Skip to main content
SpringerPlus logoLink to SpringerPlus
. 2016 Dec 12;5(1):2094. doi: 10.1186/s40064-016-3765-1

Traveling wave solutions of the time-delayed generalized Burgers-type equations

Bo Tang 1,2,, Yingzhe Fan 1,3, Xuemin Wang 4, Jixiu Wang 1, Shijun Chen 1
PMCID: PMC5153401  PMID: 28028492

Abstract

Background

Recently, nonlinear time-delayed evolution equations have received considerable interest due to their numerous applications in the areas of physics, biology, chemistry and so on.

Methods

In this paper, we obtain traveling wave solutions by using the extended GG-expansion method.

Results

Based on the method, we get many solutions of the time-delayed generalized Burgers-type equations.

Conclusions

The results reveal that the extended GG-expansion method is direct, effective and can be used for many other nonlinear time-delayed evolution equations.

Keywords: Nonlinear time-delayed evolution equations, Extended GG-expansion method, Traveling wave solution

Background

In recent years, theory and numerical analysis of nonlinear time-delayed evolution equations have received considerable interest due to their numerous applications in the areas of physics, biology, chemistry and so on. For better studying the nonlinear physical phenomena of nonlinear time-delayed evolution equations, the solution is much involved. In the past, several analytical and numerical methods have been used to find solutions of nonlinear partial differential equations, such as homotopy perturbation method (Kumar and Singh 2009; Kumar et al. 2012; He 1999), Laplace transform (Kumar 2014), variational iteration method (He 1997; He and Wu 2007; Tang et al. 2014), residual power series method (RPSM for short) (Kumar et al. 2016b; Yao et al. 2015), auxiliary equation method (Sirendaoreji 2003; Tang et al. 2016; Yomba 2004), homotopy analysis method (Yin et al. 2015; Kumar et al. 2016a), GG-expansion method (Wang et al. 2008; Zhang et al. 2010; Tang et al. 2011; Islam et al. 2014; Khan and Akbar 2014) and so on.

In this paper, we apply the extended GG-expansion method to obtain traveling wave solutions of the following time-delayed generalized Burgers-type equations (Kar et al. 2003):

  • The time-delayed generalized Burgers equation:
    τvtt+vt+pvsvx-vxx=0.
    where ps are constants and τis a time-delayed constant.
  • The time-delayed generalized Burgers-Fisher equation:
    τvtt+(1-τfv)vt=vxx-pvsvx+f(v),f(v)=qv(1-vs).

This paper is organized as follows: in “Methods” section, the main steps of extended GG-expansion method for obtaining traveling wave solutions of nonlinear time-delayed evolution equation are given. In “Results” section, we construct traveling solutions of the time-delayed generalized Burgers-type equation. Some conclusions are given in “Conclusions” section.

Methods

Considering the following nonlinear evolution equation:

P(v,vt,vx1,vx2,vx3,)=0, 1

where P is a polynomial in v=v(x1,x2,x3,,t) and its various partial derivatives.

Step 1

By means of the traveling wave transformation

v=V(η),η=k1x1+k2x2+k3x3++ht+η0, 2

where the coefficients ki, h are constants. Equation (1) can be transformated as follows:

P(V(η),V(η),V(η),)=0. 3

Step 2

We suppose that the Eq. (3) has the following solution:

V(η)=l=-nnalGGl, 4

where al are constants to be determined later, and G(η) satisfies the following equation:

G(η)+αG(η)+βG(η)=0, 5

where α and β are arbitrary constants. Based on Eq. (5), we have

G(η)G(η)=-α2+α2-4β2C1sinhα2-4βη2+C2coshα2-4βη2C1coshα2-4βη2+C2sinhα2-4βη2,α2-4β>0,-α2+4β-α22-C1sin4β-α2η2+C2cos4β-α2η2C1cos4β-α2η2+C2sin4β-α2η2,α2-4β<0.C2C1+C2η-α2,α2-4β=0.

Step 3

Determine the degree n in Eq. (3) by use of homogenous balanced principle (Abdel Rady et al. 2010; Fan and Zhang 1998a, b; Senthilvelan 2001; Zhao and Tang 2002; Fan 2000; Eslami et al. 2014), namely balancing the highest order derivatives and nonlinear terms in Eq. (3).

Step 4

Substituting Eqs. (4) and (5) into Eq. (3) and clearing the denominator and collecting all terms with the same order of GG together, then setting each coefficient of GGl to zero, we get a system of under-determined algebraic equations for ki,h and al.

Step 5

Solving the algebraic equations in Step 4 by Maple (www.maplesoft.com), we can finally get traveling wave solutions of Eq. (1).

Results

In this section, we apply the extended GG-expansion method to obtain traveling wave solutions of the time-delayed generalized Burgers-type equations.

Solutions to the time-delayed generalized Burgers equation

We consider the following time-delayed generalized Burgers equation:

τvtt+vt+pvsvx-vxx=0. 6

By using transformations v(x,t)=V(η) and η=k(x-ωt), Eq. (6) can be reduced as follows:

(τω2-1)k2V-kωV+pkVsV=0. 7

Balancing V with VsV gives n=1s which is not an integer as s1. So we use a transformation V=W1s to change Eq. (7) into the form:

(τω2-1)k2WW+1s-1W2-kωWW+pkWW2=0. 8

We suppose that the solutions of (8) have the form (4) and (5), so

W(η)=l=-nnalGGl-1GG-G2G2=-l=-nnalGGl-1β+αGG+GG2,W(η)=l=-nnalGGl-2β+αGG+GG22+l=-nnalGGl-1α+2GGβ+αGG+GG2.

From above two equations, we can get the degrees of WW and WW2 are 2n+2 and 3n+1 respectively. Balancing WW and WW2 in Eq. (8) yields 2n+2=3n+1, namely n=1. Therefore Eq. (8) have the following solutions:

W(η)=l=-11alGGl. 9

Substituting Eqs. (9) and (5) into Eq. (8), we get a set of under-determined algebraic equations for al(l=0,±1), k,ω,α and β.

GG4:2(τω2-1)ka12+k(τω2-1)(1-s)a12s-pa13=0,GG3:3(τω2-1)kαa12+2(τω2-1)ka1a0+2kα(τω2-1)(1-s)a12s+ωa12-2pa0a12-pαa13=0,GG2:(τω2-1)k(1-s)(-2a1a-1+2a12β+a12α2)s+pa02a1(1+2α)+(τω2-1)k(α2+2β)a12+3(τω2-1)kαa1a0-pa13β+2(τω2-1)ka1a-1+ωa0a1+ωa12α-pa12a-1=0,GG1:(τω2-1)k(1-s)(-4a-1+2a1β)a1αs-pa1α(a1a-1+a02)+(τω2-1)ka1(a1αβ+4a-1α+a0α2+2a0β)-2pa0a12β+ωa1(a0α+a1β)=0,GG0:(τω2-1)k(4a-1a1β+2a-1a1α2+a0a1βα+a-1a0α)+(a-1-a1β)(a-1a1+a02)p-ωa0a-1-ωa0a1β+(τω2-1)k(1-s)s(-4a-1a1β-2a-1a1α2+a-12+a12β2)=0,GG-1:(τω2-1)k(4a-1a1αβ+2a-1a0β+a-1a0α2+a-12α)-ωa-1(a-1+a0α)+pa-12a1α+pa-1a0(2a-1+a0α)+(τω2-1)kα(1-s)s(-4a-1a1β+2a-12)=0,GG-2:(τω2-1)ka-1(1-s)s(2a-1β-2a1β2+a-1α2)-ωa-1(a-1α+a0β)+pa-12(2a0α+a1β)+pa-13+pa02a-1β+(τω2-1)k(2a-1a1β2+3a-1a0αβ+2a-12μ+a-12α2)=0,GG-3:2(τω2-1)ka-12αβ(1-s)s+(τω2-1)ka-1β(2a0β+3a-1α)-ωa-12β+pa-12(a-1α+2a0β)=0,GG-4:(τω2-1)ka-12β2(1-s)s+2(τω2-1)ka-12β2+pa-13β=0.

Solving this algebraic equations by Maple, we can obtain the two results:

Case 1

a-1=±(s+1)βωpα2-4β,a0=±α(s+1)ω2pα2-4β+(s+1)ω2p,a1=0,k=sω(τω2-1)α2-4β, 10

where α, β and ω are arbitrary constants.

Case 2

a-1=0,a0=±α(s+1)ω2pα2-4β+(s+1)ω2p,a1=±(s+1)ωpα2-4β,k=±sω(τω2-1)α2-4β, 11

where α, β and ω are arbitrary constants.

Using Eqs. (9) and (10), we obtain the following solution of Eq. (6):

v1(η)=±α(s+1)ω2pα2-4β+(s+1)ω2p±(s+1)βωpα2-4βGG-11s, 12

where η=sω(τω2-1)α2-4β(x-ωt).

Based on Eqs. (9) and (11), we get the solution of Eq. (6) as follows:

v2(η)=±α(s+1)ω2pα2-4β+(s+1)ω2p±(s+1)ωpα2-4βGG1s, 13

where η=±sω(τω2-1)α2-4β(x-ωt).

Substituting the general solutions of Eq. (5) into Eq. (12), we have two kinds of travelling wave solutions as follows:

When α2-4β>0,

v(x,t)=(s+1)ωpα2-4βα2-4β±α2±2β-α+α2-4βC1sinhα2-4βη2+C2coshα2-4βη2C1coshα2-4βη2+C2sinhα2-4βη21s, 14

where η=sω(τω2-1)α2-4β(x-ωt).

When α2-4β<0,

v(x,t)=(s+1)ωpα2-4βα2-4β±α2±2β-α+4β-α2-C1sin4β-α2η2+C2cos4β-α2η2C1cos4β-α2η2+C2sin4β-α2η21s, 15

where η=sω(τω2-1)α2-4β(x-ωt).

Substituting the general solutions of Eq. (5) into Eq. (13), we have the following two kinds of travelling wave solutions:

When α2-4β>0,

u(x,t)=(s+1)ω2p±(s+1)ω2pC1sinhα2-4βη2+C2coshα2-4βη2C1coshα2-4βη2+C2sinhα2-4βη21s 16

where η=±sω(τω2-1)α2-4β(x-ωt).

When α2-4β<0,

u(x,t)=(s+1)ω2p(s+1)ω2pi-C1sin4β-α2η2+C2cos4β-α2η2C1cos4β-α2η2+C2sin4β-α2η21s 17

where η=±sω(τω2-1)α2-4β(x-ωt).

In Figs. 1, 2, 3 and 4, we show the effect of the time-delayed solution (14). It should be noted that when τ0, we can recover some traveling wave solutions of the generalized Burgers equation.

Fig. 1.

Fig. 1

The solution (14) for τ=0 at s=1, p=0.1, ω=0.2, α=5, β=4, t=1, C2=0

Fig. 2.

Fig. 2

The solution (14) for τ=10 at s=1, p=0.1, ω=0.2, α=5, β=4, t=1, C2=0

Fig. 3.

Fig. 3

The solution (14) for τ=20 at s=1, p=0.1, ω=0.2, α=5, β=4, t=1, C2=0

Fig. 4.

Fig. 4

The red, green and black lines represent the solution (14) for τ=0,10,20 respectively at s=1, p=0.1, ω=0.2, α=5, β=4, t=1, C2=0

Solutions to the time-delayed generalized Burgers–Fisher equation

In this section, we consider the time-delayed generalized Burgers–Fisher equation:

τvtt+(1-τfv)vt=vxx-pvsvx+f(v),f(v)=qv(1-vs),q0. 18

By using the transformation

v(x,t)=v(η),η=k(x-ωt) 19

Equation (18) is converted into the following ordinary differential equation:

k2(τω2-1)v-kω(1-τq+(s+1)qvs)v+pkvsv-qv(1-vs)=0. 20

Balancing v and vsv in Eq. (20) gives n=1s. By using the transformation v=W1s, we convert Eq. (20) into

k2(τω2-1)1s-1(W2+WW)-kω(1-τq+(s+1)qW)WW+pkv2W-sqW2(1-W)=0. 21

By balancing W2 and W2W in Eq. (21), we suppose that Eq. (21) have the following solutions:

W(η)=l=-11alGGl. 22

Using the same procedure as in the previous example, we get a set of simultaneous algebraic equations for al, k,ω,α and β.

GG4:-pka13+kω(s+1)qτa13+(τω2-1)k2a121+1s=0,GG3:k2(τω2-1)21-1sαa1+a0a1+kω(1-qτ)a12+(ω(s+1)-p)k(2a0+αa1)a12+sqa13=0,GG2:k2(τω2-1)a1s((α2+2β)a1+(2s-1)a-1+3a0αs)-pka1(a-1a1+a0+2αa0a1+a12β)+kω(1-qτ)(a0+a1α)a1+kω(s+1)qτa1(a02+a-1a1+2a0a1α+a12β)+sqa12(3a0-1)=0,GG1:k2(τω2-1)a1s[(8s-1)a-1α+(2-s)a1βα+s(α2+β)a0]+sqa1(3a-1a1+3a02-2a0)+kω(1-qτ)(a0a1α+a12β)+pka1(-a-1a1α-a02α+2a-1a0-2a0a1β)=0,GG0:kω(s+1)qτ(a-1a1-a02)(a1β-a-1)+sq(6a-1a0a1-2a-1a1)-kω(1-qτ)a0a-1+kω(1-qτ)a1β+pk(a-1-a1β)(a-1a1+a02)+sq(-a02+a03)+k2(τω2-1)s[4(2s-1)a-1a1β+(5s-2)a-1a1α2+(1-s)(a-12+a12β2)+sαa0(a1β+a-1)]=0,GG-1:-kω(1-qτ)a-1(a-1+a0α)+pka-1(2a-1a0+a02α+a-1a1α)+2k2(τω2-1)αa-11s-1(a-1-2a1β)+sqa-1(3a-1a1-2a0+3a02)+k2(τω2-1)a-1(4a1αβ+2a0β+a0α2+a-1α)-kω(s+1)qτa-1(2a-1a0+a-1a1α+a02α)=0,GG-2:pka-1(a-12+2a-1a0α+a-1a1β+a02β)+qsa-12(3a0-1)-kω(1-qτ)a-1(a-1α+a0β+a-12-a-1a1β)+k2(τω2-1)a-1s(2a-1β+2(2s-1)a1β2+a-1α2+3a0αβs)-kω(s+1)qτa-1(2a-1a0α+2a-1a1β+a02β)=0,GG-3:k2(τω2-1)a-1βs((s+2)a-1α+2sa0β)+qsa-13+ka-12(a-1α+2a0β)(p-ω(s+1)qτ)-kω(1-qτ)a-12β=0,GG-4:k2(τω2-1)1s+1a-12β2+pka-13β-kω(s+1)qτa-13β=0.

Solving the under-determined algebraic equations, we have the following results:

Case 1

a-1=±βα2-4β,a0=12±α2α2-4β,a1=0,k=s(s+1)(1+qτ)p(τp2-(s+1)2)α2-4β,ω=p2+(s+1)2qp(s+1)(1+qτ). 23

Case 2

a-1=0,a0=12±α2α2-4β,a1=±1α2-4β,k=±s(s+1)(1+qτ)p(τp2-(s+1)2)α2-4β,ω=p2+(s+1)2qp(s+1)(1+qτ). 24

By using Eqs. (23) and (24), expression (22) can be written as:

v1(η)=12±α2α2-4β±βα2-4βGG-1, 25

where η=s(s+1)(1+qτ)p(τp2-(s+1)2)α2-4βx-p2+(s+1)2qp(s+1)(1+qτ)t.

v2(η)=12±α2α2-4β±1α2-4βGG, 26

where η=±s(s+1)(1+qτ)p(τp2-(s+1)2)α2-4βx-p2t+(s+1)2qtp(s+1)(1+qτ).

Substituting general solutions of Eq. (5) into Eqs. (25) and (26), we have two types of travelling wave solutions of the generalized time-delayed Burgers-Fisher equation as follows:

When α2-4β>0,

u(x,t)=1α2-4βα2-4β±α2±2β-α+α2-4βC1sinhα2-4βη2+C2coshα2-4βη2C1coshα2-4βη2+C2sinhα2-4βη21s, 27

where η=s(s+1)(1+qτ)p(τp2-(s+1)2)α2-4βx-p2t+(s+1)2qtp(s+1)(1+qτ).

u(x,t)=12±12C1sinhα2-4βη2+C2coshα2-4βη2C1coshα2-4βη2+C2sinhα2-4βη21s, 28

where η=±s(s+1)(1+qτ)p(τp2-(s+1)2)α2-4βx-p2+(s+1)2qp(s+1)(1+qτ)t.

When α2-4β<0,

u(x,t)=1α2-4βα2-4β±α2±2β-α+α2-4β-C1sin4β-α2η2+C2cos4β-α2η2C1cos4β-α2η2+C2sin4β-α2η21s, 29

where η=s(s+1)(1+qτ)p(τp2-(s+1)2)α2-4βx-p2+(s+1)2qp(s+1)(1+qτ)t.

u(x,t)=12i2-C1sin4β-α2η2+C2cos4β-α2η2C1cos4β-α2η2+C2sin4β-α2η21s, 30

where η=±s(s+1)(1+qτ)p(τp2-(s+1)2)α2-4βx-p2+(s+1)2qp(s+1)(1+qτ)t.

In Figs. 5, 6, 7 and 8, we show the effect of the time-delayed solution (27). It should be noted that when τ0, we can recover some traveling wave solutions of the generalized Burgers–Fisher equation.

Fig. 5.

Fig. 5

The solution (27) for τ=0 at p=q=s=1, α=5, β=4, t=1, C2=0

Fig. 6.

Fig. 6

The solution (27) for τ=0.5 at p=q=s=1, α=5, β=4, t=1, C2=0

Fig. 7.

Fig. 7

The solution (27) for τ=1 at p=q=s=1, α=5, β=4, t=1, C2=0

Fig. 8.

Fig. 8

The red, green and black lines represent the solution (27) for τ=0,0.5,1 respectively at p=q=s=1, α=5, β=4, t=1, C2=0

Remark 1

By using extended GG-expansion method, we can obtain solutions including all the solutions given in Deng et al. (2009) as special cases. For example, if setting C2=0, then solution (28) is the same as Eq. (19) in Deng et al. (2009). Similarly, solution (28) is also the same as Eq. (20) obtained in Deng et al. (2009) when we set C1=0. It shows that extended GG-expansion method is more powerful than the method in Deng et al. (2009) in constructing exact solutions.

Remark 2

Rosa et al. (2015) applied Lie classical method and GG-expansion method to Fisher equation and derived some new traveling wave solutions. If setting al(l=-n-1)=0, then Eq. (4) becomes Eq. (14) in Rosa and Gandarias, (2015). So if we applied Lie classical method and extended GG-expansion method to Fisher equation, then many more exact solutions can be obtained. Searching exact solutions by use of Lie classical method and extended GG-expansion method is our future work.

Conclusions

Based on the extended GG-expansion method, we have constructed many traveling wave solutions of the time-delayed generalized Burgers-type equation which include the hyperbolic function solutions, trigonometric function solutions. The results show that the proposed method is very effective and can be used to handling many other nonlinear time-delayed evolution equations.

Declarations

In this section, we illustrate how to get the solutions presented after Eq. (5).

The general solutions of Eq. (5) can easily obtained as follows:

G(η)=a1e-α+α2-4β2η+a2e-α-α2-4β2η,α2-4β>0,e-α2ηa1cos4β-α2η2+a2sin4β-α2η2,α2-4β<0.(a1+a2η)e-α2η,α2-4β=0.

When α2-4β>0

G(η)=-α+α2-4β2a1e-α+α2-4β2η+-α-α2-4β2a2e-α-α2-4β2η,

then

G(η)G(η)=-α+α2-4β2a1eα2-4β2η+-α-α2-4β2a2e-α2-4β2ηa1e-α+α2-4β2η+a2e-α-α2-4β2η=-α2+α2-4β2a1eα2-4β2η-a2e-α2-4β2ηa1eα2-4β2η+a2e-α2-4β2η 31

Taking C1=a1+a22,C2=a1-a22,r=α2-4β2η, we can convert Eq. (31) into the following form:

G(η)G(η)=-α2+α2-4β2(C1+C2)eα2-4β2η-(C1-C2)e-α2-4β2η(C1+C2)eα2-4β2η+(C1-C2)e-α2-4β2η=-α2+α2-4β2C1(er-e-r)-C2(er+e-r)C1(er+e-r)+C2(er-e-r)=-α2+α2-4β2C1er-e-r2-C2er+e-r2C1er+e-r2+C2er-e-r2=-α2+α2-4β2C1sinhα2-4βη2+C2coshα2-4βη2C1coshα2-4βη2+C2sinhα2-4βη2.

When α2-4β<0

G(η)=-α2e-α2ηa1cos4β-α2η2+a2sin4β-α2η2+4β-α2η2e-α2η-a1sin4β-α2η2+a2cos4β-α2η2,

then

G(η)G(η)=-α2e-α2ηa1cos4β-α2η2+a2sin4β-α2η2e-α2ηa1cos4β-α2η2+a2sin4β-α2η2+4β-α2η2e-α2η-a1sin4β-α2η2+a2cos4β-α2η2e-α2ηa1cos4β-α2η2+a2sin4β-α2η2 32

Taking C1=a1,C2=a2, we can convert Eq. (32) into the following form:

G(η)G(η)=-α2+4β-α22-C1sin4β-α2η2+C2cos4β-α2η2C1cos4β-α2η2+C2sin4β-α2η2

When α2-4β=0

G(η)=a2-(a1+a2η)α2e-α2η,

then

G(η)G(η)=a2-(a1+a2η)α2e-α2η(a1+a2η)e-α2η=-α2+a2a1+a2η 33

Taking C1=a1,C2=a2, we can convert Eq. (33) into the following form:

G(η)G(η)=-α2+C2C1+C2η

Authors' contributions

BT, YZF, XMW, JXW and SJC, with the consultation of each other performed this research and drafted the manuscript together. All authors read and approved the final manuscript.

Acknowledgements

The authors would like to extend sincere gratitude to the referee for carefully reading and useful suggestions to improve the paper.

Competing interests

The authors declare that they have no competing interests.

Funding

This research work is supported by the National Natural Science Foundation of China (11526088, 11501186) and Natural Science Foundation of Hubei Province (2014CFB640).

Contributor Information

Bo Tang, Email: tangbo0809@163.com.

Yingzhe Fan, Email: fanyinzhe@163.com.

Xuemin Wang, Email: campusxuemin@gmail.com.

Jixiu Wang, Email: wangjixiu127@aliyun.com.

Shijun Chen, Email: chenshijun10@163.com.

References

  1. Abdel Rady AS, Osman ES, Khalfallah M. The homogeneous balance method and its application to the Benjamin–Bona–Mahoney (BBM) equation. Appl Math Comput. 2010;217:1385–1390. [Google Scholar]
  2. Deng XJ, Han LB, Li X. Travelling solitary wave solutions for generalized time-delayed Burgers–Fisher equation. Commun Theor Phys. 2009;52:284–286. doi: 10.1088/0253-6102/52/2/19. [DOI] [Google Scholar]
  3. Eslami M, Fathi vajargah B, Mirzazadeh M. Exact solutions of modified Zakharov–Kuznetsov equation by the homogeneous balance method. Ain Shams Eng J. 2014;5:221–225. doi: 10.1016/j.asej.2013.06.005. [DOI] [Google Scholar]
  4. Fan E. Two new applications of the homogeneous balance method. Phys Lett A. 2000;265:353–357. doi: 10.1016/S0375-9601(00)00010-4. [DOI] [Google Scholar]
  5. Fan E, Zhang HQ. New exact solutions to a system of coupled KdV equations. Phys Lett A. 1998;245:389–392. doi: 10.1016/S0375-9601(98)00464-2. [DOI] [Google Scholar]
  6. Fan EG, Zhang HQ. A note on the homogeneous balance method. Phys Lett A. 1998;246:403–406. doi: 10.1016/S0375-9601(98)00547-7. [DOI] [Google Scholar]
  7. He JH. A new approach to nonlinear partial differential equations. Commun Nonlinear Sci Numer Simul. 1997;2:230–235. doi: 10.1016/S1007-5704(97)90007-1. [DOI] [Google Scholar]
  8. He JH. Homotopy perturbation technique. Comput Methods Appl Mech Eng. 1999;178:257–262. doi: 10.1016/S0045-7825(99)00018-3. [DOI] [Google Scholar]
  9. He JH, Wu XH. Variational iteration method: new development and applications. Comput Math Appl. 2007;54:881–894. doi: 10.1016/j.camwa.2006.12.083. [DOI] [Google Scholar]
  10. Islam MH, Khan K, Akbar MA, Salam MA. Exact traveling wave solutions of modified KdV–Zakharov–Kuznetsov equation and viscous Burgers equation. SpringerPlus. 2014;3:105. doi: 10.1186/2193-1801-3-105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kar S, Banik SK, Ray DS. Exact solutions of Fisher and Burgers equations with finite transport memory. J Phys A Math Gen. 2003;36:2771–2780. doi: 10.1088/0305-4470/36/11/308. [DOI] [Google Scholar]
  12. Khan K, Akbar MA. Study of analytical method to seek for exact solutions of variant Boussinesq equations. SpringerPlus. 2014;3:324. doi: 10.1186/2193-1801-3-324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kumar S. A new analytical modelling for telegraph equation via Laplace transform. Appl Math Model. 2014;38:3154–3163. doi: 10.1016/j.apm.2013.11.035. [DOI] [Google Scholar]
  14. Kumar S, Singh OP. Numerical inversion of the Abel integral equation using homotopy perturbation method. Z Naturforschung. 2009;65a:677–682. [Google Scholar]
  15. Kumar S, Khan Y, Yildirim A. A mathematical modelling arising in the chemical system and its approximate numerical solution. Asia Pac J Chem Eng. 2012;7(6):835–840. doi: 10.1002/apj.647. [DOI] [Google Scholar]
  16. Kumar S, Kumar D, Singh J. Fractional modelling arising in unidirectional propagation of long waves in dispersive media. Nonlinear Anal Adv. 2016 [Google Scholar]
  17. Kumar S, Kumar A, Baleanu D. Two analytical method for time-fractional nonlinear coupled Boussinesq-Burger equations arises in propagation of shallow water waves. Nonlinear Dyn. 2016 [Google Scholar]
  18. Maple. www.maplesoft.com
  19. Rosa M, Bruzón M, Gandarias MDLL. Lie symmetries and conservation laws of a Fisher equation with nonlinear convection term. Discrete Cont Dyn Syst S. 2015;8(6):1331–1339. doi: 10.3934/dcdss.2015.8.1331. [DOI] [Google Scholar]
  20. Senthilvelan M. On the extended applications of homogenous balance method. Appl Math Comput. 2001;123:381–388. [Google Scholar]
  21. Sirendaoreji SJ. Auxiliary equation method for solving nonlinear partial differential equations. Phys Lett A. 2003;309:387–396. doi: 10.1016/S0375-9601(03)00196-8. [DOI] [Google Scholar]
  22. Tang B, He Y, Wei L, Wang S. Variable-coefficient discrete (G’/G)-expansion method for nonlinear differential–difference equations. Phys Lett A. 2011;375:3355–3361. doi: 10.1016/j.physleta.2011.07.022. [DOI] [Google Scholar]
  23. Tang B, Wang X, Wei L, Zhang X. Exact solutions of fractional heat-like and wave-like equations with variable coefficients. Int J Numer Methods Heat Fluid Flow. 2014;24:455–467. doi: 10.1108/HFF-05-2012-0106. [DOI] [Google Scholar]
  24. Tang B, Wang X, Fan Y, Qu J. Exact solutions for a generalized KdV–MKdV equation with variable coefficients. Math Probl Eng. 2016;2016:5274243. [Google Scholar]
  25. Wang ML, Li XZ, Zhang JL. The (G’/G)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics. Phys Lett A. 2008;372:417–423. doi: 10.1016/j.physleta.2007.07.051. [DOI] [Google Scholar]
  26. Yao J, Kumar A, Kumar S. A fractional model to describing the Brownian motion of particles and its analytical solution. Adv Mech Eng. 2015;7(12):1–11. doi: 10.1177/1687814015618874. [DOI] [Google Scholar]
  27. Yin XB, Kumar S, Kumar D. A modified homotopy analysis method for solution of fractional wave equations. Adv Mech Eng. 2015;7(12):1–8. doi: 10.1177/1687814015620330. [DOI] [Google Scholar]
  28. Yomba E. Construction of new soliton-like solutions for the (2+1) dimensional KdV equation with variable coefficients. Chaos Solitons Fractals. 2004;21:75–79. doi: 10.1016/j.chaos.2003.09.028. [DOI] [Google Scholar]
  29. Zhang J, Jiang F, Zhao X. An improved (G’/G)-expansion method for solving nonlinear evolution equations. Int J Comput Math. 2010;87:1716–1725. doi: 10.1080/00207160802450166. [DOI] [Google Scholar]
  30. Zhao XQ, Tang DG. A new note on a homogeneous balance method. Phys Lett A. 2002;297:59–67. doi: 10.1016/S0375-9601(02)00377-8. [DOI] [Google Scholar]

Articles from SpringerPlus are provided here courtesy of Springer-Verlag

RESOURCES