Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 May 1;88(9):3676–3680. doi: 10.1073/pnas.88.9.3676

Expression of choline acetyltransferase mRNA in spermatogenic cells results in an accumulation of the enzyme in the postacrosomal region of mature spermatozoa.

C F Ibáñez 1, M Pelto-Huikko 1, O Söder 1, E M Ritzèn 1, L B Hersh 1, T Hökfelt 1, H Persson 1
PMCID: PMC51515  PMID: 2023918

Abstract

The gene encoding choline acetyltransferase (ChAT; EC 2.3.1.6), the key enzyme in the synthesis of the neurotransmitter acetylcholine (ACh), is shown to be expressed in rat and human testes. High levels of two ChAT transcripts of 3.5 and 1.3 kilobases were detected by Northern blot analysis of adult rat testis RNA. A single ChAT mRNA species of 3.2 kilobases was detected in human testis. Cells responsible for the synthesis of ChAT mRNA in rat testis were localized by in situ hybridization in the middle part of the seminiferous epithelium, where the labeling was mostly found over spermatocytes and spermatids. Studies on the ontogeny of ChAT mRNA expression showed low levels in prepubertal rats with increasing levels as sexual maturation is reached. A peak of expression was seen at postnatal day 32, correlating with the onset of postmeiotic spermatogenesis. Results from surgical and pharmacological treatments suggest that androgens, as well as pituitary factors, could influence the relative levels of the two ChAT mRNAs detected in rat testis. Evidence for translation of the mRNA detected in the testis was obtained from the demonstration of ChAT-like immunoreactivity in ejaculated human spermatozoa. The staining was restricted to the postacrosomal region of the head, where the membrane of the sperm first fuses with that of the egg during fertilization, and to the annulus, a ring of dense material in the caudal end of the midpiece. Combined, these findings support the hypothesis that the neurotransmitter ACh is involved in reproductive function.

Full text

PDF
3676

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amara S. G., Arriza J. L., Leff S. E., Swanson L. W., Evans R. M., Rosenfeld M. G. Expression in brain of a messenger RNA encoding a novel neuropeptide homologous to calcitonin gene-related peptide. Science. 1985 Sep 13;229(4718):1094–1097. doi: 10.1126/science.2994212. [DOI] [PubMed] [Google Scholar]
  2. BEAUMONT H. M. Changes in the radiosensitivity of the testis during foetal development. Int J Radiat Biol Relat Stud Phys Chem Med. 1960 Jul;2:247–256. doi: 10.1080/09553006014550291. [DOI] [PubMed] [Google Scholar]
  3. Bishop M. R., Sastry B. V., Schmidt D. E., Harbison R. D. Occurrence of choline acetyltransferase and acetylcholine and other quaternary ammonium compounds in mammalian spermatozoa. Biochem Pharmacol. 1976 Jul 15;25(14):1617–1622. doi: 10.1016/0006-2952(76)90473-1. [DOI] [PubMed] [Google Scholar]
  4. Bishop M. R., Sastry B. V., Stavinoha W. B. Identification of acetylcholine and propionylcholine in bull spermatozoa by integrated pyrolysis, gas chromatography and mass spectrometry. Biochim Biophys Acta. 1977 Dec 22;500(2):440–444. doi: 10.1016/0304-4165(77)90036-8. [DOI] [PubMed] [Google Scholar]
  5. Brice A., Berrard S., Raynaud B., Ansieau S., Coppola T., Weber M. J., Mallet J. Complete sequence of a cDNA encoding an active rat choline acetyltransferase: a tool to investigate the plasticity of cholinergic phenotype expression. J Neurosci Res. 1989 Jul;23(3):266–273. doi: 10.1002/jnr.490230304. [DOI] [PubMed] [Google Scholar]
  6. Casillas E. R. The distribution of carnitine in male reproductive tissues and its effect on palmitate oxidation by spermatozoal particles. Biochim Biophys Acta. 1972 Dec 8;280(4):545–551. doi: 10.1016/0005-2760(72)90134-8. [DOI] [PubMed] [Google Scholar]
  7. Chakraborty J., Nelson L. Cholinesterase distribution during spermatid differentiation and spermatozoal maturation in the white mouse. J Reprod Fertil. 1974 Jun;38(2):359–367. doi: 10.1530/jrf.0.0380359. [DOI] [PubMed] [Google Scholar]
  8. Chen C. L., Mather J. P., Morris P. L., Bardin C. W. Expression of pro-opiomelanocortin-like gene in the testis and epididymis. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5672–5675. doi: 10.1073/pnas.81.18.5672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Douglass J., Cox B., Quinn B., Civelli O., Herbert E. Expression of the prodynorphin gene in male and female mammalian reproductive tissues. Endocrinology. 1987 Feb;120(2):707–713. doi: 10.1210/endo-120-2-707. [DOI] [PubMed] [Google Scholar]
  10. Dwivedi C., Long N. J. Effect of cholinergic agents on human spermatozoa motility. Biochem Med Metab Biol. 1989 Aug;42(1):66–70. doi: 10.1016/0885-4505(89)90042-x. [DOI] [PubMed] [Google Scholar]
  11. Ernfors P., Hallbök F., Ebendal T., Shooter E. M., Radeke M. J., Misko T. P., Persson H. Developmental and regional expression of beta-nerve growth factor receptor mRNA in the chick and rat. Neuron. 1988 Dec;1(10):983–996. doi: 10.1016/0896-6273(88)90155-9. [DOI] [PubMed] [Google Scholar]
  12. Eusebi F., Mangia F., Alfei L. Acetylcholine-elicited responses in primary and secondary mammalian oocytes disappear after fertilisation. Nature. 1979 Feb 22;277(5698):651–653. doi: 10.1038/277651a0. [DOI] [PubMed] [Google Scholar]
  13. Eusebi F., Pasetto N., Siracusa G. Acetylcholine receptors in human oocytes. J Physiol. 1984 Jan;346:321–330. doi: 10.1113/jphysiol.1984.sp015024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. German D. C., Bruce G., Hersh L. B. Immunohistochemical staining of cholinergic neurons in the human brain using a polyclonal antibody to human choline acetyltransferase. Neurosci Lett. 1985 Oct 24;61(1-2):1–5. doi: 10.1016/0304-3940(85)90391-x. [DOI] [PubMed] [Google Scholar]
  15. Goodman D. R., Adatsi F. K., Harbison R. D. Evidence for the extreme overestimation of choline acetyltransferase in human sperm, human seminal plasma and rat heart: a case of mistaking carnitine acetyltransferase for choline acetyltransferase. Chem Biol Interact. 1984 Apr;49(1-2):39–53. doi: 10.1016/0009-2797(84)90051-6. [DOI] [PubMed] [Google Scholar]
  16. Goodman D. R., Harbison R. D. Characterization of enzymatic acetylcholine synthesis by mouse brain, rat sperm, and purified carnitine acetyltransferase. Biochem Pharmacol. 1981 Jun 15;30(12):1521–1528. doi: 10.1016/0006-2952(81)90376-2. [DOI] [PubMed] [Google Scholar]
  17. Harbison R. D., Dwivedi C., Evans M. A. A proposed mechanism for trimethylphosphate-induced sterility. Toxicol Appl Pharmacol. 1976 Mar;35(3):481–490. doi: 10.1016/0041-008x(76)90071-5. [DOI] [PubMed] [Google Scholar]
  18. Ishii K., Oda Y., Ichikawa T., Deguchi T. Complementary DNAs for choline acetyltransferase from spinal cords of rat and mouse: nucleotide sequences, expression in mammalian cells, and in situ hybridization. Brain Res Mol Brain Res. 1990 Feb;7(2):151–159. doi: 10.1016/0169-328x(90)90092-r. [DOI] [PubMed] [Google Scholar]
  19. Jackson A. E., O'Leary P. C., Ayers M. M., de Kretser D. M. The effects of ethylene dimethane sulphonate (EDS) on rat Leydig cells: evidence to support a connective tissue origin of Leydig cells. Biol Reprod. 1986 Sep;35(2):425–437. doi: 10.1095/biolreprod35.2.425. [DOI] [PubMed] [Google Scholar]
  20. Jones T. R., Cole M. D. Rapid cytoplasmic turnover of c-myc mRNA: requirement of the 3' untranslated sequences. Mol Cell Biol. 1987 Dec;7(12):4513–4521. doi: 10.1128/mcb.7.12.4513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Joseph D. R., Hall S. H., French F. S. Identification of complementary DNA clones that encode rat androgen binding protein. J Androl. 1985 Nov-Dec;6(6):392–395. doi: 10.1002/j.1939-4640.1985.tb03301.x. [DOI] [PubMed] [Google Scholar]
  22. Kasson B. G., Hsueh A. J. Nicotinic cholinergic agonists inhibit androgen biosynthesis by cultured rat testicular cells. Endocrinology. 1985 Nov;117(5):1874–1880. doi: 10.1210/endo-117-5-1874. [DOI] [PubMed] [Google Scholar]
  23. Kilpatrick D. L., Rosenthal J. L. The proenkephalin gene is widely expressed within the male and female reproductive systems of the rat and hamster. Endocrinology. 1986 Jul;119(1):370–374. doi: 10.1210/endo-119-1-370. [DOI] [PubMed] [Google Scholar]
  24. Margioris A. N., Liotta A. S., Vaudry H., Bardin C. W., Krieger D. T. Characterization of immunoreactive proopiomelanocortin-related peptides in rat testes. Endocrinology. 1983 Aug;113(2):663–671. doi: 10.1210/endo-113-2-663. [DOI] [PubMed] [Google Scholar]
  25. NELSON L. ACETYLCHOLINESTERASE IN BULL SPERMATOZOA. J Reprod Fertil. 1964 Feb;7:65–71. doi: 10.1530/jrf.0.0070065. [DOI] [PubMed] [Google Scholar]
  26. Nelson L. Neurochemical control of Arbacia sperm motility. Exp Cell Res. 1972 Sep;74(1):269–274. doi: 10.1016/0014-4827(72)90504-6. [DOI] [PubMed] [Google Scholar]
  27. Nelson L. alpha-bungarotoxin binding by cell membranes. Blockage of sperm cell motility. Exp Cell Res. 1976 Sep;101(2):221–224. doi: 10.1016/0014-4827(76)90371-2. [DOI] [PubMed] [Google Scholar]
  28. Persson H., Pelto-Huikko M., Metsis M., Söder O., Brene S., Skog S., Hökfelt T., Ritzén E. M. Expression of the neurotransmitter-synthesizing enzyme glutamic acid decarboxylase in male germ cells. Mol Cell Biol. 1990 Sep;10(9):4701–4711. doi: 10.1128/mcb.10.9.4701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Persson H., Rehfeld J. F., Ericsson A., Schalling M., Pelto-Huikko M., Hökfelt T. Transient expression of the cholecystokinin gene in male germ cells and accumulation of the peptide in the acrosomal granule: possible role of cholecystokinin in fertilization. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6166–6170. doi: 10.1073/pnas.86.16.6166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Placzek R., Krassnigg F., Schill W. B. Effect of ace-inhibitors, calmodulin antagonists, acetylcholine receptor blocking, and alpha receptor blocking agents on motility of human sperm. Arch Androl. 1988;21(1):1–10. doi: 10.3109/01485018808986726. [DOI] [PubMed] [Google Scholar]
  31. Poyet P., Labrie F. Comparison of the antiandrogenic/androgenic activities of flutamide, cyproterone acetate and megestrol acetate. Mol Cell Endocrinol. 1985 Oct;42(3):283–288. doi: 10.1016/0303-7207(85)90059-0. [DOI] [PubMed] [Google Scholar]
  32. Rabbitts P. H., Forster A., Stinson M. A., Rabbitts T. H. Truncation of exon 1 from the c-myc gene results in prolonged c-myc mRNa stability. EMBO J. 1985 Dec 30;4(13B):3727–3733. doi: 10.1002/j.1460-2075.1985.tb04141.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rossier J. Choline acetyltransferase: a review with special reference to its cellular and subcellular localization. Int Rev Neurobiol. 1977;20:283–337. doi: 10.1016/s0074-7742(08)60656-x. [DOI] [PubMed] [Google Scholar]
  34. Sastry B. V., Janson V. E., Chaturvedi A. K. Inhibition of human sperm motility by inhibitors of choline acetyltransferase. J Pharmacol Exp Ther. 1981 Feb;216(2):378–384. [PubMed] [Google Scholar]
  35. Sastry B. V., Sadavongvivad C. Cholinergic systems in non-nervous tissues. Pharmacol Rev. 1978 Mar;30(1):65–132. [PubMed] [Google Scholar]
  36. Schalling M., Dagerlind A., Brené S., Hallman H., Djurfeldt M., Persson H., Terenius L., Goldstein M., Schlesinger D., Hökfelt T. Coexistence and gene expression of phenylethanolamine N-methyltransferase, tyrosine hydroxylase, and neuropeptide tyrosine in the rat and bovine adrenal gland: effects of reserpine. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8306–8310. doi: 10.1073/pnas.85.21.8306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schalling M., Persson H., Pelto-Huikko M., Odum L., Ekman P., Gottlieb C., Hökfelt T., Rehfeld J. F. Expression and localization of gastrin messenger RNA and peptide in spermatogenic cells. J Clin Invest. 1990 Aug;86(2):660–669. doi: 10.1172/JCI114758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schubach W. H., Horvath G. Alternate structures and stabilities of c-myc RNA in a bursal lymphoma cell line. Nucleic Acids Res. 1988 Dec 9;16(23):11171–11186. doi: 10.1093/nar/16.23.11171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stewart T. A., Forrester I. T. Acetylcholinesterase and choline acetyltransferase in ram spermatozoa. Biol Reprod. 1978 Sep;19(2):271–279. doi: 10.1095/biolreprod19.2.271. [DOI] [PubMed] [Google Scholar]
  40. Söderström K. O., Parvinen M. RNA synthesis in different stages of rat seminiferous epithelial cycle. Mol Cell Endocrinol. 1976 Aug-Sep;5(3-4):181–199. doi: 10.1016/0303-7207(76)90082-4. [DOI] [PubMed] [Google Scholar]
  41. Thompson R. C., Seasholtz A. F., Herbert E. Rat corticotropin-releasing hormone gene: sequence and tissue-specific expression. Mol Endocrinol. 1987 May;1(5):363–370. doi: 10.1210/mend-1-5-363. [DOI] [PubMed] [Google Scholar]
  42. Tsong S. D., Phillips D., Halmi N., Liotta A. S., Margioris A., Bardin C. W., Krieger D. T. ACTH and beta-endorphin-related peptides are present in multiple sites in the reproductive tract of the male rat. Endocrinology. 1982 Jun;110(6):2204–2206. doi: 10.1210/endo-110-6-2204. [DOI] [PubMed] [Google Scholar]
  43. Yoon D. J., Sklar C., David R. Presence of immunoreactive corticotropin-releasing factor in rat testis. Endocrinology. 1988 Feb;122(2):759–761. doi: 10.1210/endo-122-2-759. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES