retinal. Biochemistry. 1972 Feb 29;11(5):848–855. doi: 10.1021/bi00755a026. [DOI] [PubMed] [Google Scholar]
- Ferretti L., Karnik S. S., Khorana H. G., Nassal M., Oprian D. D. Total synthesis of a gene for bovine rhodopsin. Proc Natl Acad Sci U S A. 1986 Feb;83(3):599–603. doi: 10.1073/pnas.83.3.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franke R. R., Sakmar T. P., Oprian D. D., Khorana H. G. A single amino acid substitution in rhodopsin (lysine 248----leucine) prevents activation of transducin. J Biol Chem. 1988 Feb 15;263(5):2119–2122. [PubMed] [Google Scholar]
- Hargrave P. A., McDowell J. H., Curtis D. R., Wang J. K., Juszczak E., Fong S. L., Rao J. K., Argos P. The structure of bovine rhodopsin. Biophys Struct Mech. 1983;9(4):235–244. doi: 10.1007/BF00535659. [DOI] [PubMed] [Google Scholar]
- Kossiakoff A. A. Tertiary structure is a principal determinant to protein deamidation. Science. 1988 Apr 8;240(4849):191–194. doi: 10.1126/science.3353715. [DOI] [PubMed] [Google Scholar]
- Loppnow G. R., Barry B. A., Mathies R. A. Why are blue visual pigments blue? A resonance Raman microprobe study. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1515–1518. doi: 10.1073/pnas.86.5.1515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nathans J. Determinants of visual pigment absorbance: identification of the retinylidene Schiff's base counterion in bovine rhodopsin. Biochemistry. 1990 Oct 16;29(41):9746–9752. doi: 10.1021/bi00493a034. [DOI] [PubMed] [Google Scholar]
- Nathans J., Hogness D. S. Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell. 1983 Oct;34(3):807–814. doi: 10.1016/0092-8674(83)90537-8. [DOI] [PubMed] [Google Scholar]
- Nathans J., Thomas D., Hogness D. S. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science. 1986 Apr 11;232(4747):193–202. doi: 10.1126/science.2937147. [DOI] [PubMed] [Google Scholar]
- Oprian D. D., Molday R. S., Kaufman R. J., Khorana H. G. Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8874–8878. doi: 10.1073/pnas.84.24.8874. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakmar T. P., Franke R. R., Khorana H. G. Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8309–8313. doi: 10.1073/pnas.86.21.8309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhukovsky E. A., Oprian D. D. Effect of carboxylic acid side chains on the absorption maximum of visual pigments. Science. 1989 Nov 17;246(4932):928–930. doi: 10.1126/science.2573154. [DOI] [PubMed] [Google Scholar]