Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1976 Feb;17(2):307–315. doi: 10.1128/jvi.17.2.307-315.1976

Effect of the "RNA control" locus in Escherichia coli on RNA bacteriophage R23 replication.

J Ernberg, O Sköld
PMCID: PMC515422  PMID: 768516

Abstract

The effect of the rel gene of Escherichia coli on the RNA synthesis induced by phage R23 was studied. This RNA phage has the property of inhibiting ribosomal RNA formation and completely dominating the RNA synthesis of the host. Phage-specific RNA formation was found to be dependent on the allelic state of the rel gene. Determinations of RNA synthesis were made by both cumulative and short-term incorporations of uracil and adenine. Variations in labeling of nucleotide pools were compensated for by determining specific activities of ATP and UTP and using these values to obtain true, relative rates of RNA synthesis.

Full text

PDF
307

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cashel M., Kalbacher B. The control of ribonucleic acid synthesis in Escherichia coli. V. Characterization of a nucleotide associated with the stringent response. J Biol Chem. 1970 May 10;245(9):2309–2318. [PubMed] [Google Scholar]
  2. Cashel M., Lazzarini R. A., Kalbacher B. An improved method for thin-layer chromatography of nucleotide mixtures containing 32P-labelled orthophosphate. J Chromatogr. 1969 Mar 11;40(1):103–109. doi: 10.1016/s0021-9673(01)96624-5. [DOI] [PubMed] [Google Scholar]
  3. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  4. Edlin G., Broda P. Physiology and genetics of the "ribonucleic acid control" locus in escherichia coli. Bacteriol Rev. 1968 Sep;32(3):206–226. doi: 10.1128/br.32.3.206-226.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FRAENKEL-CONRAT H., SINGER B., TSUGITA A. Purification of viral RNA by means of bentonite. Virology. 1961 May;14:54–58. doi: 10.1016/0042-6822(61)90131-3. [DOI] [PubMed] [Google Scholar]
  6. Fiil N. P., von Meyenburg K., Friesen J. D. Accumulation and turnover of guanosine tetraphosphate in Escherichia coli. J Mol Biol. 1972 Nov 28;71(3):769–783. doi: 10.1016/s0022-2836(72)80037-8. [DOI] [PubMed] [Google Scholar]
  7. Fiil N., Friesen J. D. Isolation of "relaxed" mutants of Escherichia coli. J Bacteriol. 1968 Feb;95(2):729–731. doi: 10.1128/jb.95.2.729-731.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Friesen J. D. Dependence of f2 bacteriophage RNA replication on amino acids. J Mol Biol. 1969 Dec 14;46(2):349–353. doi: 10.1016/0022-2836(69)90427-6. [DOI] [PubMed] [Google Scholar]
  9. Gesteland R. F. Isolation and characterization of ribonuclease I mutants of Escherichia coli. J Mol Biol. 1966 Mar;16(1):67–84. doi: 10.1016/s0022-2836(66)80263-2. [DOI] [PubMed] [Google Scholar]
  10. Landers T. A., Blumenthal T., Weber K. Function and structure in ribonucleic acid phage Q beta ribonucleic acid replicase. The roles of the different subunits in transcription of synthetic templates. J Biol Chem. 1974 Sep 25;249(18):5801–5808. [PubMed] [Google Scholar]
  11. Lazzarini R. A., Dahlberg A. E. The control of ribonucleic acid synthesis during amino acid deprivation in Escherichia coli. J Biol Chem. 1971 Jan 25;246(2):420–429. [PubMed] [Google Scholar]
  12. Lodish H. F., Zinder N. D. Replication of the RNA of Bacteriophage f2. Science. 1966 Apr 15;152(3720):372–377. doi: 10.1126/science.152.3720.372. [DOI] [PubMed] [Google Scholar]
  13. Neidhardt F. C. Roles of amino acid activating enzymes in cellular physiology. Bacteriol Rev. 1966 Dec;30(4):701–719. doi: 10.1128/br.30.4.701-719.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nierlich D. P. Radioisotope uptake as a measure of synthesis of messenger RNA. Science. 1967 Dec 1;158(3805):1186–1188. doi: 10.1126/science.158.3805.1186. [DOI] [PubMed] [Google Scholar]
  15. Nordström K., Eriksson-Grennberg K. G., Boman H. G. Resistance of Escherichia coli to penicillins. 3. AmpB, a locus affecting episomally and chromosomally mediated resistance to ampicillin and chlorampheincol. Genet Res. 1968 Oct;12(2):157–168. doi: 10.1017/s0016672300011770. [DOI] [PubMed] [Google Scholar]
  16. Peacock A. C., Dingman C. W. Molecular weight estimation and separation of ribonucleic acid by electrophoresis in agarose-acrylamide composite gels. Biochemistry. 1968 Feb;7(2):668–674. doi: 10.1021/bi00842a023. [DOI] [PubMed] [Google Scholar]
  17. Peacock A. C., Dingman C. W. Resolution of multiple ribonucleic acid species by polyacrylamide gel electrophoresis. Biochemistry. 1967 Jun;6(6):1818–1827. doi: 10.1021/bi00858a033. [DOI] [PubMed] [Google Scholar]
  18. Siegel J., Kjeldgaard N. O. Effect of the rel locus on Qbeta RNA synthesis. J Mol Biol. 1971 Apr 14;57(1):147–151. doi: 10.1016/0022-2836(71)90124-0. [DOI] [PubMed] [Google Scholar]
  19. Watanabe M., Watanabe H., August J. T. Replication of RNA bacteriophage R23. I. Quantitative aspects of phage RNA and protein synthesis. J Mol Biol. 1968 Apr 14;33(1):1–20. doi: 10.1016/0022-2836(68)90277-5. [DOI] [PubMed] [Google Scholar]
  20. Watson R., Yamazaki H. Expression of the rel gene during R17 phage infection. Biochemistry. 1972 Feb 15;11(4):611–614. doi: 10.1021/bi00754a022. [DOI] [PubMed] [Google Scholar]
  21. Winslow R. M., Lazzarini R. A. Amino acid regulation of the rates of synthesis and chain elongation of ribonucleic acid in Escherichia coli. J Biol Chem. 1969 Jun 25;244(12):3387–3392. [PubMed] [Google Scholar]
  22. Winslow R. M., Lazzarini R. A. The rates of synthesis and chain elongation of ribonucleic acid in Escherichia coli. J Biol Chem. 1969 Mar 10;244(5):1128–1136. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES