Skip to main content
. 2016 Dec 8;3(6):ENEURO.0297-16.2016. doi: 10.1523/ENEURO.0297-16.2016

Table 1.

Summary of statistical analyses.

Line Data structure Type of test Description of analysis Test value p-value Effect size Power or 95% CI
a Normal distribution Welch’s t-test PN5 hippocampus: VEH vs. LC t((2.9847) = 5.667 0.011 d = 4.625 0.984
b Normal distribution Welch's t-test PN5 amygdala: VEH vs. LC t(3.7237) = 5.996 0.005 d = 2.38 0.596
c Normal distribution Welch's t-test PN5 cortex: VEH vs. LC t(3.3363) = 2.915 0.054 d = 4.896 0.991
d Normal distribution Welch's t-test PN5 hypothalamus: VEH vs. LC t(3.7531) = 2.108 0.059 d = 3.064 0.798
e Normal distribution Welch's t-test PN10 hippocampus: VEH vs. LC t(1.0548) = –0.875 0.536 d = 1.045 0.13
f Normal distribution Welch's t-test PN10 amygdala: VEH vs. LC t(2.6755) = –3.941 0.036 d = 2.461 0.457
g Normal distribution Welch's t-test PN10 cortex: VEH vs. LC t(1.0034) = –2.013 0.293 d = 3.409 0.702
h Normal distribution Welch's t-test PN10 hypothalamus: VEH vs. LC t(1.196) = –1.257 0.401 d = 1.42 0.197
i Normal distribution Welch's t-test PN15 hippocampus: VEH vs. LC t(1.0067) = –1.248 0.429 d = 1.248 0.22
j Normal distribution Welch's t-test PN15 amygdala: VEH vs. LC t(1.1786) = –1.437 0.36 d = 1.269 0.225
k Normal distribution Welch's t-test PN15 cortex: VEH vs. LC t(1.312) = –1.269 0.384 d = 1.437 0.274
l Normal distribution Welch's t-test PN15 hypothalamus: VEH vs. LC t(1.0299) = 0.254 0.841 d = 0.254 0.057
Body weight
m Normal distribution 3-way ANOVA Main effect: sex F(1,29) = 236.343 <0.001 η2 = 0.068 1
Female body weight
n Normal distribution 2-way ANOVA Main effect: treatment F(1,14) = 0.077 0.785 η2 = 0.072 0.058
o Normal distribution 2-way ANOVA Main effect: age F(1.146,16.037) = 617.607 <0.001 η2 = 0.974 1
p Normal distribution 2-way ANOVA Interaction: treatment × age F(1.146,16.07) = 2.842 0.108 η2 = 0.004 0.375
Male body weight
q Normal distribution 2-way ANOVA Main effect: treatment F(1,15) = 6.045 0.027 η2 = 0.287 0.633
r Normal distribution 2-way ANOVA Main effect: age F(1.626,24.387) = 2222.172 <0.001 η2 = 0.992 1
s Normal distribution 2-way ANOVA Interaction: treatment × age F(1.626,24.387) = 2.019 0.161 η2 = 0.001 0.341
Cliff aversion
t Normal distribution 3-way ANOVA Main effect: sex F(1,34) = 1.165 0.288 η2 = 0.033 0.183
u Normal distribution 2-way ANOVA Main effect: treatment F(1,36) = 0.381 0.541 η2 = 0.011 0.092
v Normal distribution 2-way ANOVA Main effect: age F(5,180) = 9.473 <0.001 η2 = 0.155 1
w Normal distribution 2-way ANOVA Interaction: treatment × age F(5,180) = 1.460 0.24 η2 = 0.031 0.263
Surface righting
x Normal distribution 3-way ANOVA Main effect: sex F(1,34) = 0.177 0.676 η2 = 0.004 0.069
y Normal distribution 2-way ANOVA Main effect: treatment F(1,36) = 9.999 0.003 η2 = 0.217 0.868
z Normal distribution 2-way ANOVA Main effect: age F(5,180) = 3.973 0.014 η2 = 0.094 0.944
aa Normal distribution 2-way ANOVA Interaction: treatment × age F(5,180) = 2.134 0.11 η2 = 0.051 0.489
Wire hang
bb Normal distribution 3-way ANOVA Main effect: sex F(1,34) = 0.934 0.34 η2 = 0.015 0.156
cc Normal distribution 2-way ANOVA Main effect: treatment F(1,36) = 25.742 <0.001 η2 = 0.083 0.999
dd Normal distribution 2-way ANOVA Main effect: age F(4,144) = 32.229 <0.001 η2 = 0.367 1
ee Normal distribution 2-way ANOVA Interaction: treatment × age F(4,144) = 2.223 0.087 η2 = 0.032 0.561
Negative geotaxis
ff Normal distribution 3-way ANOVA Main effect: sex F(1,34) = 0.003 0.955 η2 < 0.000 0.05
gg Normal distribution 2-way ANOVA Main effect: treatment F(1,36) = 12.68 0.001 η2 = 0.024 0.934
hh Normal distribution 2-way ANOVA Main effect: age F(9,324) = 44.323 <0.001 η2 = 0.493 1
ii Normal distribution 2-way ANOVA Interaction: treatment × age F(9,324) = 1.228 0.291 η2 = 0.015 0.492
Locomotion
jj Normal distribution 3-way ANOVA Main effect: sex F(1,34) = 1.109 0.3 η2 = 0.008 0.176
kk Normal distribution 2-way ANOVA Main effect: treatment F(1,36) = 93.876 <0.001 η2 = 0.723 1
ll Normal distribution 2-way ANOVA Main effect: age F(9,324) = 26.712 <0.001 η2 = 0.378 1
mm Normal distribution 2-way ANOVA Interaction: treatment × age F(9,324) = 7.873 <0.001 η2 = 0.088 1
nn Normal distribution Welch's t-test Post hoc: PN5 LC vs. VEH t(29.15) = –0.398 0.694; α = 0.05 d = 0.125 0.066
oo Normal distribution Welch's t-test Post hoc: PN6 LC vs. VEH t(34.126) = 0.766 0.449; α = 0.025 d = 0.25 0.117
pp Normal distribution Welch's t-test Post hoc: PN7 LC vs. VEH t(24.031) = 1.869 0.074; α = 0.0125 d = 0.628 0.469
qq Normal distribution Welch's t-test Post hoc: PN8 LC vs. VEH t(34.211) = 1.888 0.068; α = 0.01 d = 0.618 0.456
rr Normal distribution Welch's t-test Post hoc: PN9 LC vs. VEH t(34.971) = 1.514 0.139; α = 0.01667 d = 0.494 0.315
ss Normal distribution Welch’s t-test Post hoc: PN10 LC vs. VEH t(34.907) = 4.212 <0.001; α = 0.00714 d = 1.374 0.984
tt Normal distribution Welch’s t-test Post hoc: PN11 LC vs. VEH t(35.873) = 4.639 <0.001; α = 0.0625 d = 1.503 0.994
uu Normal distribution Welch’s t-test Post hoc: PN12 LC vs. VEH t(31.565) = 3.096 0.004; α = 0.0083 d = 1.021 0.864
vv Normal distribution Welch’s t-test Post hoc: PN13 LC vs. VEH t(35.123) = 5.448 <0.001; α = 0.0056 d = 1.745 0.999
ww Normal distribution Welch’s t-test Post hoc: PN14 LC vs. VEH t(35.301) = 8.084 <0.001; α = 0.005 d = 2.631 1
Nest seeking total score
xx Normal distribution 2-way ANOVA Main effect: sex F(1,34) = 0.0002 0.989 η2 < 0.000 0.05
yy Normal distribution Welch’s t-test VEH vs. LC t(34.052) = 3.927 <0.001 d = 1.285 0.97
Nest seeking over time
zz Normal distribution 3-way ANOVA Main effect: sex F(1,34) = 0.015 0.904 η2 < 0.000 0.05
aaa Normal distribution 2-way ANOVA Main effect: treatment F(1,36) = 15.626 <0.001 η2 = 0.043 0.97
bbb Normal distribution 2-way ANOVA Main effect: age F(10,360) = 2.423 0.008 η2 = 0.053 0.943
ccc Normal distribution 2-way ANOVA Interaction: treatment × age F(10,360) = 1.087 0.371 η2 = 0.028 0.46
Nest seeking latency
ddd Normal distribution 3-way ANOVA Main effect: sex F(1,34) = 0.278 0.602 η2 = 0.008 0.081
eee Normal distribution 2-way ANOVA Main effect: age F(10,360) = 47.962 <0.001 η2 = 0.458 1
fff Normal distribution 2-way ANOVA Main effect: treatment F(1,36) = 0.075 0.786 η2 = 0.002 0.058
ggg Normal distribution 2-way ANOVA Interaction: treatment × age F(10,360) = 0.369 0.847 η2 = 0.004 0.137
Isolation-induced USVs
hhh Normal distribution 2-way ANOVA Main effect: sex F(1,23) = 0.253 0.62 η2 = 0.004 0.077
iii Normal distribution Welch’s t-test VEH vs. LC t(23.928) = 7.337 <0.001 d = 2.795 0.999
Spontaneous alternations
jjj Normal distribution 2-way ANOVA Main effect: sex F(1,34) = 1.802 0.188 η2 = 0.043 0.257
kkk Normal distribution Welch’s t-test VEH vs. LC t(33.907) = 2.327 0.026 d = 0.762 0.626
Social recognition index
lll Normal distribution 2-way ANOVA Main effect: sex F(1,25) = 0.299 0.59 η2 = 0.01 0.062
mmm Normal distribution Welch’s t-test VEH vs. LC t(21.744) = 1.822 0.083 d = 0.702 0.441
nnn Normal distribution One sample t-test VEH vs. 0.50 t(15) = 3.599 0.003 d = 0.9 0.92
ooo Normal distribution One sample t-test LC vs. 0.50 t(12) = 0.224 0.827 d = 0.062 0.055
Novel object: 1 h
ppp Normal distribution 2-way ANOVA Main effect: sex F(1,25) = 3.911 0.059 η2 = 0.135 0.477
qqq Normal distribution Welch’s t-test VEH vs. LC t(21.868) = 0.119 0.907 d = 0.046 0.052
Novel object: 24 h
rrr Normal distribution 2-way ANOVA Main effect: sex F(1,25) = 0.182 0.674 η2 = 0.006 0.069
sss Normal distribution Welch’s t-test VEH vs. LC t(21.258) = –1.753 0.094 d = 0.677 0.416
Open field center time
ttt Normal distribution 2-way ANOVA Main effect: sex F(1,34) = 0.061 0.806 η2 = 0.002 0.057
uuu Normal distribution Welch’s t-test VEH vs. LC t(35.933) = –2.916 0.006 d = 0.944 0.807
Open field grid crosses
vvv Normal distribution 2-way ANOVA Main effect: sex F(1,34) = 0.255 0.617 η2 = 0.003 0.078
www Normal distribution Welch’s t-test VEH vs. LC t(25.858) = –7.427 <0.001 d = 2.484 1
Elevated plus maze % open time
xxx Normal distribution 2-way ANOVA Main effect: sex F(1,34) = 1.612 0.213 η2 = 0.023 0.235
yyy Normal distribution Welch’s t-test VEH vs. LC t(31.406) = –5.85 <0.001 d = 1.929 0.999
PO time behind barrier
zzz Normal distribution 3-way ANOVA Main effect: sex F(1,34) = 0.0364 0.85 η2 = 0.001 0.054
aaaa Normal distribution 2-way ANOVA Main effect: treatment F(1,36) = 10.208 0.003 η2 = 0.158 0.875
bbbb Normal distribution 2-way ANOVA Main effect: test phase F(1,36) = 6.174 0.018 η2 = 0.04 0.677
cccc Normal distribution 2-way ANOVA Interaction: treatment × test phase F(1,36) = 1.701 0.201 η2 = 0.039 0.246
PO freezing duration
dddd Normal distribution 3-way ANOVA Main effect: sex F(1,34) = 0.002 0.967 η2 < 0.000 0.05
eeee Normal distribution 2-way ANOVA Main effect: treatment F(1,36) = 3.616 0.065 η2 = 0.091 0.457
ffff Normal distribution 2-way ANOVA Main effect: test phase F(1,36) = 0.589 0.448 η2 = 0.016 0.116
gggg Normal distribution 2-way ANOVA Interaction: treatment × test phase F(1,36) = 0.955 0.335 η2 = 0.025 0.158
PO stretch attend duration
hhhh Normal distribution 3-way ANOVA Main effect: sex F(1,34) = 0.0002 0.99 η2 < 0.000 0.05
iiii Normal distribution 2-way ANOVA Main effect: treatment F(1,36) = 9.223 0.004 η2 = 0.204 0.999
jjjj Normal distribution 2-way ANOVA Main effect: test phase F(1,36) = 27.268 <0.001 η2 = 0.389 0.999
kkkk Normal distribution 2-way ANOVA Interaction: treatment × test phase F(1,36) = 6.805 0.013 η2 = 0.097 0.719
llll Normal distribution Welch’s t-test Post hoc: VEH baseline vs. odor t(19) = –4.95 <0.001; α = 0.0125 d = 1.459 0.994
mmmm Normal distribution Welch’s t-test Post hoc: LC baselline vs. odor t(17) = –2.249 0.038; α = 0.025 d = 0.711 0.544
nnnn Normal distribution Welch’s t-test Post hoc: baseline VEH vs. LC t(29.935) = 1.313 0.199; α = 0.05 d = 0.414 0.237
oooo Normal distribution Welch’s t-test Post hoc: odor VEH vs. LC t(34.037) = 3.026 0.005; α = 0.01667 d = 0.965 0.824
PO stretch locomotion duration
pppp Normal distribution 3-way ANOVA Main effect: sex F(1,34) = 0.032 0.86 η2 = 0.001 0.053
qqqq Normal distribution 2-way ANOVA Main effect: treatment F(1,36) = 11.985 0.001 η2 = 0.25 0.92
rrrr Normal distribution 2-way ANOVA Main effect: test phase F(1,36) = 8.605 0.006 η2 = 0.146 0.814
ssss Normal distribution 2-way ANOVA Interaction: treatment × test phase F(1,36) = 14.325 <0.001 η2 = 0.243 0.957
tttt Normal distribution Welch’s t-test Post hoc: VEH baseline vs. odor t(19) = 0.846 0.408; α = 0.05 d = 0.209 0.099
uuuu Normal distribution Welch’s t-test Post hoc: LC baselline vs. odor t(17) = –3.755 0.002; α = 0.01667 d = 0.739 0.577
vvvv Normal distribution Welch’s t-test Post hoc: baseline VEH vs. LC t(27.927) = –1.521 0.14; α = 0.025 d = 0.506 0.329
wwww Normal distribution Welch’s t-test Post hoc: odor VEH vs. LC t(20.041) = –4.225 <0.001; α = 0.0125 d = 1.435 0.99
PO stimulus cloth approaches
xxxx Normal distribution 3-way ANOVA Main effect: sex F(1,34) = 0.032 0.86 η2 = 0.001 0.053
yyyy Normal distribution 2-way ANOVA Main effect: treatment F(1,36) = 8.312 0.007 η2 = 0.113 0.801
zzzz Normal distribution 2-way ANOVA Main effect: test phase F(1,36) = 19.22 <0.001 η2 = 0.135 0.989
aaaaa Normal distribution 2-way ANOVA Interaction: treatment × test phase F(1,36) = 1.116 0.298 η2 = 0.02 0.177
PO stimulus cloth interaction duration
bbbbb Normal distribution 3-way ANOVA Main effect: sex F(1,34) = 0.067 0.798 η2 = 0.001 0.057
ccccc Normal distribution 2-way ANOVA Main effect: treatment F(1,36) = 26.650 <0.001 η2 = 0.34 0.999
ddddd Normal distribution 2-way ANOVA Main effect: test phase F(1,36) = 0.521 0.475 η2 = 0.014 0.108
eeeee Normal distribution 2-way ANOVA Interaction: treatment × test phase F(1,36) = 0.42 0.521 η2 = 0.011 0.097
Male sex behavior
fffff Non-normal Wilcoxon rank sum test Mount number: VEH vs. LC W = 63 0.007 HL = 18.889 5.999 to 35.999
ggggg Non-normal Wilcoxon rank sum test Mount latency: VEH vs. LC W = 8.5 0.011 HL = -711.738 -1180 to -25.999
hhhhh Non-normal Wilcoxon rank sum test Intromission number: VEH vs. LC W = 57.5 0.028 HL = 9.0 4.33e-05 to 13.999
iiiii Non-normal Wilcoxon rank sum test Intromission latency: VEH vs. LC W = 8.5 0.009 HL = -862.834 -1167 to -121
jjjjj Non-normal Wilcoxon rank sum test Ejaculation number: VEH vs. LC W = 48.5 0.134 HL < 0.000 -6.933e-06 to 1
kkkkk Non-normal Wilcoxon rank sum test Ejaculation latency: VEH vs. LC W = 20 0.098 HL = -131.621 -663 to 5.161e-05
lllll Normal distribution Welch’s t-test Hops and darts: VEH vs. LC t(16.893) = 0.532 0.602 d = 0.244 0.079
mmmmm Normal distribution Welch’s t-test Solicitations: VEH vs. LC t(16.501) = 1.307 0.209 d = 0.602 0.236
nnnnn Non-normal Wilcoxon rank sum test Lordosis quotient: VEH vs. LC W = 45 1 HL < 0.000 -5.437e-06 to 2.74e-06
ooooo Normal distribution Welch’s t-test Factor 1: male vs. female t(26.023) = –0.5 0.621 d = 0.187 0.077
ppppp Normal distribution Welch’s t-test Factor 2: male vs. female t(18.074) = –0.691 0.499 d = 0.263 0.105
qqqqq Normal distribution Welch’s t-test Factor 3: male vs. female t(20.761) = 0.704 0.49 d = 0.256 0.102
rrrrr Normal distribution Welch’s t-test Factor 4: male vs. female t(26.982) = –0.572 0.572 d = 0.212 0.085
sssss Normal distribution Welch’s t-test Factor 1: VEH vs. LC t(26.941) = –3.267 0.003 d = 1.187 0.865
ttttt Normal distribution Welch’s t-test Factor 2: VEH vs. LC t(25.663) = –4.063 <0.001 d = 1.449 0.962
uuuuu Normal distribution Welch’s t-test Factor 3: VEH vs. LC t(25.689) = 1.559 0.131 d = 0.556 0.301
vvvvv Normal distribution Welch’s t-test Factor 4: VEH vs. LC t(21.724) = 1.415 0.171 d = 0.545 0.291