Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1976 Mar;17(3):924–934. doi: 10.1128/jvi.17.3.924-934.1976

Isolation and characterization of an extremely basic protein from adenovirus type 5.

K Hosokawa, M T Sung
PMCID: PMC515493  PMID: 1255865

Abstract

By starch-gel electrophoresis and a staining method that is highly sensitive for argininyl residues, adenovirus type 5 was found to contain two minor basic polypeptides of extreme cathodic mobility in addition to the two known core proteins. The fastest-migrating polypeptide, named mu protein, and the second fastest polypeptide are found in adenovirions and virus-infected KB cells but not in top components or in uninfected cells. The top components and infected cells contain an additional basic polypeptide, presumably P-VII, that migrates slightly slower than polypeptide VII. None of the basic polypeptides of adenovirions was electrophoretically identical to the host histone. The basic proteins of adenovirions were purified by urea phosphocellulose column chromatography and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The two minor basic core proteins, mu and another component, have similar mobilities in sodium dodecyl sulfate-polyacrylamide gels as a complex of polypeptides X-XII. After further purification on a Sephadex G-75 column, the mu protein was found to have a molecular weight of about 4,000. Amino acid analysis showed that the mu protein lacks tryptophan and 69% of the total amino acid residues are basic, that is, 54% arginine, 13% histidine, and 2% lysine. Only eight amino acids seem to contribute to make the mu polypeptide. There are 125 copies of the mu polypeptide per 1,000 copies of polypeptide VII in a virion.

Full text

PDF
924

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. W., Baum P. R., Gesteland R. F. Processing of adenovirus 2-induced proteins. J Virol. 1973 Aug;12(2):241–252. doi: 10.1128/jvi.12.2.241-252.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson C. W., Lewis J. B., Atkins J. F., Gesteland R. F. Cell-free synthesis of adenovirus 2 proteins programmed by fractionated messenger RNA: a comparison of polypeptide products and messenger RNA lengths. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2756–2760. doi: 10.1073/pnas.71.7.2756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bablanian R., Russell W. C. Adenovirus polypeptide synthesis in the presence of non-replicating poliovirus. J Gen Virol. 1974 Aug;24(2):261–279. doi: 10.1099/0022-1317-24-2-261. [DOI] [PubMed] [Google Scholar]
  4. Brown D. T., Westphal M., Burlingham B. T., Winterhoff U., Doerfler W. Structure and composition of the adenovirus type 2 core. J Virol. 1975 Aug;16(2):366–387. doi: 10.1128/jvi.16.2.366-387.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CRAWFORD L. V. A study of the Rous sarcoma virus by density gradient centrifugation. Virology. 1960 Oct;12:143–153. doi: 10.1016/0042-6822(60)90190-2. [DOI] [PubMed] [Google Scholar]
  6. Eiserling F. A., Dickson R. C. Assembly of viruses. Annu Rev Biochem. 1972;41:467–502. doi: 10.1146/annurev.bi.41.070172.002343. [DOI] [PubMed] [Google Scholar]
  7. Everitt E., Philipson L. Structural proteins of adenoviruses. XI. Purification of three low molecular weight virion proteins of adenovirus type 2 and their synthesis during productive infection. Virology. 1974 Nov;62(1):253–269. doi: 10.1016/0042-6822(74)90320-1. [DOI] [PubMed] [Google Scholar]
  8. Everitt E., Sundquist B., Pettersson U., Philipson L. Structural proteins of adenoviruses. X. Isolation and topography of low molecular weight antigens from the virion of adenovirus type 2. Virology. 1973 Mar;52(1):130–147. doi: 10.1016/0042-6822(73)90404-2. [DOI] [PubMed] [Google Scholar]
  9. Everitt E., Sundquist B., Philipson L. Mechanism of the arginine requirement for adenovirus synthesis. I. Synthesis of structural proteins. J Virol. 1971 Nov;8(5):742–753. doi: 10.1128/jvi.8.5.742-753.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frearson P. M., Crawford L. V. Polyoma virus basic proteins. J Gen Virol. 1972 Feb;14(2):141–155. doi: 10.1099/0022-1317-14-2-141. [DOI] [PubMed] [Google Scholar]
  11. GREEN M., PINA M. Biochemical studies on adenovirus multiplication. IV. Isolation, purification, and chemical analysis of adenovirus. Virology. 1963 May;20:199–207. doi: 10.1016/0042-6822(63)90157-0. [DOI] [PubMed] [Google Scholar]
  12. Hosokawa K., Kiho Y., Migita L. K. Assembly of Escherichia coli 50 S ribosomes from ribonucleic acid and protein components. I. Chemical and physical factors affecting the conformation of assembled particles. J Biol Chem. 1973 Jun 25;248(12):4135–4143. [PubMed] [Google Scholar]
  13. Ishibashi M., Maizel J. V., Jr The polypeptides of adenovirus. V. Young virions, structural intermediate between top components and aged virions. Virology. 1974 Feb;57(2):409–424. doi: 10.1016/0042-6822(74)90181-0. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Laver W. G. Isolation of an arginine-rich protein from particles of adenovirus type 2. Virology. 1970 Jul;41(3):488–500. doi: 10.1016/0042-6822(70)90170-4. [DOI] [PubMed] [Google Scholar]
  17. Laver W. G., Pereira H. G., Russell W. C., Valentine R. C. Isolation of an internal component from adenovirus type 5. J Mol Biol. 1968 Nov 14;37(3):379–386. doi: 10.1016/0022-2836(68)90109-5. [DOI] [PubMed] [Google Scholar]
  18. Lewis J. B., Atkins J. F., Anderson C. W., Baum P. R., Gesteland R. F. Mapping of late adenovirus genes by cell-free translation of RNA selected by hybridization to specific DNA fragments. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1344–1348. doi: 10.1073/pnas.72.4.1344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ling V., Trevithick J. R., Dixon G. H. The biosynthesis of protamine in trout testis. I. Intracellular site of synthesis. Can J Biochem. 1969 Jan;47(1):51–60. doi: 10.1139/o69-009. [DOI] [PubMed] [Google Scholar]
  20. Maizel J. V., Jr, White D. O., Scharff M. D. The polypeptides of adenovirus. I. Evidence for multiple protein components in the virion and a comparison of types 2, 7A, and 12. Virology. 1968 Sep;36(1):115–125. doi: 10.1016/0042-6822(68)90121-9. [DOI] [PubMed] [Google Scholar]
  21. Maizel J. V., Jr, White D. O., Scharff M. D. The polypeptides of adenovirus. II. Soluble proteins, cores, top components and the structure of the virion. Virology. 1968 Sep;36(1):126–136. doi: 10.1016/0042-6822(68)90122-0. [DOI] [PubMed] [Google Scholar]
  22. Prage L., Pettersson U., Höglund S., Lonberg-Holm K., Philipson L. Structural proteins of adenoviruses. IV. Sequential degradation of the adenovirus type 2 virion. Virology. 1970 Oct;42(2):341–358. doi: 10.1016/0042-6822(70)90278-3. [DOI] [PubMed] [Google Scholar]
  23. Prage L., Pettersson U., Philipson L. Internal basic proteins in adenovirus. Virology. 1968 Nov;36(3):508–511. doi: 10.1016/0042-6822(68)90178-5. [DOI] [PubMed] [Google Scholar]
  24. Prage L., Pettersson U. Structural proteins of adenoviruses. VII. Purification and properties of an arginine-rich core protein from adenovirus type 2 and type 3. Virology. 1971 Aug;45(2):364–373. doi: 10.1016/0042-6822(71)90337-0. [DOI] [PubMed] [Google Scholar]
  25. Roblin R., Härle E., Dulbecco R. Polyoma virus proteins. 1. Multiple virion components. Virology. 1971 Sep;45(3):555–566. doi: 10.1016/0042-6822(71)90171-1. [DOI] [PubMed] [Google Scholar]
  26. Rouse H. C., Schlesinger R. W. An arginine-dependent step in the maturation of type 2 adenovirus. Virology. 1967 Nov;33(3):513–522. doi: 10.1016/0042-6822(67)90128-6. [DOI] [PubMed] [Google Scholar]
  27. Rouse H. C., Schlesinger R. W. The effects of arginine starvation on macromolecular synthesis in infection with type 2 adenovirus. I. Synthesis and utilization of structural proteins. Virology. 1972 May;48(2):463–471. doi: 10.1016/0042-6822(72)90057-8. [DOI] [PubMed] [Google Scholar]
  28. Russell W. C., Becker Y. A maturation factor for adenovirus. Virology. 1968 May;35(1):18–27. doi: 10.1016/0042-6822(68)90301-2. [DOI] [PubMed] [Google Scholar]
  29. Russell W. C., McIntosh K., Skehel J. J. The preparation and properties of adenovirus cores. J Gen Virol. 1971 Apr;11(1):35–46. doi: 10.1099/0022-1317-11-1-35. [DOI] [PubMed] [Google Scholar]
  30. Russell W. C., Skehel J. J. The polypeptides of adenovirus-infected cells. J Gen Virol. 1972 Apr;15(1):45–57. doi: 10.1099/0022-1317-15-1-45. [DOI] [PubMed] [Google Scholar]
  31. Smith M. A., Salas M., Stanley W. M., Jr, Wahba A. J., Ochoa S. Direction of reading of the genetic message. II. Proc Natl Acad Sci U S A. 1966 Jan;55(1):141–147. doi: 10.1073/pnas.55.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sung M. T., Dixon G. H., Smithies O. Phosphorylation and synthesis of histones in regenerating rat liver. J Biol Chem. 1971 Mar 10;246(5):1358–1364. [PubMed] [Google Scholar]
  33. Sung M., Smithies O. Differential elution of histones from gel-trapped nuclei. Biopolymers. 1969;7(1):39–58. doi: 10.1002/bip.1969.360070105. [DOI] [PubMed] [Google Scholar]
  34. Valentine R. C., Pereira H. G. Antigens and structure of the adenovirus. J Mol Biol. 1965 Aug;13(1):13–20. doi: 10.1016/s0022-2836(65)80076-6. [DOI] [PubMed] [Google Scholar]
  35. Walter G., Maizel J. V., Jr The polypeptides of adenovirus. IV. Detection of early and late virus-induced polypeptides and their distribution in subcellular fractions. Virology. 1974 Feb;57(2):402–408. doi: 10.1016/0042-6822(74)90180-9. [DOI] [PubMed] [Google Scholar]
  36. Winters W. D., Russell W. C. Studies on the assembly of adenovirus in vitro. J Gen Virol. 1971 Feb;10(2):181–194. doi: 10.1099/0022-1317-10-2-181. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES