Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 May 1;88(9):3887–3891. doi: 10.1073/pnas.88.9.3887

Immunofluorescence localization of thyroid hormone receptor protein beta 1 and variant alpha 2 in selected tissues: cerebellar Purkinje cells as a model for beta 1 receptor-mediated developmental effects of thyroid hormone in brain.

K A Strait 1, H L Schwartz 1, V S Seybold 1, N C Ling 1, J H Oppenheimer 1
PMCID: PMC51558  PMID: 1850839

Abstract

Rat c-erbA beta 1 mRNA rises in cerebrum during the first 10 days of life, coincident with an increase in tissue triiodothyronine (T3) levels and T3-dependent brain development. These data suggest that the beta 1 receptor may mediate the T3 effect. However, in cerebellum c-erbA beta 1 mRNA levels were very low. Since cerebellar development, including dendritic arborization of Purkinje cells, is a T3-sensitive process, we assessed the levels of the beta 1 receptor protein in cerebellum during development. Antisera to unique peptide regions of beta 1 were raised. Their specificity was demonstrated by specific immunoprecipitation of the in vitro translated product, 85% immunoprecipitation of the T3 binding activity in hepatic nuclear extracts, and Western blot analysis of tissue extracts. Immunohistochemical studies using anti-beta 1 antiserum stained liver nuclei but not testis nuclei, which contain no T3 binding activity or beta 1 mRNA. In cerebellar Purkinje cells, an immunofluorescent signal, localized to the nucleus and more intense than that seen in the liver, was observed. A positive but weaker signal was also present in the granule cells. Thus, we may infer that the cerebellum contains significant concentrations of beta 1 receptor protein despite the low beta 1 mRNA content. Both the intensity of staining in Purkinje cell nuclei and immunoprecipitable beta 1 receptor binding capacity rose in the neonatal period. Antiserum to the non-T3 binding alpha 2 variant protein was also prepared and a distinctive pattern of fluorescence was observed. Strong fluorescence was seen in the nuclei of granule cells, but none was seen in Purkinje cells. The alpha 2 fluorescence in testis was high, consistent with the high levels of alpha 2 mRNA in this tissue. The fluorescent signal appeared to originate primarily in dividing spermatogonia. Our findings support the concept that the beta 1 receptor plays a central role in T3-induced brain development and strongly suggest that the Purkinje cell is a direct target for T3.

Full text

PDF
3887

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bigler J., Eisenman R. N. c-erbA encodes multiple proteins in chicken erythroid cells. Mol Cell Biol. 1988 Oct;8(10):4155–4161. doi: 10.1128/mcb.8.10.4155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradley D. J., Young W. S., 3rd, Weinberger C. Differential expression of alpha and beta thyroid hormone receptor genes in rat brain and pituitary. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7250–7254. doi: 10.1073/pnas.86.18.7250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Casanova J., Horowitz Z. D., Copp R. P., McIntyre W. R., Pascual A., Samuels H. H. Photoaffinity labeling of thyroid hormone nuclear receptors. Influence of n-butyrate and analysis of the half-lives of the 57,000 and 47,000 molecular weight receptor forms. J Biol Chem. 1984 Oct 10;259(19):12084–12091. [PubMed] [Google Scholar]
  4. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  5. Chou P. Y., Fasman G. D. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry. 1974 Jan 15;13(2):211–222. doi: 10.1021/bi00699a001. [DOI] [PubMed] [Google Scholar]
  6. Forrest D., Sjöberg M., Vennström B. Contrasting developmental and tissue-specific expression of alpha and beta thyroid hormone receptor genes. EMBO J. 1990 May;9(5):1519–1528. doi: 10.1002/j.1460-2075.1990.tb08270.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goldberg Y., Glineur C., Gesquière J. C., Ricouart A., Sap J., Vennström B., Ghysdael J. Activation of protein kinase C or cAMP-dependent protein kinase increases phosphorylation of the c-erbA-encoded thyroid hormone receptor and of the v-erbA-encoded protein. EMBO J. 1988 Aug;7(8):2425–2433. doi: 10.1002/j.1460-2075.1988.tb03088.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HAMBURGH M., FLEXNER L. B. Biochemical and physiological differentiation during morphogenesis. XXI. Effect of hypothyroidism and hormone therapy on enzyme activities of the developing cerebral cortex of the rat. J Neurochem. 1957;1(3):279–288. doi: 10.1111/j.1471-4159.1957.tb12083.x. [DOI] [PubMed] [Google Scholar]
  9. Izumo S., Mahdavi V. Thyroid hormone receptor alpha isoforms generated by alternative splicing differentially activate myosin HC gene transcription. Nature. 1988 Aug 11;334(6182):539–542. doi: 10.1038/334539a0. [DOI] [PubMed] [Google Scholar]
  10. Kinlaw W. B., Ling N. C., Oppenheimer J. H. Identification of rat S14 protein and comparison of its regulation with that of mRNA S14 employing synthetic peptide antisera. J Biol Chem. 1989 Nov 25;264(33):19779–19783. [PubMed] [Google Scholar]
  11. Koenig R. J., Lazar M. A., Hodin R. A., Brent G. A., Larsen P. R., Chin W. W., Moore D. D. Inhibition of thyroid hormone action by a non-hormone binding c-erbA protein generated by alternative mRNA splicing. Nature. 1989 Feb 16;337(6208):659–661. doi: 10.1038/337659a0. [DOI] [PubMed] [Google Scholar]
  12. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  13. Latham K. R., Ring J. C., Baxter J. D. Solubilized nuclear "receptors" for thyroid hormones. Physical characteristics and binding properties, evidence for multiple forms. J Biol Chem. 1976 Dec 10;251(23):7388–7397. [PubMed] [Google Scholar]
  14. Lazar M. A., Hodin R. A., Darling D. S., Chin W. W. Identification of a rat c-erbA alpha-related protein which binds deoxyribonucleic acid but does not bind thyroid hormone. Mol Endocrinol. 1988 Oct;2(10):893–901. doi: 10.1210/mend-2-10-893. [DOI] [PubMed] [Google Scholar]
  15. Legrand J. Variations, en fonction de l'age, de la réponse du cervelet à l'action morphogénétique de la thyroïde chez le rat. Arch Anat Microsc Morphol Exp. 1967 Jul-Dec;56(3):291–307. [PubMed] [Google Scholar]
  16. Ling N., Esch F., Böhlen P., Brazeau P., Wehrenberg W. B., Guillemin R. Isolation, primary structure, and synthesis of human hypothalamic somatocrinin: growth hormone-releasing factor. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4302–4306. doi: 10.1073/pnas.81.14.4302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Macchia E., Nakai A., Janiga A., Sakurai A., Fisfalen M. E., Gardner P., Soltani K., DeGroot L. J. Characterization of site-specific polyclonal antibodies to c-erbA peptides recognizing human thyroid hormone receptors alpha 1, alpha 2, and beta and native 3,5,3'-triiodothyronine receptor, and study of tissue distribution of the antigen. Endocrinology. 1990 Jun;126(6):3232–3239. doi: 10.1210/endo-126-6-3232. [DOI] [PubMed] [Google Scholar]
  18. Mitsuhashi T., Tennyson G. E., Nikodem V. M. Alternative splicing generates messages encoding rat c-erbA proteins that do not bind thyroid hormone. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5804–5808. doi: 10.1073/pnas.85.16.5804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Munnich A., Daegelen D., Besmond C., Marie J., Dreyfus J. C., Kahn A. Cell-free translation of messenger RNAs from human muscle biopsies: a miniaturized tool for investigation of neuromuscular diseases. Pediatr Res. 1982 May;16(5):335–339. doi: 10.1203/00006450-198205000-00001. [DOI] [PubMed] [Google Scholar]
  20. Murray M. B., Zilz N. D., McCreary N. L., MacDonald M. J., Towle H. C. Isolation and characterization of rat cDNA clones for two distinct thyroid hormone receptors. J Biol Chem. 1988 Sep 5;263(25):12770–12777. [PubMed] [Google Scholar]
  21. Oppenheimer J. H., Koerner D., Schwartz H. L., Surks M. I. Specific nuclear triiodothyronine binding sites in rat liver and kidney. J Clin Endocrinol Metab. 1972 Aug;35(2):330–333. doi: 10.1210/jcem-35-2-330. [DOI] [PubMed] [Google Scholar]
  22. Oppenheimer J. H., Schwartz H. L., Surks M. I. Tissue differences in the concentration of triiodothyronine nuclear binding sites in the rat: liver, kidney, pituitary, heart, brain, spleen, and testis. Endocrinology. 1974 Sep;95(3):897–903. doi: 10.1210/endo-95-3-897. [DOI] [PubMed] [Google Scholar]
  23. Sap J., Muñoz A., Damm K., Goldberg Y., Ghysdael J., Leutz A., Beug H., Vennström B. The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature. 1986 Dec 18;324(6098):635–640. doi: 10.1038/324635a0. [DOI] [PubMed] [Google Scholar]
  24. Schueler P. A., Schwartz H. L., Strait K. A., Mariash C. N., Oppenheimer J. H. Binding of 3,5,3'-triiodothyronine (T3) and its analogs to the in vitro translational products of c-erbA protooncogenes: differences in the affinity of the alpha- and beta-forms for the acetic acid analog and failure of the human testis and kidney alpha-2 products to bind T3. Mol Endocrinol. 1990 Feb;4(2):227–234. doi: 10.1210/mend-4-2-227. [DOI] [PubMed] [Google Scholar]
  25. Schuster L. D., Schwartz H. L., Oppenheimer J. H. Nuclear receptors for 3,5,3'-triiodothyronine in human liver and kidney: characterization, quantitation, and similarities to rat receptors. J Clin Endocrinol Metab. 1979 Apr;48(4):627–632. doi: 10.1210/jcem-48-4-627. [DOI] [PubMed] [Google Scholar]
  26. Schwartz H. L., Oppenheimer J. H. Nuclear triiodothyronine receptor sites in brain: probable identity with hepatic receptors and regional distribution. Endocrinology. 1978 Jul;103(1):267–273. doi: 10.1210/endo-103-1-267. [DOI] [PubMed] [Google Scholar]
  27. Schwartz H. L., Oppenheimer J. H. Ontogenesis of 3,5,3'-triiodothyronine receptors in neonatal rat brain: dissociation between receptor concentration and stimulation of oxygen consumption by 3,5,3'-triiodothyronine. Endocrinology. 1978 Sep;103(3):943–948. doi: 10.1210/endo-103-3-943. [DOI] [PubMed] [Google Scholar]
  28. Steinbuch M., Audran R. The isolation of IgG from mammalian sera with the aid of caprylic acid. Arch Biochem Biophys. 1969 Nov;134(2):279–284. doi: 10.1016/0003-9861(69)90285-9. [DOI] [PubMed] [Google Scholar]
  29. Strait K. A., Schwartz H. L., Perez-Castillo A., Oppenheimer J. H. Relationship of c-erbA mRNA content to tissue triiodothyronine nuclear binding capacity and function in developing and adult rats. J Biol Chem. 1990 Jun 25;265(18):10514–10521. [PubMed] [Google Scholar]
  30. Thompson C. C., Weinberger C., Lebo R., Evans R. M. Identification of a novel thyroid hormone receptor expressed in the mammalian central nervous system. Science. 1987 Sep 25;237(4822):1610–1614. doi: 10.1126/science.3629259. [DOI] [PubMed] [Google Scholar]
  31. Weeke J., Orskov H. Synthesis of 125I monolabelled 3, 5, 3'-triiodothyronine and thyroxine of maximum specific activity for radioimmunoassay. Scand J Clin Lab Invest. 1973 Dec;32(4):357–360. doi: 10.3109/00365517309084359. [DOI] [PubMed] [Google Scholar]
  32. Weinberger C., Thompson C. C., Ong E. S., Lebo R., Gruol D. J., Evans R. M. The c-erb-A gene encodes a thyroid hormone receptor. Nature. 1986 Dec 18;324(6098):641–646. doi: 10.1038/324641a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES