Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 May 1;88(9):3657–3660. doi: 10.1073/pnas.88.9.3657

Vitamin D deficiency causes a selective reduction in deposition of transforming growth factor beta in rat bone: possible mechanism for impaired osteoinduction.

R D Finkelman 1, T A Linkhart 1, S Mohan 1, K H Lau 1, D J Baylink 1, N H Bell 1
PMCID: PMC51511  PMID: 2023915

Abstract

We demonstrated previously that implants of bone matrix prepared from vitamin D-deficient (-D) rats were less osteoinductive and contained less extractable mitogenic activity compared with control implants prepared from vitamin D-replete (+D) rats and proposed that bone from -D rats is deficient in one or more specific growth factors. To test this hypothesis, bones from rats that were fed either +D or -D diets and kept in the dark for 8 wk were extracted and assayed for insulin-like growth factors I and II (IGF-I and IGF-II) and transforming growth factor beta (TGF-beta), the three most abundant growth factors in rat bone, and osteocalcin. Serum calcium, 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] were determined at sacrifice. In -D rats, there were significant reductions in serum calcium, 25-hydroxyvitamin D3, and 1,25(OH)2D3 and skeletal TGF-beta but no differences in extractable skeletal protein, IGF-I, IGF-II, or osteocalcin compared with +D rats. To determine whether 1,25(OH)2D3 increased TGF-beta production by bone cells, we treated mouse calvaria for 6 days and mouse osteoblasts for 2 days with 10 nM 1,25(OH)2D3. Production of TGF-beta was increased almost 100% by 1,25(OH)2D3. We conclude that vitamin D deficiency reduces deposition of TGF-beta in rat bone and that diminished skeletal TGF-beta could contribute to the previously observed decrease in osteoinduction in implants from -D rat bone. The findings support the possibility that vitamin D and bone-derived TGF-beta are required for normal repair of the skeleton.

Full text

PDF
3657

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banes A. J., Bernstein P. H., Smith R. E., Mechanic G. L. Collagen biochemistry of osteopetrotic bone: I. Quantitative changes in bone collagen cross-links in virus-induced avian osteopetrosis. Biochem Biophys Res Commun. 1978 Apr 28;81(4):1390–1397. doi: 10.1016/0006-291x(78)91290-1. [DOI] [PubMed] [Google Scholar]
  2. Belsey R. E., DeLuca H. F., Potts J. T., Jr A rapid assay for 25-OH-vitamin D3 without preparative chromatography. J Clin Endocrinol Metab. 1974 Jun;38(6):1046–1051. doi: 10.1210/jcem-38-6-1046. [DOI] [PubMed] [Google Scholar]
  3. Bentz H., Nathan R. M., Rosen D. M., Armstrong R. M., Thompson A. Y., Segarini P. R., Mathews M. C., Dasch J. R., Piez K. A., Seyedin S. M. Purification and characterization of a unique osteoinductive factor from bovine bone. J Biol Chem. 1989 Dec 5;264(34):20805–20810. [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Canalis E., McCarthy T., Centrella M. Growth factors and the regulation of bone remodeling. J Clin Invest. 1988 Feb;81(2):277–281. doi: 10.1172/JCI113318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Centrella M., Canalis E. Isolation of EGF-dependent transforming growth factor (TGF beta-like) activity from culture medium conditioned by fetal rat calvariae. J Bone Miner Res. 1987 Feb;2(1):29–36. doi: 10.1002/jbmr.5650020106. [DOI] [PubMed] [Google Scholar]
  7. DZIEWIATKOWSKI D. D. Vitamin D and endochondral ossification in the rat as indicated by the use of sulfur-35 and phosphorus-32. J Exp Med. 1954 Jul 1;100(1):25–32. doi: 10.1084/jem.100.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Daly J. A., Ertingshausen G. Direct method for determining inorganic phosphate in serum with the "CentrifiChem". Clin Chem. 1972 Mar;18(3):263–265. [PubMed] [Google Scholar]
  9. Daughaday W. H., Kapadia M., Mariz I. Serum somatomedin binding proteins: physiologic significance and interference in radioligand assay. J Lab Clin Med. 1987 Mar;109(3):355–363. [PubMed] [Google Scholar]
  10. Deiss W. P., Jr, Hern D. L. Bone matrix studies. Influences of parathyroid extract, calcitonin, and cholecalciferol and of rickets and its treatment. Biochim Biophys Acta. 1979 May 1;584(2):311–326. doi: 10.1016/0304-4165(79)90277-0. [DOI] [PubMed] [Google Scholar]
  11. Finkelman R. D., Mohan S., Jennings J. C., Taylor A. K., Jepsen S., Baylink D. J. Quantitation of growth factors IGF-I, SGF/IGF-II, and TGF-beta in human dentin. J Bone Miner Res. 1990 Jul;5(7):717–723. doi: 10.1002/jbmr.5650050708. [DOI] [PubMed] [Google Scholar]
  12. GRANT R. A. ESTIMATION OF HYDROXYPROLINE BY THE AUTOANALYSER. J Clin Pathol. 1964 Nov;17:685–686. doi: 10.1136/jcp.17.6.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gray T. K., Mohan S., Linkhart T. A., Baylink D. J. Estradiol stimulates in vitro the secretion of insulin-like growth factors by the clonal osteoblastic cell line, UMR106. Biochem Biophys Res Commun. 1989 Jan 31;158(2):407–412. doi: 10.1016/s0006-291x(89)80062-2. [DOI] [PubMed] [Google Scholar]
  14. Gundberg C. M., Hauschka P. V., Lian J. B., Gallop P. M. Osteocalcin: isolation, characterization, and detection. Methods Enzymol. 1984;107:516–544. doi: 10.1016/0076-6879(84)07036-1. [DOI] [PubMed] [Google Scholar]
  15. Hauschka P. V., Mavrakos A. E., Iafrati M. D., Doleman S. E., Klagsbrun M. Growth factors in bone matrix. Isolation of multiple types by affinity chromatography on heparin-Sepharose. J Biol Chem. 1986 Sep 25;261(27):12665–12674. [PubMed] [Google Scholar]
  16. Inoue T., Deporter D. A., Melcher A. H. Induction of chondrogenesis in muscle, skin, bone marrow, and periodontal ligament by demineralized dentin and bone matrix in vivo and in vitro. J Dent Res. 1986 Jan;65(1):12–22. doi: 10.1177/00220345860650010101. [DOI] [PubMed] [Google Scholar]
  17. Jennings J. C., Mohan S., Linkhart T. A., Widstrom R., Baylink D. J. Comparison of the biological actions of TGF beta-1 and TGF beta-2: differential activity in endothelial cells. J Cell Physiol. 1988 Oct;137(1):167–172. doi: 10.1002/jcp.1041370120. [DOI] [PubMed] [Google Scholar]
  18. Joyce M. E., Roberts A. B., Sporn M. B., Bolander M. E. Transforming growth factor-beta and the initiation of chondrogenesis and osteogenesis in the rat femur. J Cell Biol. 1990 Jun;110(6):2195–2207. doi: 10.1083/jcb.110.6.2195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Joyce M. E., Terek R. M., Jingushi S., Bolander M. E. Role of transforming growth factor-beta in fracture repair. Ann N Y Acad Sci. 1990;593:107–123. doi: 10.1111/j.1749-6632.1990.tb16104.x. [DOI] [PubMed] [Google Scholar]
  20. Krett N. L., Heaton J. H., Gelehrter T. D. Mediation of insulin-like growth factor actions by the insulin receptor in H-35 rat hepatoma cells. Endocrinology. 1987 Jan;120(1):401–408. doi: 10.1210/endo-120-1-401. [DOI] [PubMed] [Google Scholar]
  21. Lian J. B., Cohen-Solal L., Kossiva D., Glimcher M. J. Changes in phosphoproteins of chicken bone matrix in vitamin D-deficient rickets. FEBS Lett. 1982 Nov 22;149(1):123–125. doi: 10.1016/0014-5793(82)81085-5. [DOI] [PubMed] [Google Scholar]
  22. Linkhart T. A., Jennings J. C., Mohan S., Wakley G. K., Baylink D. J. Characterization of mitogenic activities extracted from bovine bone matrix. Bone. 1986;7(6):479–487. doi: 10.1016/8756-3282(86)90007-4. [DOI] [PubMed] [Google Scholar]
  23. Linkhart T. A., Mohan S., Baylink D. J. Bone repletion in vitro: evidence for a locally regulated bone repair response to PTH treatment. Bone. 1988;9(6):371–379. doi: 10.1016/8756-3282(88)90119-6. [DOI] [PubMed] [Google Scholar]
  24. Linkhart T. A., Mohan S. Parathyroid hormone stimulates release of insulin-like growth factor-I (IGF-I) and IGF-II from neonatal mouse calvaria in organ culture. Endocrinology. 1989 Sep;125(3):1484–1491. doi: 10.1210/endo-125-3-1484. [DOI] [PubMed] [Google Scholar]
  25. Mechanic G. L., Toverud S. U., Ramp W. K., Gonnerman W. A. The effect of vitamin D on the structural crosslinks and maturation of chick bone collagen. Biochim Biophys Acta. 1975 Jun 26;393(2):419–425. doi: 10.1016/0005-2795(75)90070-7. [DOI] [PubMed] [Google Scholar]
  26. Mechanic G. L., Toverud S. U., Ramp W. K. Quantitative changes of bone collagen crosslinks and precursors in vitamin D deficiency. Biochem Biophys Res Commun. 1972 May 26;47(4):760–765. doi: 10.1016/0006-291x(72)90557-8. [DOI] [PubMed] [Google Scholar]
  27. Mizutani H., Urist M. R. The nature of bone morphogenetic protein (BMP) fractions derived from bovine bone matrix gelatin. Clin Orthop Relat Res. 1982 Nov-Dec;(171):213–223. [PubMed] [Google Scholar]
  28. Mohan S., Bautista C. M., Herring S. J., Linkhart T. A., Baylink D. J. Development of valid methods to measure insulin-like growth factors-I and -II in bone cell-conditioned medium. Endocrinology. 1990 May;126(5):2534–2542. doi: 10.1210/endo-126-5-2534. [DOI] [PubMed] [Google Scholar]
  29. Mohan S., Jennings J. C., Linkhart T. A., Baylink D. J. Isolation and purification of a low-molecular-weight skeletal growth factor from human bones. Biochim Biophys Acta. 1986 Nov 19;884(2):234–242. doi: 10.1016/0304-4165(86)90168-6. [DOI] [PubMed] [Google Scholar]
  30. Mohan S., Jennings J. C., Linkhart T. A., Baylink D. J. Primary structure of human skeletal growth factor: homology with human insulin-like growth factor-II. Biochim Biophys Acta. 1988 Jul 14;966(1):44–55. doi: 10.1016/0304-4165(88)90127-4. [DOI] [PubMed] [Google Scholar]
  31. Nathanson M. A., Hilfer S. R., Searls R. L. Formation of cartilage by non-chondrogenic cell types. Dev Biol. 1978 May;64(1):99–117. doi: 10.1016/0012-1606(78)90063-5. [DOI] [PubMed] [Google Scholar]
  32. Noda M., Camilliere J. J. In vivo stimulation of bone formation by transforming growth factor-beta. Endocrinology. 1989 Jun;124(6):2991–2994. doi: 10.1210/endo-124-6-2991. [DOI] [PubMed] [Google Scholar]
  33. Nogami H., Urist M. R. Substrata prepared from bone matrix for chondrogenesis in tissue culture. J Cell Biol. 1974 Aug;62(2):510–519. doi: 10.1083/jcb.62.2.510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Petkovich P. M., Wrana J. L., Grigoriadis A. E., Heersche J. N., Sodek J. 1,25-Dihydroxyvitamin D3 increases epidermal growth factor receptors and transforming growth factor beta-like activity in a bone-derived cell line. J Biol Chem. 1987 Oct 5;262(28):13424–13428. [PubMed] [Google Scholar]
  35. Pfeilschifter J., Mundy G. R. Modulation of type beta transforming growth factor activity in bone cultures by osteotropic hormones. Proc Natl Acad Sci U S A. 1987 Apr;84(7):2024–2028. doi: 10.1073/pnas.84.7.2024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Reddi A. H., Huggins C. Biochemical sequences in the transformation of normal fibroblasts in adolescent rats. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1601–1605. doi: 10.1073/pnas.69.6.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Reddi A. H., Wientroub S., Muthukumaran N. Biologic principles of bone induction. Orthop Clin North Am. 1987 Apr;18(2):207–212. [PubMed] [Google Scholar]
  38. Reinhardt T. A., Horst R. L., Orf J. W., Hollis B. W. A microassay for 1,25-dihydroxyvitamin D not requiring high performance liquid chromatography: application to clinical studies. J Clin Endocrinol Metab. 1984 Jan;58(1):91–98. doi: 10.1210/jcem-58-1-91. [DOI] [PubMed] [Google Scholar]
  39. Roberts A. B., Sporn M. B. Transforming growth factor beta. Adv Cancer Res. 1988;51:107–145. [PubMed] [Google Scholar]
  40. Sampath T. K., Wientroub S., Reddi A. H. Extracellular matrix proteins involved in bone induction are vitamin D dependent. Biochem Biophys Res Commun. 1984 Nov 14;124(3):829–835. doi: 10.1016/0006-291x(84)91032-5. [DOI] [PubMed] [Google Scholar]
  41. Stauffer M., Baylink D., Wergedal J., Rich C. Decreased bone formation, mineralization, and enhanced resorption in calcium-deficient rats. Am J Physiol. 1973 Aug;225(2):269–276. doi: 10.1152/ajplegacy.1973.225.2.269. [DOI] [PubMed] [Google Scholar]
  42. Stracke H., Schulz A., Moeller D., Rossol S., Schatz H. Effect of growth hormone on osteoblasts and demonstration of somatomedin-C/IGF I in bone organ culture. Acta Endocrinol (Copenh) 1984 Sep;107(1):16–24. doi: 10.1530/acta.0.1070016. [DOI] [PubMed] [Google Scholar]
  43. Turner R. T., Farley J., Vandersteenhoven J. J., Epstein S., Bell N. H., Baylink D. J. Demonstration of reduced mitogenic and osteoinductive activities in demineralized allogeneic bone matrix from vitamin D-deficient rats. J Clin Invest. 1988 Jul;82(1):212–217. doi: 10.1172/JCI113573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Urist M. R., DeLange R. J., Finerman G. A. Bone cell differentiation and growth factors. Science. 1983 May 13;220(4598):680–686. doi: 10.1126/science.6403986. [DOI] [PubMed] [Google Scholar]
  45. Urist M. R., Strates B. S. Bone morphogenetic protein. J Dent Res. 1971 Nov-Dec;50(6):1392–1406. doi: 10.1177/00220345710500060601. [DOI] [PubMed] [Google Scholar]
  46. Wang E. A., Rosen V., Cordes P., Hewick R. M., Kriz M. J., Luxenberg D. P., Sibley B. S., Wozney J. M. Purification and characterization of other distinct bone-inducing factors. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9484–9488. doi: 10.1073/pnas.85.24.9484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wozney J. M. Bone morphogenetic proteins. Prog Growth Factor Res. 1989;1(4):267–280. doi: 10.1016/0955-2235(89)90015-x. [DOI] [PubMed] [Google Scholar]
  48. Wozney J. M., Rosen V., Celeste A. J., Mitsock L. M., Whitters M. J., Kriz R. W., Hewick R. M., Wang E. A. Novel regulators of bone formation: molecular clones and activities. Science. 1988 Dec 16;242(4885):1528–1534. doi: 10.1126/science.3201241. [DOI] [PubMed] [Google Scholar]
  49. Wuthier R. E. Zonal analysis of phospholipids in the epiphyseal cartilage and bone of normal and rachitic chickens and pigs. Calcif Tissue Res. 1971;8(1):36–53. doi: 10.1007/BF02010121. [DOI] [PubMed] [Google Scholar]
  50. Yamauchi M., Banes A. J., Kuboki Y., Mechanic G. L. A comparative study of the distribution of the stable crosslink, pyridinoline, in bone collagens from normal, osteoblastoma, and vitamin D-deficient chicks. Biochem Biophys Res Commun. 1981 Sep 16;102(1):59–65. doi: 10.1016/0006-291x(81)91488-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES