Skip to main content
eLife logoLink to eLife
. 2016 Dec 14;5:e19568. doi: 10.7554/eLife.19568

New footprints from Laetoli (Tanzania) provide evidence for marked body size variation in early hominins

Fidelis T Masao 1, Elgidius B Ichumbaki 1, Marco Cherin 2,3,*, Angelo Barili 4, Giovanni Boschian 5, Dawid A Iurino 3,6, Sofia Menconero 7, Jacopo Moggi-Cecchi 8, Giorgio Manzi 9
Editor: George H Perry10
PMCID: PMC5156529  PMID: 27964778

Abstract

Laetoli is a well-known palaeontological locality in northern Tanzania whose outstanding record includes the earliest hominin footprints in the world (3.66 million years old), discovered in 1978 at Site G and attributed to Australopithecus afarensis. Here, we report hominin tracks unearthed in the new Site S at Laetoli and referred to two bipedal individuals (S1 and S2) moving on the same palaeosurface and in the same direction as the three hominins documented at Site G. The stature estimates for S1 greatly exceed those previously reconstructed for Au. afarensis from both skeletal material and footprint data. In combination with a comparative reappraisal of the Site G footprints, the evidence collected here embodies very important additions to the Pliocene record of hominin behaviour and morphology. Our results are consistent with considerable body size variation and, probably, degree of sexual dimorphism within a single species of bipedal hominins as early as 3.66 million years ago.

DOI: http://dx.doi.org/10.7554/eLife.19568.001

Research Organism: Other

eLife digest

Fossil footprints are extremely useful tools in the palaeontological record. Their physical features can help to identify their makers, but can also be used to infer biological information. How did the track-maker move? How large was it? How fast was it going?

Footprints of hominins (namely the group to which humans and our ancestors belong) are pretty rare. Nearly all of the hominin footprints discovered so far are attributed to species of the genus Homo, to which modern humans belong. The only exceptions are the footprints that were discovered in the 1970s at Laetoli (in Tanzania) on a cemented ash layer produced by a volcanic eruption. These are thought to have been made by three members of the hominin species Australopithecus afarensis – the same species as the famous “Lucy” from Ethiopia – around 3.66 million years ago.

The extent to which body shape and size varied between different members of Au. afarensis – for example, between males and females has been the subject of a long debate among researchers. Based on the skeletal remains found so far in East Africa, some scholars believe that individuals only varied moderately, as in modern humans, while others state that it was pronounced, as in some modern apes like gorillas.

Masao et al. have now unearthed new bipedal footprints from two individuals who were moving on the same surface and in the same direction as the three individuals who made the footprints documented in the 1970s. The estimated height of one of the new individuals (about 1.65 metres) greatly exceeds those previously published for Au. afarensis. This evidence supports the theory that body size varied considerably amongst individuals within the species.

Masao et al. tentatively suggest that the new footprints can be considered as a whole with the 1970s ones. The tall individual may have been the dominant male of a larger group, the others smaller females and juveniles. Thus, considerable differences may have existed between males and females in these remote human ancestors, similar to modern gorillas.

The newly discovered tracks are only 150 metres away from the previously discovered sets of footprints. This leaves open the possibility that additional tracks may be unearthed nearby that will further our knowledge about the variability and behaviour of our extinct ancestors.

DOI: http://dx.doi.org/10.7554/eLife.19568.002

Introduction

Estimates of body size and proportions are crucial in the evolutionary interpretation of Plio-Pleistocene hominin palaeobiology (McHenry, 1991, 1992; Ruff et al., 1997; Grabowski et al., 2015) and have been the subject of ongoing debates, at least since the late 1970s (e.g., Johanson and White, 1979). Within-species variability in body size often relates to sexual dimorphism and/or to adaptation to different ecologies. This is particularly true among extant Hominoidea, which show diverse patterns of variation (e.g., Plavcan, 2001); for instance, gorillas are polygynous species with strong sexual dimorphism due to intense male-male competition, whereas chimpanzees are promiscuous with definitively smaller sexual dimorphism. It is reasonable to assume that complex relationships among body size, sexual dimorphism, mating system (and/or reproductive strategy) and social structure/behaviour also applied to extinct hominins, including our bipedal relatives of the Plio-Pleistocene. In fact, claims that size variation in Australopithecus and/or Paranthropus was larger than that in recent human populations include inferences on sexual dimorphism (Richmond and Jungers, 1995; Plavcan et al., 2005; Lockwood et al., 2007; but see Reno et al., 2003), whereas arguments referring to early Homo are usually associated with eco-physiological variants (Antón et al., 2014; Di Vincenzo et al., 2015).

For Australopithecus afarensis, remarkable variation in size and shape within its alleged hypodigm was noted in the original description of the species (Johanson et al., 1978). Nevertheless, there have always been disputes about the nature and degree of sexual dimorphism characterising this early bipedal hominin, with supporters of either pronounced (e.g., Johanson and White, 1979; Kimbel and White, 1988; McHenry, 1991; Richmond and Jungers, 1995; Lockwood et al., 1996; Plavcan et al., 2005; Harmon, 2006; Gordon et al., 2008) or moderate (Lovejoy et al., 1989) body-size dimorphism.

For example, Richmond and Jungers (1995) wrote: 'If the fossils from Hadar and Maka (and Laetoli) are assumed […] to be from one sexually dimorphic species, then the degree of sexual dimorphism of Au. afarensis would have been at least as extreme as that of the most dimorphic living apes […]. It follows that a strictly monogamous structure would have been highly unlikely.' Reno et al. (2003) (but see Plavcan et al., [2005] and the reply by Reno et al., [2005]) challenged this premise with an analysis of the sexual dimorphism of femoral head diameter in Au. afarensis, concluding that these early hominins showed human-like sexual dimorphism and were therefore characterised by a monogamous mating system. Conversely, Grabowski et al. (2015, p. 90) obtained comprehensive and thoroughly vetted data, supporting 'arguments that Au. afarensis had substantial size dimorphism […] leading to a large amount of variation in body size within this taxon.'

It is clear that our ability to investigate this important and controversial issue depends on the possibility of evaluating the body size and proportions of extinct creatures. Estimates are largely inferred from known relationships between metric data in living species, such as bone length (or joint size) and stature (or body mass) (McHenry, 1991, 1992; Grabowski et al., 2015). Similar estimates can be even more plainly obtained from the analysis of single footprints or – even better – from trails of footprints (Tuttle, 1987; Dingwall et al., 2013). Among these, one of the most remarkable pieces of evidence are the renowned trackways from Laetoli Site G (northern Tanzania), which are ascribed to Au. afarensis (White and Suwa, 1987).

In this paper, we report a novel set of hominin tracks discovered at Laetoli in the new Site S, comparing it to a reappraisal of the original evidence. The new tracks can be referred to two different individuals moving in the same direction and on the same palaeosurface as those documented at Site G.

The site: a brief overview

Laetoli (Figure 1A,B) is one of the most important palaeontological localities in Africa. It lies within the Ngorongoro Conservation Area at the southern edge of the Serengeti Plains. The region includes sites such as Olduvai Gorge, Lake Ndutu and Laetoli itself and provides a long sequence of Plio-Pleistocene, mostly volcano-sedimentary, deposits that are rich in archaeological and paleontological remains (Hay, 1987), overlying Precambrian metamorphic rocks. The paleoanthropological significance of the whole area has been known since the mid 1930s (Reck and Kohl-Larsen, 1936; Kohl-Larsen, 1943), whereas Laetoli became known worldwide in the 1970s for stimulating discoveries, such as the holotype and other remains of Au. afarensis (Leakey et al., 1976; Johanson et al., 1978) and remarkable evidence of the earliest bipedal hominin tracks (Leakey and Hay, 1979; Leakey and Harris, 1987) dated to 3.66 million years ago (Ma) (Deino, 2011).

Figure 1. Geographical location and site map.

Figure 1.

(A) Location of the study area in northern Tanzania. (B) Location of Laetoli within the Ngorongoro Conservation Area, about 50 km south of Olduvai Gorge. (C) Plan view of the area of Laetoli Locality 8 (Sites G and S).

DOI: http://dx.doi.org/10.7554/eLife.19568.003

Mammal, bird and insect prints and trails have been identified in 18 sites (labelled from A to R) out of 33 total palaeontological localities in the Laetoli area (Leakey, 1987a; Musiba et al., 2008; Harrison and Kweka, 2011). Footprints occur in 10 sublevels within the so-called Footprint Tuff, corresponding to the lower part of Tuff 7 in the Upper Laetolil Beds stratigraphic sequence (Hay, 1987). These hominin trackways were found in 1978 at Site G (Locality 8) and were referred to three individuals (G1, G2, G3) of different body size: the smallest individual, G1, walked side by side on the left of the largest individual, G2, while the intermediate-sized individual, G3, superimposed its feet over those of G2 (Leakey, 1981). The trackways are usually ascribed, not without controversy (Tuttle et al., 1991; Harcourt-Smith, 2005), to Au. afarensis (White and Suwa, 1987), which is the only hominin taxon found to date in the Upper Laetoli Beds (Harrison, 2011).

Discovery and notes on preservation

The new Site S (situated within Locality 8) is located about 150 m to the south of Site G (Figure 1C), on the surface of the same morphological terrace. It was discovered during systematic survey and excavation activities (Cultural Heritage Impact Assessment) aimed at evaluating the impact of a proposed new field museum at Laetoli, in the area of Locality 8. Sixty-two 2 × 2 m test pits were randomly positioned within a grid and were carefully excavated down to the Footprint Tuff and sometimes deeper.

In 2015, fourteen hominin tracks always associated with tracks of other vertebrates (see Results) were unearthed in three test-pits, respectively labelled L8, M9 and TP2 from north to south (see Materials and methods) (Figures 1C and 2). Seven bipedal tracks in different preservation state (see below) were exposed in L8 (Figure 2; Figure 2—figure supplement 1 and Figures 34) and four in M9 (Figure 2—figure supplement 2 and Figure 5). Two additional tracks of the same individual were found in the eastern part of TP2 (Figure 6). All these prints are clearly referable to a single individual trackway, with an estimated total length of 32 m and trending SSE to NNW (i.e., 320–330°), approximately parallel to the G1 and G2/3 trackways. Following the code used for the Site G prints (Leakey, 1981), we refer to the new individual as S1 (footprint numbers S1-1–7 in L8, S1-1–4 in M9 and S1-1–2 in TP2). At the end of the September 2015 field season, we discovered one more track referable to a second individual (S2), in the SW corner of TP2. Conversely, we exposed only non-hominin footprints in test-pit M10 (Figure 2—figure supplement 3).

Figure 2. Plan view of the four test-pits excavated at Laetoli Site S.

Dashed lines indicate uncertain contours. Some of the most interesting tracks are coloured: hominins in orange (heel drags in dark grey), equid in dark green (M9), rhinoceros in red (M9), giraffe in light brown (M10), and guineafowl in blue (M10). Large roots and the bases of trees are in light green (L8). The main faults/fractures are indicated by brown lines. Raindrop impressions occur in the northern part of L8 (dotted areas).

DOI: http://dx.doi.org/10.7554/eLife.19568.004

Figure 2.

Figure 2—figure supplement 1. Orthophotos of selected hominin tracks from test-pit L8 at Site S.

Figure 2—figure supplement 1.

(A) L8/S1-1. (B) L8/S1-2. (C) L8/S1-3. (D) L8/S1-4. From left to right: textured models, textured and shaded models, shaded models, and shaded coloured models. Colours represent the density of the point clouds obtained by determining the distance to the nearest neighbour. The surface density is the number of neighbours divided by the neighbourhood surface = N/(πR2).
Figure 2—figure supplement 2. Orthophotos of selected hominin tracks from test-pit M9 at Site S.

Figure 2—figure supplement 2.

(A) M9/S1-2. (B) M9/S1-3. Details as in Figure 2—figure supplement 1.
Figure 2—figure supplement 3. Orthophotos of selected tracks from test-pit M10 at Site S.

Figure 2—figure supplement 3.

(A,B) Small bovid (?Madoqua) and bird (?Numida) tracks. (C) Two giraffe tracks surrounded by small bovid and bird tracks. Details as in Figure 2—figure supplement 1.

Figure 3. Shaded 3D photogrammetric elevation model of the L8 trackway.

Figure 3.

Colour renders heights as in the colour bar. The empty circles indicate the position of the targets of the 3D-imaging control point system (see Materials and methods for details).

DOI: http://dx.doi.org/10.7554/eLife.19568.008

Figure 4. Shaded 3D photogrammetric elevation model of test-pit L8 and close-up of the best-preserved tracks with contour lines.

Figure 4.

Colour renders heights as in the colour bar; distance between elevation contour lines is 2 mm. The empty circles indicate the position of the targets.

DOI: http://dx.doi.org/10.7554/eLife.19568.009

Figure 5. Shaded 3D photogrammetric elevation model of the central portion of test-pit M9 and close-up of the best-preserved tracks with contour lines.

Figure 5.

Colour renders heights as in the colour bar; distance between elevation contour lines is 2 mm. The empty circles indicate the position of the targets

DOI: http://dx.doi.org/10.7554/eLife.19568.010

Figure 6. Shaded 3D photogrammetric elevation model of test-pit TP2 and close-up of the three hominin tracks with contour lines.

Figure 6.

Colour renders heights as in the colour bar; distance between elevation contour lines is 2 mm. The empty circles indicate the position of the targets.

DOI: http://dx.doi.org/10.7554/eLife.19568.011

The preservation state of the tracks varies considerably along the trackway, depending on the depth of the Footprint Tuff from the surface.

In L8, the Tuff is very shallow, not deeper than 20 cm to the south, whereas it even crops out on the scarp of the terrace on the opposite side. Consequently, the Tuff is overlain here only by reworked loose soil, and the tracks are not filled up with compact and/or cemented sediment. Preservation issues arise from this situation, because the tuff tends to be rather altered and dislodged along the natural fractures (Figure 7). The first four tracks in the L8 trail are the best preserved, whereas the state of preservation of the footprint-bearing surface is particularly critical in the northern part (Figure 8), where the surface appears very damaged by cracks of different size and by plant roots. Some parts of the surface even subsided into micro-grabens developed along the main faults. Consequently, the anterior portion of the track L8/S1-6 is no longer visible because it is situated in one of these lowered parts (Figure 3). Moreover, a zigzag channel, probably formed by a large root, crosses the northern half of this test-pit from SE to NW, so that L8/S1-5 is virtually indiscernible (Figure 3). In the western portion of L8, three large rounded holes (green circles in Figure 2) originated from roots of acacia trees that grew on the surface. Raindrop imprints are visible to the northern edge of the test-pit (Figure 2) on two relatively well-preserved portions of the tuff surrounded by weathered and lowered areas. These features have also been described in several other footprint-bearing sites at Laetoli (Leakey, 1987a).

Figure 7. Southern part of the hominin trackway in test-pit L8.

Figure 7.

Footprints L8/S1-1, L8/S1-2, L8/S1-3 and L8/S1-4 are visible from left to right. The heel drag mark is well visible posteriorly to L8/S1-3.

DOI: http://dx.doi.org/10.7554/eLife.19568.012

Figure 8. Test-pit L8 at Laetoli Site S.

Figure 8.

In the northern part of the test-pit (at the top), the Footprint Tuff is particularly altered, damaged by plant roots and dislodged along natural fractures.

DOI: http://dx.doi.org/10.7554/eLife.19568.013

The situation is different in M9, where about 72 cm of grey soil and unaltered sediments overlie the Footprint Tuff. Here, the tracks are sealed by the upper, laminated part of Tuff seven and filled with strongly cemented sediment. The tuff is here in reasonably good condition, even if it is crossed by old tectonic fractures re-cemented by calcite (Figures 5 and 9). Moreover, deeply expanding roots penetrate preferentially into the subhorizontal fissures situated between bedding planes, dislodging the rock and fostering carbonate dissolution.

Figure 9. Central part of the hominin trackway in test-pit M9.

Figure 9.

Tracks M9/S1-3 and M9/S1-2 are visible from left to right. The two tracks are crossed by some fractures filled by hard calcite veins, which were not removed. In M9, the Footprint Tuff is in almost pristine condition, and most of the tracks are still filled by compact sediment.

DOI: http://dx.doi.org/10.7554/eLife.19568.014

The taphonomic state of the Footprint Tuff and of the tracks is very similar in M10, which is about 80 cm deep. In M9, the infilling matrix was removed from two hominin tracks (M9/S1-2 and M9/S1-3) (Figures 5 and 9) in order to examine their inner morphology. Small amounts of water were used during the excavation, in order to soften the sediment and darken its hue to better distinguish it from the surrounding tuff. The infill was finally removed by small dental tools, trying not to damage the very thin calcite film covering the original footprint surface (White and Suwa, 1987). Unfortunately, some vertical crisscross fractures filled by hard calcite veins (Figures 5 and 9) preclude a detailed morphological study of the two footprints. An about 4-cm-thick layer of tuff was removed from a footprint-free area of the M9 SW corner, putting into light a deeper horizon containing bovid tracks (Figure 2).

In TP2, the preservation state of the ~66-cm-deep printed tuff is intermediate between the L8 and M9/M10 ones. The southern part is in better condition: the hominin track TP2/S1-1 is rather well preserved and some of the other animal prints are still filled by the sediment of the overlying unit. Unfortunately, the SW portion of the test-pit is crossed longitudinally by north-running roots that cross TP2/S2-1, partially damaging it (Figures 2 and 6). On the contrary, the northern part of the test-pit is poorly preserved because of a micro-graben developed along an EW-trending fault, which also crosses TP2/S1-2, causing the lowering of its anterior portion (Figures 2 and 6).

Geological setting

The assessment of the Laetoli Site S sequence within the wider framework of the Eyasi Plateau formations is crucial to understand the stratigraphic relationships between the footprint-bearing units of the newly discovered Site S and those of the historical Site G. These relationships can be discussed at two levels of increasing detail, each one affecting different and similarly more detailed aspects of the study of the tracks.

The first – and most relevant – level regards verifying whether the unit bearing the new tracks corresponds to the Footprint Tuff, part of Tuff 7 together with the overlying Augite Biotite Tuff (Leakey and Hay, 1979, p. 317; Hay, 1987, p. 36), where the Site G tracks were printed. This would imply that the trackways are contemporaneous from a geological/geochronometric point of view. Moreover, considering that Tuff 7 includes a sequence of several sublevels originated by distinct eruptions closely spaced in time, and that its overall deposition time was estimated in weeks (Hay and Leakey, 1982, p. 55; Hay, 1987, p. 36, it can be concluded that all the tracks belong to the same general population of hominins.

Secondarily, stratigraphic relationships can be explored at higher detail, in order to assess whether the tracks of Site S were printed on exactly the same sublevel of the Footprint Tuff as those in Site G. This aspect would mostly concern the behavioural aspects of a hypothetical single group of hominins, but it must be pointed out that extra-fine correlation between outcrops, even in a depositional environment with moderate lateral variability like the Footprint Tuff deposition area, can be affected by major uncertainty.

Field description of the sequences

The eye-scale characteristics of the profiles exposed in the test-pits are reported here from the top downwards.

Test-pit L8

The Footprint Tuff is extremely shallow and partly eroded in this area, which is limited by the erosional surface of a gully side. Only the lower subunit is preserved, whereas the upper one is completely pedogenised. Consequently, the tracks are not filled-up with compact sediment but only with modern soil: dark grey (2,5Y 4/1–4/2 dark grey-dark greyish brown) clay loam to sandy clay loam, with well-developed coarse subangular blocky structure, extremely loose and weak. To the north, the Tuff is no longer covered by soil and crops out directly from the ground surface; the rock, already fractured by tectonic stress, is partly dislodged into decimetre-size blocklets. To the south, the Tuff is overlain by 20–25 cm of soil.

Test-pit M9 (Figure 10)

Figure 10. Laetoli Site S geology.

Figure 10.

(A) Stratigraphic sketch of the sequence, as in test-pit M9. Numbers on the left (1–5) correspond to the lithologic units observed in the field: 1 — modern soil; 2 — grey augite-rich tuff; 3 — laminated grey tuff; 4 — finely layered grey and white tuff; 5 — light brown tuff. Unit two corresponds to the Augite Biotite Tuff (Hay, 1987); units 3 and 4 correspond respectively to the upper and lower horizons of the Footprint Tuff (Hay, 1987). Numbers on the right indicate the four and fourteen sublevels included, respectively, in the upper and lower part (Hay, 1987). Hominin tracks occur on the topmost sublevel of unit 4 (red line); a similar thick whitish footprint-bearing level can be observed in the same stratigraphic position at Localities 6 and 7. Oblique hatch: open cracks. White patches in unit 5 are burrower tunnels and disturbances. Green rectangle: location of panel B image. (B) Photomosaic showing the Footprint Tuff and part of the overlying unit.

DOI: http://dx.doi.org/10.7554/eLife.19568.015

  1. Modern soil. Dark grey (2,5Y 4/1–4/2 dark grey-dark greyish brown) clay loam to sandy clay loam, with well-developed coarse subangular blocky structure, rather loose and moderately weak; sand is more common at the base, where the structure is somewhat less developed. Few coarse unsorted skeleton. Few Fe/Mn-oxide mottles. Thickness 20–25 cm; abrupt and slightly undulating limit.

  2. Grey augite-rich tuff. Greyish (2.5Y 4/1–5/1 dark grey-grey) silty sand, poorly sorted, with common very coarse sand-size black rounded grains. Massive structure, moderately strong; no sedimentary structures. Thickness 32–35 cm; sharp subhorizontal limit, frequently marked by recent roots occupying a 0–1-cm-thick planar void. Poorly sorted very fine sand to coarse sand-size particles, including common anhedral to subhedral augite, grey rounded particles, greyish-brownish aggregates, other unidentified lithics. Light grey micro- to cryptocrystalline cement.

  3. Laminated grey tuff. Sequence of light grey to brownish to black (2.5Y 6/2 light brownish gray-2.5Y 5/4 light olive brown-N 2/5 black) sandy laminae and thin layers 1–3 mm thick. Massive, very strong. Thickness 5–7 cm; sharp limit marked by a fine white crust, and in some cases by a 2–5-mm-thick planar void. Moderately well-sorted anhedral to subhedral, subrounded to subangular, medium to fine sand-size light grey to greenish grains; white microcrystalline cement. In the uppermost layers, the grain-size is slightly coarser (medium sand), and the particles are subrounded to rounded; biotite laminae and brownish rounded aggregates are common. The darker laminae usually include finer grains, and the cement is generally less abundant.

  4. Finely layered grey and white tuff. Sequence of light grey to white (N6/ gray-10YR 8/1 white) sandy layers, 2–3 mm to 25–30 mm-thick. The uppermost level is white and thicker, even if its thickness can vary significantly throughout the surface. Platy and rounded fragments of grey sediment, probably clods deriving from disarticulation of desiccation polygons, lie horizontally within the overlying white sediment. Massive, strong. Thickness 7–8 cm; sharp subhorizontal and plain limit. Footprints at the top. The grey layers include dark grey fine sand-size particles, moderately well-sorted, rounded to subrounded, often concentrated in mm-thick laminae at the base of the layer. Some grading is not uncommon. The cement is light grey, apparently micro- or cryptocrystalline. The grains of the white layer are somewhat larger and less sorted, subrounded to angular; medium sand-size biotite laminae are frequent, as well as very light green subhedral to anhedral crystals; brownish rounded grains occur sparsely. The cement is white, apparently micro- to cryptocrystalline.

  5. Light brown tuff. Homogeneous silty sand (7.5 year 6/3 light yellowish brown) with whitish mottles (10 year 7/1 light gray-5Y 8/1 white), poorly sorted and with common coarse sand-size rounded grains. Massive structure, very firm to moderately strong. Homogeneous, with traces of burrowers at the top. Base not observed. Very poorly sorted, silt to coarse sand-size particles, rounded to angular. Dominant grey rounded particles, frequent subhedral augite, few to frequent medium sand-size biotite laminae; rounded fragments of fine grey ash fall tuff and other still unidentified lithics occur sparsely. Whitish micro- to cryptocrystalline cement.

Test-pit M10

  1. Modern soil. Dark grey (2,5Y 4/1–4/2 dark grey-dark greyish brown) clay loam to sandy clay loam, with well-developed medium to very coarse subangular blocky structure, rather loose and moderately weak; sand is more common at the base, where the structure is somewhat less developed. Few Fe/Mn-oxide mottles. Thickness 20–45 cm; abrupt undulating limit.

  2. Grey augite-rich tuff. Greyish (2.5Y 4/1–5/1 dark grey-grey) silty sand, poorly sorted, with common coarse to very coarse sand-size black rounded grains. Massive structure, strong; no sedimentary structures. Thickness 25–45 cm; sharp subhorizontal limit. Poorly sorted very fine sand to coarse sand-size particles, including common anhedral to subhedral augite, grey rounded particles, greyish-brownish aggregates, other unidentified lithics.

  3. Laminated grey tuff. Finely interbedded light grey to brownish to black (2.5Y 6/2 light brownish grey-2.5Y 5/4 light olive brown-N 2/5 black) sandy laminae and thin layers 1–3 mm thick. Massive, very strong. Thickness 4–6 cm; sharp limit marked by a thin planar void. Moderately well-sorted anhedral to subhedral, subrounded to subangular, medium to fine sand-size light grey to greenish grains; white microcrystalline cement. In the uppermost layers, the grain-size is slightly coarser (medium sand), and the particles are subrounded to rounded; biotite laminae and brownish rounded aggregates are common. The darker laminae usually include finer grains, and the cement is generally less abundant.

  4. Finely layered grey and white tuff. Only the top surface was observed. Common animal tracks.

Test-pit TP2

  1. Modern soil. Dark grey (2,5Y 4/1–4/2 dark grey-dark greyish brown) clay loam to sandy clay loam, with well-developed fine to very coarse subangular blocky structure, loose and moderately weak. Few Fe/Mn-oxide mottles. Thickness 35–45 cm; abrupt undulating limit.

  2. Grey augite-rich tuff. Greyish (2.5Y 4/1–5/1 dark grey-grey) silty sand, poorly sorted, with common coarse to very coarse sand-size black rounded grains. Massive structure, strong; no sedimentary structures. Thickness 6–23 cm; sharp subhorizontal limit. Poorly sorted very fine sand to coarse sand-size particles, including common anhedral to subhedral augite, grey rounded particles, greyish-brownish aggregates, other unidentified lithics.

  3. Laminated grey tuff. Finely interbedded light grey to brownish to black (2.5Y 6/2 light brownish grey-2.5Y 5/4 light olive brown-N 2/5 black) sandy laminae and thin layers 1–3 mm thick. Massive, very strong. Thickness 4–5 cm; sharp limit marked by a thin planar void. Moderately well-sorted anhedral to subhedal, subrounded to subangular, medium to fine sand-size light grey to greenish grains; white microcrystalline cement. In the uppermost layers, the grain-size is slightly coarser (medium sand), and the particles are subrounded to rounded; biotite laminae and brownish rounded aggregates are common. The darker laminae usually include finer grains, and the cement is generally less abundant.

  4. Finely layered grey and white tuff. Only the top surface was observed. Common animal and three hominin tracks.

Results

Non-hominin tracks

Tracks and trackways of mammals, birds and insects, as well as raindrop impressions, are recorded from 18 sites at Laetoli, named alphabetically from A to R. Sites from A to P were listed and geographically located by Leakey (1987b), who also described in detail the ichnological record of the most important exposures. Sites Q and R were discovered and described by Musiba et al. (2008). More than 11,300 single footprints are recorded from Sites A–R. These tracks testify to a very rich ichnofauna, although a very high percentage of them (more than 88%) can be ascribed to small mammals such as lagomorphs and/or Madoqua-like bovids (Leakey, 1987a; Musiba et al., 2008).

Numerous footprints were discovered in the new exposures (test-pits L8, M9, TP2 and M10) of the Footprint Tuff at Site S in Locality 8 (Figure 2). A total of 529 footprints of mammals (excluding hominins) and birds (Table 1) were recorded during the September 2015 field season. The prints were carefully cleaned using soft brushes to reveal detailed features, measured, photographed, traced, mapped and identified in a preliminary study.

Table 1.

Number of individual tracks (excluding hominins) at Laetoli Site S.

DOI: http://dx.doi.org/10.7554/eLife.19568.016

Taxon

L8

M9

TP2

M10

Total

Numididae (?Numida)

-

4

-

9

13

Bovidae, small size (?Madoqua)

107

39

16

211

373

Bovidae, medium size (?Gazella)

39

9

-

21

79

Equidae (?Hipparion)

1

2

-

-

3

Giraffidae

-

-

-

4

4

Lagomorpha (?Lepus)

8

-

-

4

12

Rhinocerotidae

-

1

-

-

1

Unidentified micromammals

-

27

-

17

44

Total

155

82

26

266

529

Mammal tracks – mostly of small and medium-size bovids – are very abundant in M10, L8 and M9 and occur less frequently in TP2. Their size (30–40 mm long and 20–36 mm wide) and morphological features suggest that most of them can be ascribed to the genus Madoqua (Figure 2 and Figure 2—figure supplement 3). Some slightly larger prints (60–80 × 40–60 mm) can be referred to medium-sized bovids such as Gazella, Eudorcas or Nanger.

It is very difficult to distinguish the footprints of Madoqua-like bovids from lagomorph footprints because of their very similar morphology and size (Leakey, 1987a). Consequently, we decided to ascribe to Lagomorpha only trails that clearly include at least four footprints arranged in the normal hare gait pattern, i.e. two single prints left by the front feet followed by a couple of prints made by the hind feet in the direction of gait. Each single trail (i.e., four footprints) is approximately 200 mm long and 100 mm wide.

We identified very few prints of giraffids (about 170 × 125 mm) in M10, equids (about 50–95 × 45–70 mm) in L8 and M9 and rhinoceroses (about 150–135 mm) in M9 (Figure 2 and Figure 2—figure supplement 3C). In M9 and M10, some avian prints (about 60 × 75 mm) often organised in trails, can be referred to Galliformes of the family Numididae, such as the guinea fowl (genus Numida) (Figure 2 and Figure 2—figure supplement 3A,B). Finally, we report some very small (about 10 × 10 mm) tracks of unidentified animals, probably micromammals, in M9 and M10.

The above-mentioned assemblage of terrestrial mammal and bird footprints suggests that the local palaeoenvironment was characterised by a mosaic of dry tropical bushland, woodland, open grassland and riverine forest similar to the extant one.

Morphology of hominin tracks

The morphology of the S1 tracks can be described in detail, but unfortunately the only preserved track of S2 shows an abnormal widening of the anterior part. This enlarged morphology is possibly due to a lateral slipping of the foot before the toe-off; alternatively, it could be due to taphonomic factors as a thick root crossing the footprint longitudinally may have altered its original morphology. The overall morphology of the S1 tracks matches those at Site G (Figure 11) and is similar in particular to the prints of the larger individual, G2 (Robbins, 1987): the heel has an oval shape and is pressed deeply into the ground; the medial side of the arch is higher than the lateral one; the ball region is oriented at an angle of about 75° with respect to the longitudinal axis of the foot and is delimited anteriorly by a transversal ridge, formed when the toes gripped the wet ash and pushed it posteriorly. No clear distinction among the toes is visible. The adducted hallux extends more anteriorly than the other toes in all visible footprints. In TP2/S1-1, the hallux apparently shuffled anteriorly when the foot was lifted from the ground. Some tracks (especially L8/S1-3, M9/S1-2, M9/S1-3 and TP2/S1-1) are characterised by a posterior drag mark about 100 mm long (Figures 47 and Figure 2—figure supplements 1 and 2). These marks were possibly left by the heel shuffling on the ash before being firmly placed into the soil. The two latter features were also recognised in some of the G2 prints (Robbins, 1987) and suggest that the feet were probably lifted above the ground at a low oblique angle. The depth distribution pattern indicates that the weight transfer of S1 was similar to that described for G1–3 (Robbins, 1987): starting from the heel, the weight was transferred along the lateral part of the foot (note the steep slope of the lateral wall of the tracks compared to that on the medial side) up to the distal metatarsal region, and from here to the toes. In some of the S1 tracks (L8/S1-1, L8/S1-3 and TP2/S1-8, all of the right side), however, the area of maximum depth is located beneath toes 2–5. This may suggest a somewhat asymmetrical walking, in which the weight was sometimes loaded on the anterolateral part of the foot before the toe-off. Alternatively, this pattern may be indicative of a rotation of the upper body during the gait (Schmid, 2004). The angle of gait ranges approximately from 2° to 11°, without any particular difference between the right and left sides. Regarding this aspect, S1 resembles more G2/3, for which very low average angles are reported, whereas G1 shows instead wide asymmetrical angles (Tuttle, 1987).

Figure 11. Shaded 3D photogrammetric elevation model of a cast of the southern portion of the Site G trackway with close-ups of selected hominin tracks with contour lines.

Colour renders heights as in the colour bar; distance between elevation contour lines is 2 mm. The empty circles and squares indicate the position of the targets.

DOI: http://dx.doi.org/10.7554/eLife.19568.017

Figure 11.

Figure 11—figure supplement 1. Orthophotos of selected hominin footprints from a cast of the southern portion of the Site G trackway.

Figure 11—figure supplement 1.

(A) G2/3–29. (B) G1-34, G1-35, G2/3–25, G2/3–26. (C) G2/3–18. From left to right: textured models, textured and shaded models, shaded models, and shaded coloured models. Colours represent the density of the point clouds obtained by determining the distance to the nearest neighbour. The surface density is the calculation of number of neighbours divided by the neighbourhood surface = N/(πR2).

Speed, stature and body mass estimates

The main dimensional parameters of the tracks at Site S are presented in Table 2 (the single measurements are explained in Materials and methods).

Table 2.

Dimensional parameters measured and derived from the Laetoli Site S tracks and stature and body mass estimates for S1 and S2.

DOI: http://dx.doi.org/10.7554/eLife.19568.019

Footprint

Side

Length (mm)

Max width (mm)

Foot index (%)

Heel width (mm)

Angle of gait (degrees)

Estimated stature (cm)

Estimated body mass (kg)

H. sapiens§

H. sapiens°

Au. afarensis

H. sapiens°

Au. afarensis

TP2/S1-1

right

271

101

37.2

83

6

194–170

175.4

167–175

53.8

42.9–50.0

TP2/S1-2

left

271

99

36.6

81

4

193–169

175.1

167–175

53.1

42.8–49.8

M9/S1-1

left

250

102

40.6

73

2

179–156

167.5

154–161

51.6

39.6–46.0

M9/S1-2

right

264

105

39.7

80

3

189–165

172.8

163–171

54.2

41.8–48.7

M9/S1-3

left

268

111

41.2

91

4

192–168

174.3

166–173

56.3

42.5–49.4

M9/S1-4

right

245

101

41.2

71

4

175–153

165.6

151–158

50.9

38.8–45.1

L8/S1-1

right

245

104

42.4

78

8

175–153

165.6

151–158

51.7

38.8–45.1

L8/S1-2

left

265

106

40.0

82

11

189–166

173.1

164–171

54.5

41.9–48.8

L8/S1-3

right

260

103

39.6

77

3

186–163

171.3

161–168

53.1

41.2–47.9

L8/S1-4

left

274

106

38.6

81

10

196–171

176.5

169–177

55.6

43.4–50.5

L8/S1-5

right

-

-

-

-

-

-

-

-

-

-

L8/S1-6

left

-

-

-

86

3

-

-

-

-

-

L8/S1-7

right

258

110

42.7

90

8

184–161

170.3

159–166

54.8

40.7–47.4

Average S1

-

261

104

40.0

81

6

184–163

171.6

161–168

53.6

41.3–48.1

TP2/S2-1

right

231

120*

51.9*

86

-

165–144

160

142–149

46.7

36.5–42.4

Step length

Stride length

Footprints

Side

Step length (mm)

Footprints

Side

Stride length (mm)

TP2/S1-1 → 2

right → left

553

M9/S1-1 → 3

left

1044

M9/S1-1 → 2

left → right

548

M9/S1-2 → 4

right

1069

M9/S1-2 → 3

right → left

505

L8/S1-1 → 3

right

1140

M9/S1-3 → 4

left → right

571

L8/S1-2 → 4

left

1159

L8/S1-1 → 2

right → left

552

L8/S1-4 → 6

left

1284

L8/S1-2 → 3

left → right

587

Average right

1105

L8/S1-3 → 4

right → left

573

Average left

1162

L8/S1-6 → 7

left → right

660

Average

1139

Average right → left

545

Average left → right

591

Average

568

*Values overestimated because of the enlarged morphology of the only preserved track of S2. §Estimation based on the relationship between foot length and stature in Homo sapiens (Tuttle, 1987). °Estimation based on the relationship between footprint length and stature/body mass in H. sapiens (Dingwall et al., 2013). Estimation based on the relationship between foot length and stature/body mass in Au. afarensis (Dingwall et al., 2013). See Materials and methods for details.

Speed estimates for S1 and G1–3 were computed starting from stride length (Figure 3) (see Materials and methods). The obtained values (Table 3) show that these hominins were all walking at similar low speed (about 0.44 to 0.9 m/s, depending on the analysis method).

Table 3.

Data and estimates for the five Laetoli track-makers from Sites S and G. Limited to S1, mean values, standard deviation and range are provided.

DOI: http://dx.doi.org/10.7554/eLife.19568.020

Trackway

S1

S2

G1

G2

G3

Number of measurable footprints

11

1

9

2

8

Average footprint length (mm)

261 ± 10.5 (245–273)

231

180

225

209

Average footprint max width (mm)

104 ± 3.7 (99–111)

120*

79

117

85

Average foot index (%)

40.0 ± 1.9 (36.6–42.7)

51.9*

43.8

48.0

41.5

Average step length (mm)

568 ± 44.3 (505–660)

-

416

453

433

Average stride length (mm)

1139 ± 94.0 (1044–1284)

-

829

880

876

Estimated stature (cm)

H. sapiens§

163–186

144–165

113–129

141–161

130–149

H. sapiens°

171.6 ± 5.4

160 ± 5.4

141.4 ± 5.4

158.2 ± 5.4

152.2 ± 5.4

Au. afarensis

161–168

142–149

111–116

139–145

129–135

Estimated body mass (kg)

H. sapiens°

53.6 ± 3.7

46.7 ± 3.8

39.3 ± 3.7

52.6 ± 3.7

43.2 ± 3.7

Au. afarensis

41.3–48.1

36.5–42.4

28.5–33.1

35.6–41.4

33.1–38.5

Walking speed (m/s)

0.47–0.55 (0.93)

0.43–0.50 (1.00)

0.36–0.42 (0.79)

0.39–0.46 (0.88)

Relative speed (s−1)

0.25–0.34 (0.54)

0.33–0.44 (0.71)

0.23–0.30 (0.50)

0.26–0.35 (0.58)

*Values overestimated because of the enlarged morphology of the only preserved track of S2. §As in Table 2. °As in Table 2. As in Table 2. For walking speed and relative speed, values outside the brackets are based on the method of Alexander (1976), those inside the brackets are based on the method of Dingwall et al. (2013). See Materials and methods for details.

The average length of the tracks in the S1 trackway is 261 mm (range 245–274). Lower values were measured for the three individuals at Site G. The average lengths are 180 mm for G1, 225 mm for G2 and 209 mm for G3 (Leakey, 1981; Tuttle, 1987) (Table 3), although a digital analysis-based study (Bennett et al., 2016) of some Site G footprint casts suggests higher values for G1 (193 mm) and G3 (228 mm). The main metrical features of the S1 and S2 tracks (footprint length and width, step and stride lengths) are larger than the G1–3 equivalents (Table 3).

The stature and mass of the Laetoli print-makers were estimated following the relationships between foot/footprint size and body dimensions (Tuttle, 1987; Dingwall et al., 2013). It must be pointed out that stature and body-mass estimates obtained by linear regressions from modern humans (Tuttle, 1987; first method by Dingwall et al., 2013 are probably exaggerations, as the body proportions of modern Homo sapiens are considerably different from those of the Laetoli putative track-makers. Consequently, we focused our interpretations on the more appropriate predictions inferred from the relationship between foot size and body dimensions in Australopithecus (second method by (Dingwall et al., 2013; see Materials and methods for details). The data in Tables 23 indicate that stature and mass estimates for S1 and S2 (about 165 cm and 44.7 kg, and 146 cm and 39.5 kg, respectively) are higher than those obtained for G1, G2 and G3 (with S2 partly overlapping the higher estimates for G2).

Discussion

Stratigraphic position of the new tracks

Site S is situated on an almost level or very gently dipping surface, situated at the foot of the left (southern) side of the Garusi River valley. Site G is situated about 150 m to the north, on the same surface but 1.5–2 m lower than Site S. Several shallow gullies dissect this surface, producing a complexly terraced morphology: consequently, there is no observable stratigraphic continuity between the two sites. However, the gullies put into light about 2–3 m of the underlying sequence, whose units are horizontally layered and characterised by almost constant thickness. Only a shallow depression elongated E-W can be observed between the sites; this is probably an ancient erosion channel filled by a constant thickness of the Site S footprint-bearing tuff. Even if the area of possible outcrop of the Footprint Tuff on gully sides close to Site S is covered by debris, the correlation between G and S is in general straightforward.

All previous literature describing the original stratigraphic setting at Laetoli (Leakey and Hay, 1979; Hay and Leakey, 1982; Hay, 1987) indicates that the Footprint Tuff can be divided into two main units – the lower and the upper one – which can be subdivided into 14 and 4 sublevels, respectively. Footprints occur on several sublevels of each unit all over the Laetoli area: eight within the lower one (mostly on sublevel 9 and on the topmost sublevel 14), and two within the upper one (sublevels 1 and 2).

Leakey and Hay (1979, pp. 317–318 and fig. 4) provided a brief description of the type-sequence of the Footprint Tuff at Locality 6 (Site A), where a short trackway of human-like footprints – later referred to an ursid (Tuttle, 2008) – was also found. Later, Hay and Leakey (1982, p. 55 and White and Suwa (1987, p. 488 specified that the hominin tracks at Site G are situated on the top of horizon B, i.e. on the top of sublevel 14 within the lower unit of the Footprint Tuff. Eventually, Hay (1987, pp. 34–35 and fig. 6) provided a generalised columnar profile of the Footprint Tuff; this is by far the most accurate description available, but is averaged over all the Laetoli area sites. Although the stratigraphic descriptions above are very accurate, they do not provide details about the eye-scale characteristics of the tuffs, i.e. colour, texture, limits, and so on, and no photographs of the sequence have been published.

The Site S sequence does not fit the aforementioned descriptions perfectly, at least not within the observed area, which is rather narrow. The grey augite-rich tuff of Site S largely matches the description of the Augite Biotite Tuff described by Hay (1987, p. 34 and following, level 4 in fig. 2.6, p. 35). Regarding the Footprint Tuff, the upper unit corresponds to Site S Laminated Grey Tuff, but the sublevels here are layered rather crudely, whereas the most evident sedimentary structure is a very fine and almost continuous lamination, which makes the subdivision rather problematic. Energy-sorting of denser grains is apparently a relevant aspect of the depositional processes. The Finely Layered Grey and White Tuff of Site S corresponds to the lower subunit of the Footprint Tuff; 14 sublevels are apparent as in the standard description, but this number may be imprecise (or evaluated differently) because some of them are extremely thin and apparently discontinuous; in fact, some of the thinner (and darker) ones look more like concentrations of gravity-sorted coarser/denser grains situated at the bottom of graded layers. The top sublevel is rather thicker than the others and somewhat whitish instead of greyish, as apparent also in Localities 6 and 7.

Some lateral variability is not surprising in continental environments, which are normally affected by strong morphogenetic processes and/or lateral changes in the sedimentary environments. Consequently, lateral variability can also be expected within the sequence of the Footprint Tuff, even if the involved volcanic depositional processes were rather uniform over a wide area around Laetoli and gave the whole sequence a remarkably homogeneous aspect throughout its outcrops.

The correlation between Site G and Site S cannot be absolutely undisputable, at least for the time being, because the original profile could not be examined directly. However, the geological and morphological setting of the area, as well as the characteristics of the newly exposed sequence, indicate with a very good margin of confidence that the newly discovered tracks belong to the Footprint Tuff.

To provide a more accurate correlation within the Footprint Tuff, we observe that the Site S tracks were printed on the uppermost level of the Finely Layered Grey and White Tuff (unit 4 in the description provided in this paper), which corresponds to the lower subunit of the Footprint Tuff. The lithological change to the overlying subunit is very evident and marked by a sharp surface, often underlined by a thin crack. However, because of the aforementioned dissimilarities, it is not possible to assess with reasonable confidence whether this stratigraphic position also corresponds to the top of level 14 in the standard sequence (Hay, 1987, p. 35, fig. 2.6), i.e. to the same stratigraphic position as the Site G trackways.

Implications of the new Laetoli footprints

Our results show that no matter which method is employed to estimate stature and body mass (see Material and methods), the two individuals S1 and S2 were taller and had a larger body mass than the G individuals. The estimated about 165 cm stature of S1 is quite remarkable, exceeding G2 by more than 20 cm (Table 3).

In order to contextualise the australopithecine and early Homo stature estimates and range of variability obtained from the footprints within a broader picture (Figure 12), and to compare them with a larger sample, we extended our analysis to consistent data based on skeletal elements, namely femurs (see Materials and methods for details). Figure 12 shows the estimated stature of australopithecine and early Homo individuals by species between 4.0 and 1.0 Ma. The predicted stature of S1 exceeds any australopithecine: a mean value of 158 cm was estimated for the large Au. afarensis individual from Woranso-Mille (Haile-Selassie et al., 2010; Lovejoy et al., 2016), while the Hadar individuals range from 109 to 143 cm (McHenry, 1991; Ward et al., 2012) (Figure 12). The stature of S1 falls within the range of modern Homo sapiens maximum values; it also fits the available Homo erectus sensu lato estimates based on fossil remains (Ruff and Walker, 1993) and on footprints (Bennett et al., 2009) (Figure 12). At the same time, the 41 to 48 kg body mass range estimated for S1 (Table 3) falls easily within the range of male Au. afarensis (40.2–61.0 kg) (Grabowski et al., 2015). These results extend the dimensional range of the Laetoli track-makers and identify S1 as a large-size individual, probably a male (Plavcan, 1994; Grabowski et al., 2015).

Figure 12. Estimates of predicted stature of fossil hominin individuals by species over time for the interval 4–1 Ma.

Figure 12.

Solid symbols (or crosses in bold) refer to stature estimates based on actual femur length; open symbols refer to stature estimates based on estimated femur length, in turn based on femur head diameter. For Laetoli and Ileret, stature estimates are based on footprint length (see Materials and methods). For Laetoli, Ileret and Woranso-Mille, the average value and range of predicted stature are shown. Colours are associated to the geographical location of each fossil/footprint site on the map. See Supplementary file 5 for details.

DOI: http://dx.doi.org/10.7554/eLife.19568.021

These findings provide independent evidence for large body-size individuals among hominins as ancient as 3.66 Ma. Consequently, we may emphasise the conclusions by Grabowski et al. (2015) and Jungers et al. (2016), who reported that the body sizes of the australopithecines and of the early Homo representatives were similar, but also that certain australopithecine individuals (at least of Au. afarensis) were comparable with later Homo species, including H. erectus s. l. and H. sapiens. Thus, our results support a nonlinear evolutionary trend in hominin body size (Di Vincenzo et al., 2015; Jungers et al., 2016) and contrast with the idea that the emergence of the genus Homo and/or the first dispersal out of Africa was related to an abrupt increase in body size (McHenry and Coffing, 2000; Antón et al., 2014; Maslin et al., 2015). The identification of large-size individuals among the australopithecines – i.e. hominins commonly presumed to be small-bodied on average – shows also that the available fossil record can be misleading, resulting in an underestimate of the hominin phenotypic diversity in any given period.

Moreover, ascribing the S1 tracks to a possible male requires that we reconsider the sex and age of the other Laetoli individuals, who have been object of a plethora of interpretations (and associated illustrations largely disseminated to the public) since Mary Leakey’s work (Leakey, 1981). The most parsimonious option is that sex and age of the hominins represented at Site G cannot be determined, as subadult individuals could possibly be present among them. However, the body-mass estimates suggest some observations as G1 and G3 fall within the range of putative Au. afarensis females (25.5–38.1 kg, according to Grabowski et al. [2015]), whereas G2 and S2 span across the upper female and the lower male ranges (40.2–61.0 kg, according to Grabowski et al. [2015]) . All of these individuals are definitively smaller than the body mass calculated from the S1 tracks. A possible tentative conclusion is that the various individuals represented at Laetoli are: S1, a male; G2 and S2, females; G1 and G3, smaller females or juvenile individuals.

Evidence for either marked or moderate body-size variation in Au. afarensis, based on data collected in a single site, was limited until now to the fossil assemblage from the Hadar 333 locality, dated to 3.2 Ma (with body masses ranging from 24.5 to 63.6 kg). The new estimates for the Laetoli individuals indicate an even more marked variation in body size within the same hominin population, at 3.66 Ma. Consequently, the combined records from Laetoli and Hadar suggest that large-bodied hominins existed in the African Pliocene for over 400,000 years, between 3.66 and 3.2 Ma. At the same time, these data contrast with the hypothesis of a temporal trend of body-size increase among Au. afarensis between the more ancient Laetoli and the more recent Hadar fossil samples (Lockwood et al., 2000).

The impressive record of bipedal tracks from Laetoli Locality 8 (Site G and the new Site S) may open a window on the behaviour of a group of remote human ancestors, envisaging a scenario in which at least five individuals (G1, G2, G3, S1 and S2) were walking in the same time frame, in the same direction and at a similar moderate speed. This aspect must be evaluated in association with the pronounced body-size variation within the sample, which implies marked differences between age ranges and a considerable degree of sexual dimorphism in Au. afarensis. Significant implications about the social structure of this stem hominin species derive from these physical and behavioural characteristics, suggesting that reproductive strategies and social structure among at least some of the early bipedal hominins were closer to a gorilla-like model than to chimpanzees or modern humans.

Finally, the discovery reported here opens up the intriguing possibility that additional hominin trails may also occur in the area between Site G and Site S.

Materials and methods

Geology

Extended geological observations were carried out in the Laetoli area, mostly in the nearby historical Localities 6 and 7 (Leakey, 1987b), in order to compare the sequences exposed there with the new Site S sequence and to assess its stratigraphic position. Unfortunately, correlation with the stratigraphic sequence of Site G (Locality 8) is impossible because this historical site is completely covered by protection features and cannot be used for direct comparison.

In Site S, field observation and detailed sequence descriptions were carried out on excavation profiles following the standard formalized by Catt (1990).

Basic observations on grain size, shape and mineralogy were carried out in the field using a 10x magnification hand lens. Higher-detail analyses were carried out in the laboratory, using a standard Leica stereomicroscope.

Excavation and footprint imaging

The survey of the new tracks at Site S in September 2015 was focused on obtaining 3D models for documentation and morphometric analysis. The survey method is the Structure from Motion technique, an image-based process supported by in situ topographic measurements. This technique was chosen because of its technical advantages (relatively short time of data acquisition and processing; light and handy equipment; reduced costs) and excellent results in terms of resolution.

The equipment used in the fieldwork is a DSLR camera with 15.3 (4853 × 3198) megapixels and two different lenses: EF 24 mm f/2.8 for general shots of the excavations and EF 50 mm f/1.4 USM for details of the tracks. When necessary, the camera was mounted on a 4 m-long telescopic rod. A measuring tape and a water level were used for the measurement of the control points (i.e., circular targets with 35 mm diameter). Considering the small size of the surfaces to be detected, this measuring technique provided very high accuracy results.

Fieldwork

The Ngorongoro Conservation Area Authority (NCAA), in whose jurisdiction the site is, provided the permit for the fieldwork as per letter with Ref. No. NCAA/D/157/Vol. IV of June 5, 2015.

Hominin and non-hominin tracks were recognised in four test-pits at Site S, namely L8, M9, TP2 and M10. The original 2 × 2 m square shape of L8 – the first test-pit where bipedal tracks were discovered – was modified during the study in order to follow the trail, and consequently took the complex shape in Figure 2 (southern side: 2 m; western oblique side: 4 m). M9 was excavated some 14 m to the SSE of L8 and kept the planned size of 2 × 2 m. Following the interpolated alignment of the bipedal trackway, a third smaller test-pit, TP2 (1 × 1.2 m) (Figure 6) was excavated at some 8 m to the SSE of M9. Finally, a fourth test-pit, M9 (2 × 3 m) was excavated about 15 m to the east of M9 (Figure 2).

After the excavation, the 52 targets of the control point system were immediately positioned: 14 in L8, 10 in M9, 14 in TP2 and 14 in M10. Each test-pit was entirely surveyed at lower resolution and then detailed 3D models of some inner portions (single prints or groups of close prints) were acquired (Figures 46). We positioned four perimeter targets on the ground at the corners of each test-pit, and four inner targets around each sub-area surveyed in detail. The following list shows the target IDs in relation to the four test-pits and selected areas (AF: animal footprints):

  • L8. Perimeter control points: A-B-C-D; footprint L8/S1-1: target 1–2-3–4; footprint L8/S1-2: target 3–4-5–6; footprint L8/S1-3: target 5–6-7–8; footprint L8/S1-4: target 7–8-9–10.

  • M9. Perimeter control points: E-F-G-H; footprint M9/S1-2: target 21–22-23–24; footprint M9/S1-3: target 23–24-25–26.

  • TP2. Perimeter control points: I-J-K-L; footprint TP2/S2-1: target 27–28-29–30; footprint TP2/S1-1: target 31–32-33–34; footprint TP2/S1-2: target 33–34-35–36.

  • M10. Perimeter control points: M-N-O-P; AF1: target 11–12-13–14; AF2: target 13–15-19–20; AF3: target 15–16-17–18.

In order to optimize the timing of the fieldwork, we decided not to model in detail some of the hominin tracks, i.e. L8/S1-5 (visible only in its posterior portion), L8/S1-6 (virtually invisible due to the poor state of preservation of the Footprint Tuff), L8/S1-7 (damaged and excessively deep due to the lowering of the tuff cropping out on the scarp of the terrace), M9/S1-1 and M9/S1-4 (both filled by compact matrix).

In the second step, the perimeter target positions were measured. We placed two rods equipped with a spherical level on successive pairs of targets and we marked points at the same height on the rods for each pair by using the water level device. The vertical distance between these points and the targets, as well as their mutual distance, were recorded. Repeating this process for all pairs of targets, the relative plan position and the height of the control points were determined respectively by trilateration and by levelling.

A preliminary accuracy check was carried out during fieldwork, by using trilateration graphic rules in plan and by the method of successive levelling for heights. By assigning a z-coordinate to the first control point, all subsequent coordinates were derived from addition and subtraction of heights between two successive points. The check was performed by computing the algebraic sum of all height differences, and by verifying that the obtained value was close to zero. Finally, the error obtained in each test-pit was distributed to every z-coordinate of the points, in order to reduce it (Supplementary file 1).

The photographic survey was carried out by three shooting modes: (i) using the camera with the 24 mm lens, mounted on a telescopic rod at 4 m above the test-pits, in order to record each test-pit, as well as the spatial connection between test-pits; (ii) using the camera freehand with the 24 mm lens, in order to acquire additional shots of each test-pit; and (iii) using the camera close to the ground with the 50 mm lens, in order to acquire detailed sub-areas. More than 2,000 photos were taken, for a total of about 50 GB.

Data processing

Data processing started by checking measurements in plan and height. This step is preliminary to the definition of the control point coordinates. The trilateration method was used to obtain x,y coordinates of the control points in plan. For each test-pit, six measurements were taken at the same height: the length of the four sides of the perimeter and the length of the two diagonals. Redundant measurements were used to compute the errors. In addition to a preliminary graphical control by CAD software (Autodesk AutoCAD), the automatic calculation software MicroSurvey STAR*NET was used to adjust, by least squares technique, a new set of x,y coordinates and heights of the control points (Supplementary file 2). The report provided by the software shows that the residues of adjustments never exceeded 10 mm (Supplementary file 2), which is a fully acceptable figure considering the size of the test-pits.

Once the adjusted x,y,z coordinate of all the control points (Supplementary file 3) were computed, we used them to scale and locate in the 3D space the 3D models built by the Structure from Motion technique (see below).

The pictures were first calibrated to reduce lens geometric distortion, and tone adjustment was applied in order to homogenize them and to reduce the effects of different lighting conditions during shooting. Subsequently, the software Agisoft Photoscan was used to generate 3D spatial data starting from the pictures, through the following phases: (i) alignment of the images; (ii) creation of the dense point cloud; (iii) transformation of the dense point cloud into a surface (mesh); (iv) application of the texture to the mesh (Supplementary file 4). A series of orthophotos (with and without textures) were extracted from the 3D models (Figure 2—figure supplements 1, 2 and 3 and Figure 11—figure supplement 1). A check on dense point cloud density was also carried out by CloudCompare, software for 3D point cloud and triangular mesh processing (Figure 2—figure supplements 1, 2 and 3 and Figure 11—figure supplement 1).

Digital survey of the cast of the G1 and G2/G3 trails

At the end of the September 2015 field season, we also surveyed a first-generation fiberglass cast of the southern portion of the Site G trackway (about 4.7 m in length) (Figure 11) kept at the Leakey Camp at Olduvai Gorge. The cast includes the following tracks in the direction of walking: G1–39, 38, 37, 36, 35, 34, 33, 27, 26, 25 on the western side and G2/G3–31, 30, 29, 28, 27, 26, 25, 24, 20, 19 and 18 on the eastern side. Data acquisition and processing (Supplementary file 4) were performed following the workflow described above for the Site S test-pits. We positioned four perimeter control points and 11 inner targets. The latter were used to model in detail six selected tracks (G2/G3–29, G1–35, G1–34, G2/3–26, G2/3–25 and G2/3–18, listed in the direction of walking) (Figure 11—figure supplement 1).

Morphometric analysis

Morphometric data acquisition

The 3D data obtained by the above-explained procedures were also used in the morphometric analysis of the hominin tracks by Golden Software Surfer software. This contouring and surface modelling software transforms x,y,z data into maps (Figures 46 and 11). The x,y,z-format files were imported into the software and transformed into grid files. The software uses randomly spaced x,y,z data to create regularly spaced grids composed of nodes with x,y,z coordinates. The triangulation with linear interpolation gridding method was applied, because it works best with data that are evenly distributed over the grid area. This method uses data points to create a network of triangles without edge intersections and computes new values along the edges. It is fast and does not extrapolate beyond the z-value of the data range; in addition, it assigns blanking values to grid nodes located outside the data limits. The grid spacing was set at 1 mm.

The following morphometric measures were taken on the contour maps:

  • footprint length – maximum distance between the anterior tip of the hallux and the posterior tip of the heel;

  • footprint max width – width across the distal metatarsal region;

  • footprint heel width;

  • angle of gait – angle between the midline of the trackway and the longitudinal axis of the foot;

  • step length – distance between the posterior tip of the heel in two successive tracks;

  • stride length – distance between the posterior tip of the heel in two successive tracks on the same side.

All of the above measurements were also taken manually both on the original tracks during the September 2015 field season, and on 1:1 scale sketches of the test-pits, hand-drawn on transparent plastic sheets. Morphometric values in Table 2 are averaged from the results provided by the three methods described above in order to reduce errors. A synthesis of data extracted from Table 2 is reported in Table 3. The foot index is defined as the percentage ratio between the max width and length of footprints.

Morphometric data of the G1 and G2/G3 trails

Seventy human-like tracks arranged in two parallel trails (39 prints in G1 and 31 in G2/G3) are reported at Laetoli Site G (Leakey, 1981). Unfortunately, the whole set of morphometric data for the unearthed tracks was never published; only average values obtained from a selected number of tracks were provided. In the case of G2/G3, data are incomplete, largely because the prints of G3 are superimposed onto those of G2, so that it is difficult to collect the measurements (Tuttle, 1987). According to Leakey (1981), only two (unspecified) prints of G2 are measurable. Morphometric data describing the Site G bipedal trails are summarized in Table 3, where they are also compared to the equivalent measurements taken on S1 and S2. Footprint length and maximum width for G1 and G3 are from Tuttle (1987) (average values obtained from nine and eight prints, respectively). Similar values are reported by Leakey (1981), and slightly higher length values were recently published (Bennett et al., 2016) based on digital analysis of footprints casts (G1: 193 mm, N = 11; G3: 228 mm, N = 5). The length of G2 footprints (225 mm) is averaged from the two values of 210 and 240 mm reported for the only two measurable prints of G2 (Leakey, 1981). Similarly, the footprint max width of G2 (117 mm) is taken from Leakey (1981) (unknown sample size for this average). The average step and stride lengths for G1 and G3 are from Tuttle (1987), whereas those for G2 are from Robbins (1987).

Stature, body mass and speed estimates

We used footprint size to estimate the stature of the Laetoli track-makers by means of different approaches. The easiest method follows Tuttle (1987) and consists of estimating the stature starting from the footprint length considering the ratio between foot length and stature in modern humans. Given that the foot length in H. sapiens is generally about 14% to 16% of stature (Tuttle [1987], and references therein), we computed two estimates for the Laetoli hominins assuming that their feet were, respectively, 14% and 16% of their body height (Tables 23). This method, however, is not fully reliable because it is based on the body proportions of modern humans, and because it does not take into account that the footprint length does not accurately reflect the foot length. For this last reason, we also estimated stature using the method of Dingwall et al. (2013), who published some equations based on regressions of stature by footprint length in modern Daasanach people (from the Lake Turkana area, Kenya). In particular, given the probable low walking speed of the Laetoli hominins (see below), we used the 'walk only' equation (Standard Error of Estimate, SEE = 5.4) (Dingwall et al., 2013). The obtained results (Tables 23) fall within the range of statures estimated with the first method (except for G1 and G3, for which slightly taller statures were calculated). Finally, to assess how the results were influenced by considering modern human data, we also computed some estimates using the foot:stature ratio known for Au. afarensis (Dingwall et al., 2013). This ratio is 0.155–0.162 (Dingwall et al., 2013), so we obtained stature estimates (Tables 23) predictably close to or slightly lower than the lower limit of the estimates given by the Tuttle (1987) method.

Similarly, we estimated the body mass of the Laetoli track-makers using the 'walk only' regression equation that relates footprint area (i.e., footprint length x max. width) to body mass (SEE = 3.7) (Dingwall et al., 2013). For S2 only, we used the relationship between the footprint length and body mass (SEE = 3.8) (Dingwall et al., 2013) because of the enlarged morphology of TP2/S2-1. As for the stature, we re-calculated the mass using the known ratio between foot length and body mass in Au. afarensis (0.543–0.632) (Dingwall et al. [2013], and references therein). The latter method resulted in estimates significantly lower than those computed by the aforementioned regression equation based on modern human data (Tables 2 and 3).

For both of the described methods, mean estimates of stature and body mass for S1 were computed by averaging the estimates obtained from individual tracks (Tables 2 and 3). The average footprint length values were considered more reliable than minimum values (which from a theoretical point of view could be regarded as more representative of the foot length) for the following reasons.

  1. Previous studies demonstrated that footprint length can overestimate (White and Suwa, 1987) or underestimate (Dingwall et al., 2013) the actual foot length. Consequently, the average footprint length can be considered to be the most reliable parameter for the estimation of body dimensions (White, 1980; Tuttle, 1987; Tuttle et al., 1990; Dingwall et al., 2013; Avanzini et al., 2008; Bennett et al., 2009; Roberts, 2009).

  2. In the specific case of the S1 trackway, the lengths of the three smaller tracks (Table 2) are probably underestimated: in L8/S1-1 (length: 250 mm) the anterior edge is poorly preserved and M9/S1-1 and M9/S1-4 (length: 245 mm) are still filled with sediment (see Introduction).

It must be pointed out that the stature and body-mass estimates for S2 must be considered with caution because they are based on a single preserved footprint. The same goes for G2, given the very low number of tracks for which the length can be measured (Leakey, 1981).

We also drew some inferences about the walking speed (Table 3), which is closely related to the stride length: in two individuals of the same body size, the one walking faster shows longer stride length. Nevertheless, the body proportions (i.e., stature, h) of the track-maker must be considered, because they influence the stride length (L) and consequently the velocity (v). We followed the power law computed by Alexander (1976):

v=0.25g0.5L1.67h1.17 (1)

where g is the gravitational acceleration (9.81 m/s2). Equation (1) is widely used to estimate walking speed in humans and other animals (Bennett and Morse [2014], and references therein).

Speed was further estimated following the method of Dingwall et al. (2013). We used the regression equation that relates the speed to the ratio between stride length and average footprint length for each trail, obtaining values (Table 3) about twice those calculated with the equation (1). The transitional speed from walk to run is around 2.2 m/s (Dingwall et al., 2013). As the speed of the Laetoli track-makers is significantly lower than 2.2 m/s, we used the 'walk only' regression equation (Dingwall et al., 2013) for our speed estimates.

After computing the walking speed of S1 and G1–G3 with the aforementioned two methods, we obtained the relative speed (i.e., walking speed/estimated stature) (Table 3), which is a good indicator with which to compare the gait of different individuals regardless of their body proportions.

Stature estimate comparisons

Figure 12 was designed in order to compare graphically the stature estimates of the Laetoli individuals with those obtained for other hominin specimens. With the exception of the other footprint locality taken into account, Ileret in Kenya (Bennett et al., 2009; Dingwall et al., 2013), all other stature data are based on skeletal elements, namely femurs.

Early hominin stature reconstructions are notoriously difficult to assess: the limited number of intact long bones available in the fossil record often requires reconstruction of the long bone length from fragmentary remains, before different methods can be used to estimate the stature; the eventual results can differ according to the method employed. Thus, in an attempt to provide a synthetic picture of stature among australopithecines and early Homo, and to ensure that the results are comparable, we relied on a limited number of different datasets. Data are presented in Supplementary file 5.

For the geological age of the considered specimens and for their taxonomic attributions, we followed Grabowski et al. (2015), unless otherwise indicated.

Two kinds of femur lengths were used for stature reconstruction: (i) the femur lengths of intact bones or femur length estimates based on reconstructions of incomplete bones; (ii) femur length estimates based on femur head diameters (FHD), according to the method given in McHenry (1991). Morphometric data about complete or reconstructed femurs derive from McHenry (1991), unless otherwise indicated (mostly fossils discovered after 1991). FHD values are from Grabowski et al. (2015).

The two different equations cited in McHenry (1991) and in Jungers et al. (2016) were employed in stature reconstructions. As put into evidence in Supplementary file 5, the results are largely equivalent, with minor differences not relevant for the purpose of this analysis. Consequently, we used stature estimates obtained using the equation published by Jungers et al. (2016) to compile Figure 12.

Access to material

Three-dimensional research-quality data are available from the MorphoSource digital repository (http://morphosource.org) without restrictions.

Acknowledgements

This research is supported by the Italian School of Palaeoanthropology (University of Perugia; www.paleoantropologia.it), under the auspices of the Italian Ministry of Foreign Affairs and International Cooperation (Italian archaeological, anthropological and ethnological missions abroad) and the Italian Embassy in Dar es Salaam, Tanzania. The authors are grateful to the University of Dar es Salaam; the museum project consultant P Rich and the Ngorongoro Conservation Area Authority, without whom this discovery would have never been made; DM Kamamba, Director of Antiquities, Ministry of Natural Resources and Tourism; the University of Dar es Salaam for financial support; E Kazimoto for preliminary geological analysis; R Rettori for the organisation of the field season; S Grassi and A Grassi for 3D data processing and logistical support, R Pellizzon for photographs; P Blasi, M Lombardi, G Peter, L Quattrini, B Zamagni, A Songita and his assistants for the field work. R Blumenschine, M Haeusler, O Kullmer, J Njau, Y Rak, B Wood and R Wunderlich provided useful comments on an earlier version of the paper.

Funding Statement

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Funding Information

This paper was supported by the following grants:

  • Dipartimento di Fisica e Geologia, Università di Perugia to Marco Cherin, Angelo Barili, Giovanni Boschian, Dawid A Iurino, Sofia Menconero, Giorgio Manzi.

  • Dipartimento di Biologia Ambientale, Sapienza Università di Roma to Giorgio Manzi.

Additional information

Competing interests

The authors declare that no competing interests exist.

Author contributions

FTM, Conception and design, Acquisition of data, Drafting or revising the article.

EBI, Conception and design, Acquisition of data, Drafting or revising the article.

MC, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article.

AB, Acquisition of data, Analysis and interpretation of data.

GB, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article.

DAI, Conception and design, Acquisition of data, Analysis and interpretation of data.

SM, Acquisition of data, Analysis and interpretation of data.

JM-C, Conception and design, Analysis and interpretation of data, Drafting or revising the article.

GM, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article.

Additional files

Supplementary file 1. Footprint imaging, measurement report 1.

DOI: http://dx.doi.org/10.7554/eLife.19568.022

elife-19568-supp1.docx (27.1KB, docx)
DOI: 10.7554/eLife.19568.022
Supplementary file 2. Footprint imaging, measurement report 2.

DOI: http://dx.doi.org/10.7554/eLife.19568.023

elife-19568-supp2.docx (47.4KB, docx)
DOI: 10.7554/eLife.19568.023
Supplementary file 3. Footprint imaging, measurement report 3.

DOI: http://dx.doi.org/10.7554/eLife.19568.024

elife-19568-supp3.docx (22.6KB, docx)
DOI: 10.7554/eLife.19568.024
Supplementary file 4. Footprint imaging, measurement report 4.

DOI: http://dx.doi.org/10.7554/eLife.19568.025

elife-19568-supp4.docx (23.8KB, docx)
DOI: 10.7554/eLife.19568.025
Supplementary file 5. Individual fossil ages, localities and estimated statures used to build Figure 12.

DOI: http://dx.doi.org/10.7554/eLife.19568.026

elife-19568-supp5.docx (37.2KB, docx)
DOI: 10.7554/eLife.19568.026

References

  1. Alexander RM. Estimates of speeds of dinosaurs. Nature. 1976;261:129–130. doi: 10.1038/261129a0. [DOI] [Google Scholar]
  2. Antón SC, Potts R, Aiello LC. Human evolution. Evolution of early Homo: an integrated biological perspective. Science. 2014;345:1236828. doi: 10.1126/science.1236828. [DOI] [PubMed] [Google Scholar]
  3. Avanzini M, Mietto P, Panarello A, De Angelis M, Rolandi G. The devil's trails: Middle pleistocene human footprints preserved in a volcanoclastic deposit of southern Italy. Ichnos. 2008;15:179–189. doi: 10.1080/10420940802470458. [DOI] [Google Scholar]
  4. Bennett MR, Harris JW, Richmond BG, Braun DR, Mbua E, Kiura P, Olago D, Kibunjia M, Omuombo C, Behrensmeyer AK, Huddart D, Gonzalez S. Early hominin foot morphology based on 1.5-million-year-old footprints from Ileret, Kenya. Science. 2009;323:1197–1201. doi: 10.1126/science.1168132. [DOI] [PubMed] [Google Scholar]
  5. Bennett MR, Morse SA. Human Footprints: Fossilised Locomotion? New York: Springer; 2014. [DOI] [Google Scholar]
  6. Bennett MR, Reynolds SC, Morse SA, Budka M. Laetoli’s lost tracks: 3D generated mean shape and missing footprints. Scientific Reports. 2016;6:21916. doi: 10.1038/srep21916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Catt JA. Paleopedology manual. Quaternary International. 1990;6:1–95. [Google Scholar]
  8. Cole TM, Smith FH. An odontometric assessment of variability in Australopithecus afarensis. Human Evolution. 1987;2:221–234. doi: 10.1007/BF03016108. [DOI] [Google Scholar]
  9. Deino AL. 40Ar/39Ar dating of Laetoli, Tanzania. In: Harrison T, editor. Paleontology and Geology of Laetoli: Human Evolution in Context. Vol. 1. New York: Springer; 2011. pp. 77–97. [DOI] [Google Scholar]
  10. Di Vincenzo F, Rodriguez L, Carretero JM, Collina C, Geraads D, Piperno M, Manzi G. The massive fossil humerus from the Oldowan horizon of Gombore I, Melka Kunture (Ethiopia, >1.39 Ma) Quaternary Science Reviews. 2015;122:207–221. doi: 10.1016/j.quascirev.2015.05.014. [DOI] [Google Scholar]
  11. Dingwall HL, Hatala KG, Wunderlich RE, Richmond BG. Hominin stature, body mass, and walking speed estimates based on 1.5 million-year-old fossil footprints at Ileret, Kenya. Journal of Human Evolution. 2013;64:556–568. doi: 10.1016/j.jhevol.2013.02.004. [DOI] [PubMed] [Google Scholar]
  12. Gordon AD, Green DJ, Richmond BG. Strong postcranial size dimorphism in Australopithecus afarensis: results from two new resampling methods for multivariate data sets with missing data. American Journal of Physical Anthropology. 2008;135:311–328. doi: 10.1002/ajpa.20745. [DOI] [PubMed] [Google Scholar]
  13. Grabowski M, Hatala KG, Jungers WL, Richmond BG. Body mass estimates of hominin fossils and the evolution of human body size. Journal of Human Evolution. 2015;85:75–93. doi: 10.1016/j.jhevol.2015.05.005. [DOI] [PubMed] [Google Scholar]
  14. Haile-Selassie Y, Latimer BM, Alene M, Deino AL, Gibert L, Melillo SM, Saylor BZ, Scott GR, Lovejoy CO. An early Australopithecus afarensis postcranium from Woranso-Mille, Ethiopia. PNAS. 2010;107:12121–12126. doi: 10.1073/pnas.1004527107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harcourt-Smith WEH. Did Australopithecus Afarensis make the Laetoli footprint trail? New insights into an old problem. American Journal of Physical Anthropology. 2005;S40:116. doi: 10.1002/ajpa.20217. [DOI] [Google Scholar]
  16. Harmon EH. Size and shape variation in Australopithecus afarensis proximal femora. Journal of Human Evolution. 2006;51:217–227. doi: 10.1016/j.jhevol.2006.01.009. [DOI] [PubMed] [Google Scholar]
  17. Harrison T, Kweka A. Paleontological localities on the Eyasi Plateau, including Laetoli. In: Harrison T, editor. Paleontology and Geology of Laetoli: Human Evolution in Context. Vol. 1. New York: Springer; 2011. pp. 17–45. [DOI] [Google Scholar]
  18. Harrison T. Hominins from the upper laetolil and upper ndolanya beds, laetoli. In: Harrison T, editor. Paleontology and Geology of Laetoli: Human Evolution in Context. Vol. 2. New York: Springer; 2011. pp. 141–188. [DOI] [Google Scholar]
  19. Hay RL, Leakey MD. The fossil footprints of laetoli. Scientific American. 1982;246:50–57. doi: 10.1038/scientificamerican0282-50. [DOI] [Google Scholar]
  20. Hay RL. Geology of the Laetoli area. In: Leakey MD, Harris JM, editors. Laetoli: A Pliocene Site in Northern Tanzania. Oxford: Clarendon; 1987. pp. 23–47. [Google Scholar]
  21. Johanson DC, White TD, Coppens Y. A new species of the genus Australopithecus (Primates: Hominidae) from the Pliocene of eastern Africa. Kirtlandia. 1978;28:1–14. [Google Scholar]
  22. Johanson DC, White TD. A systematic assessment of early African hominids. Science. 1979;203:321–330. doi: 10.1126/science.104384. [DOI] [PubMed] [Google Scholar]
  23. Jungers WL, Grabowski M, Hatala KG, Richmond BG. The evolution of body size and shape in the human career. Philosophical Transactions of the Royal Society B: Biological Sciences. 2016;371:20150247. doi: 10.1098/rstb.2015.0247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kimbel WH, White TD. Variation, sexual dimorphism and the taxonomy of Australopithecus. In: Grine FE, editor. Evolutionary History of the “Robust” Australopithecines. New York: Aldine de Gruyter; 1988. pp. 175–192. [Google Scholar]
  25. Kohl-Larsen L. Auf Den Sporen Des Vormenschen. Stuttgart: Strecker und Schröder; 1943. [Google Scholar]
  26. Leakey MD, Harris JM. Laetoli: A Pliocene Site in Northern Tanzania. Oxford: Clarendon; 1987. [Google Scholar]
  27. Leakey MD, Hay RL, Curtis GH, Drake RE, Jackes MK, White TD. Fossil hominids from the Laetolil Beds. Nature. 1976;262:460–466. doi: 10.1038/262460a0. [DOI] [PubMed] [Google Scholar]
  28. Leakey MD, Hay RL. Pliocene footprints in the Laetolil Beds at Laetoli, northern Tanzania. Nature. 1979;278:317–323. doi: 10.1038/278317a0. [DOI] [Google Scholar]
  29. Leakey MD. Tracks and tools. Philosophical Transactions of the Royal Society B: Biological Sciences. 1981;292:95–102. doi: 10.1098/rstb.1981.0017. [DOI] [Google Scholar]
  30. Leakey MD. Animal prints and trails. In: Leakey MD, Harris JM, editors. Laetoli: A Pliocene Site in Northern Tanzania. Clarendon: Oxford; 1987a. pp. 451–489. [Google Scholar]
  31. Leakey MD. Introduction. In: Leakey MD, Harris JM, editors. Laetoli: A Pliocene Site in Northern Tanzania. Clarendon: Oxford; 1987b. pp. 1–22. [Google Scholar]
  32. Lockwood CA, Kimbel WH, Johanson DC. Temporal trends and metric variation in the mandibles and dentition of afarensis. Journal of Human Evolution. 2000;39:23–55. doi: 10.1006/jhev.2000.0401. [DOI] [PubMed] [Google Scholar]
  33. Lockwood CA, Menter CG, Moggi-Cecchi J, Keyser AW. Extended male growth in a fossil hominin species. Science. 2007;318:1443–1446. doi: 10.1126/science.1149211. [DOI] [PubMed] [Google Scholar]
  34. Lockwood CA, Richmond BG, Jungers WL, Kimbel WH. Randomization procedures and sexual dimorphism inAustralopithecus afarensis. Journal of Human Evolution. 1996;31:537–548. doi: 10.1006/jhev.1996.0078. [DOI] [Google Scholar]
  35. Lovejoy CO, Kern KF, Simpson SW, Meindl RS. A new method for estimation of skeletal dimorphism in fossil samples with an application to Australopithecus afarensis. In: Giacobini G, editor. Hominidae: Proceedings of the 2nd International Congress of Human Paleontology. Milano: Jaka Book; 1989. pp. 103–108. [Google Scholar]
  36. Lovejoy CO, Latimer BM, Spurlock L, Haile-Selassie Y. Chapter 8: The pelvic girdle and limb bones of KSD-VP-1/1. In: Haile-Selassie Y, Su DF, editors. The Postcranial Anatomy of Australopithecus Afarensis: New Insights From KSD-VP-1/1. Dordrecht: Springer; 2016. pp. 155–178. [Google Scholar]
  37. Maslin MA, Shultz S, Trauth MH. A synthesis of the theories and concepts of early human evolution. Philosophical Transactions of the Royal Society B: Biological Sciences. 2015;370:20140064. doi: 10.1098/rstb.2014.0064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. McHenry HM, Coffing K. Australopithecus to Homo: transformations in body and mind. Annual Review of Anthropology. 2000;29:125–146. doi: 10.1146/annurev.anthro.29.1.125. [DOI] [Google Scholar]
  39. McHenry HM. New estimates of body weight in early hominids and their significance to encephalization and megadontia in robust australopithecines. In: Grine FE, editor. Evolutionary History of the “Robust” Australopithecines. New York: Aldine de Gruyter; 1988. pp. 133–148. [Google Scholar]
  40. McHenry HM. Femoral lengths and stature in Plio-Pleistocene hominids. American Journal of Physical Anthropology. 1991;85:149–158. doi: 10.1002/ajpa.1330850204. [DOI] [PubMed] [Google Scholar]
  41. McHenry HM. Body size and proportions in early hominids. American Journal of Physical Anthropology. 1992;87:407–431. doi: 10.1002/ajpa.1330870404. [DOI] [PubMed] [Google Scholar]
  42. Musiba CM, Mabula A, Selvaggio M, Magori CC. Pliocene animal trackways at laetoli: research and conservation potential. Ichnos. 2008;15:166–178. doi: 10.1080/10420940802470383. [DOI] [Google Scholar]
  43. Plavcan JM, Lockwood CA, Kimbel WH, Lague MR, Harmon EH. Sexual dimorphism in Australopithecus afarensis revisited: how strong is the case for a human-like pattern of dimorphism? Journal of Human Evolution. 2005;48:313–320. doi: 10.1016/j.jhevol.2004.09.006. [DOI] [PubMed] [Google Scholar]
  44. Plavcan JM. Comparison of four simple methods for estimating sexual dimorphism in fossils. American Journal of Physical Anthropology. 1994;94:465–476. doi: 10.1002/ajpa.1330940403. [DOI] [PubMed] [Google Scholar]
  45. Plavcan JM. Sexual dimorphism in primate evolution. American Journal of Physical Anthropology. 2001;116:25–53. doi: 10.1002/ajpa.10011. [DOI] [PubMed] [Google Scholar]
  46. Reck H, Kohl-Larsen L. Erster berblick über die jungdiluvialen Tier- und Menschenfunde Dr. Kohl-Larsen's im nordöstlichen Teil Des Njarasa-Grabens (Ostafrika) und die geologischen Yerhältnisse Des Fundgebietes. Geologische Rundschau. 1936;27:401–441. doi: 10.1007/BF01765919. [DOI] [Google Scholar]
  47. Reno PL, Meindl RS, McCollum MA, Lovejoy CO. Sexual dimorphism in Australopithecus Afarensis was similar to that of modern humans. PNAS. 2003;100:9404–9409. doi: 10.1073/pnas.1133180100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Reno PL, Meindl RS, McCollum MA, Lovejoy CO. The case is unchanged and remains robust: Australopithecus afarensis exhibits only moderate skeletal dimorphism. A reply to Plavcan et al. (2005) Journal of Human Evolution. 2005;49:279–288. doi: 10.1016/j.jhevol.2005.04.008. [DOI] [PubMed] [Google Scholar]
  49. Richmond B, Jungers WL. Size variation and sexual dimorphism in Australopithecus afarensis and living hominoids. Journal of Human Evolution. 1995;29:229–245. doi: 10.1006/jhev.1995.1058. [DOI] [Google Scholar]
  50. Robbins LM. Hominid footprints from Site G. In: Leakey MD, Harris JM, editors. Laetoli: A Pliocene Site in Northern Tanzania. Clarendon: Oxford; 1987. pp. 497–502. [Google Scholar]
  51. Roberts G. Ephemeral, subfossil mammalian, avian and hominid footprints within flandrian sediment exposures at formby point, sefton coast, North West England. Ichnos. 2009;16:33–48. doi: 10.1080/10420940802470730. [DOI] [Google Scholar]
  52. Ruff CB, Trinkaus E, Holliday TW. Body mass and encephalization in Pleistocene Homo. Nature. 1997;387:173–176. doi: 10.1038/387173a0. [DOI] [PubMed] [Google Scholar]
  53. Ruff CB, Walker A. Body size and body shape. In: Walker AC, Leakey REF, editors. The Nariokotome Homo Erectus Skeleton. Cambridge: Harvard University Press; 1993. pp. 234–265. [Google Scholar]
  54. Schmid P. Functional interpretation of the Laetoli footprints. In: Meldrum DJ, Hilton CE, editors. From Biped to Strider: The Emergence of Modem Human Walking. Running, and Resource Transport. New York: Springer; 2004. pp. 49–62. [DOI] [Google Scholar]
  55. Susman RL, Stern, Jr. JT, Jungers WL. Arboreality and Bipedality in the Hadar Hominids. Folia Primatologica. 1984;43:113–156. doi: 10.1159/000156176. [DOI] [PubMed] [Google Scholar]
  56. Tuttle R, Webb D, Weidl E, Baksh M. Further progress on the Laetoli trails. Journal of Archaeological Science. 1990;17:347–362. doi: 10.1016/0305-4403(90)90028-4. [DOI] [Google Scholar]
  57. Tuttle RH, Webb DM, Baksh M. Laetoli toes and Australopithecus afarensis. Human Evolution. 1991;6:193–200. doi: 10.1007/BF02438142. [DOI] [Google Scholar]
  58. Tuttle RH. Kinesiological inferences and evolutionary implications from Laetoli bipedal trails G-1, G-2/3, and A. In: Leakey MD, Harris JM, editors. Laetoli: A Pliocene Site in Northern Tanzania. Oxford: Clarendon; 1987. pp. 503–522. [Google Scholar]
  59. Tuttle RH. Footprint clues in hominid evolution and forensics: lessons and limitations. Ichnos. 2008;15:158–165. doi: 10.1080/10420940802467892. [DOI] [Google Scholar]
  60. Ward CV, Kimbel WH, Harmon EH, Johanson DC. New postcranial fossils of Australopithecus afarensis from Hadar, Ethiopia (1990-2007) Journal of Human Evolution. 2012;63:1–51. doi: 10.1016/j.jhevol.2011.11.012. [DOI] [PubMed] [Google Scholar]
  61. White TD, Suwa G. Hominid footprints at Laetoli: facts and interpretations. American Journal of Physical Anthropology. 1987;72:485–514. doi: 10.1002/ajpa.1330720409. [DOI] [PubMed] [Google Scholar]
  62. White TD. Evolutionary implications of pliocene hominid footprints. Science. 1980;208:175–176. doi: 10.1126/science.208.4440.175. [DOI] [PubMed] [Google Scholar]
eLife. 2016 Dec 14;5:e19568. doi: 10.7554/eLife.19568.027

Decision letter

Editor: George H Perry1

In the interests of transparency, eLife includes the editorial decision letter and accompanying author responses. A lightly edited version of the letter sent to the authors after peer review is shown, indicating the most substantive concerns; minor comments are not usually included.

Thank you for submitting your article "New footprints from Laetoli (Tanzania) provide evidence for marked body size variation in early hominins" for consideration by eLife. Your article has been favorably evaluated by Ian Baldwin (Senior Editor) and three reviewers, one of whom, George H Perry (Reviewer #1), is a member of our Board of Reviewing Editors. The following individuals involved in review of your submission have agreed to reveal their identity: William Jungers (Reviewer #2) and Matthew Bennett (Reviewer #3).

The reviewers have discussed the reviews with one another and the Reviewing Editor has drafted this decision to help you prepare a revised submission.

Summary:

The reviewers agree that this paper provides both the description of a major discovery of new footprints of early bipedal hominins from Laetoli, Tanzania at 3.6 MYA and a valuable analytical result concerning early hominin body size variation. Laetoli is already famous for its Site G fossil footprints of (presumably) Australopithecus afarensis individuals. The new Site S footprints reported here represent very important additions to the Pliocene record of hominin behavior and morphology. A dozen new footprints from the S1 (N=11) and S2 (N=1) trails are sufficiently complete to estimate the body sizes of their makers (again, presumably A. afarensis) as well as approximate walking speeds. The new stature estimate for one of the individuals greatly exceeds those previously reconstructed from fossilized skeletal material or footprint data for any A. afarensis individual, consistent with substantial body size variation and likely sexual dimorphism within a single species of sexually dimorphic australopithecines.

Essential revisions:

The reviewers raise a several concerns that must be adequately addressed before the paper can be accepted. These points include the need to focus on the most appropriate body size estimation methods, to provide appropriate analysis and visualization of the comparisons of body size estimates among the different australopithecine individuals, and to revise the presentation of the manuscript to better reach a general, non-specialist audience.

1) The authors provide stature and mass estimates from the footprints using both modern human and australopithecine reference samples. The use of the modern human reference samples for stature estimates are inappropriate because they assume body proportions akin to modern humans, which are not possessed by australopithecines. Unfortunately, the australopith-based estimates are based on one individual, the tiny iconic female "Lucy" (A.L.288-1), and foot length in this individual is itself estimated. The authors should be more circumspect in reporting their results, acknowledging that the stature estimates from modern humans are likely exaggerations, and focus their interpretations on the more appropriate (but still tenuous) australopithecine-based predictions – still with the caveat about the limitations of the data from which the predictor is derived. Regardless, these footprints do expand the upper limit of size in (presumably) A. afarensis, and offer strong support for arguments favoring strong sexual size dimorphism in this extinct species.

2) The manuscript should provide additional data and analysis on the footprints and on the comparisons to previous australopithecine body size estimates. Table 3 should provide the range and standard deviation for print length, width, and index in addition to the average for S1, G1 and G3 trails. An ANOVA or other statistical test for significant differences in these parameters among the 3 trails should also be provided.

3) While there are 14 figures in the current version of the manuscript that contain images of the footprints themselves (see Essential Revisions comment #5 below), there are currently no figures depicting the key analytical result of the paper; that is, the large stature estimate of the S1 individual compared to estimates available for other australopithecines. This needs to be remedied. One option could be to depict stature estimates for all available australopithecines on the Y axis with MYA on the X axis, using different symbols for estimates derived from skeletal elements vs. footprints (and including the error estimates on the plot where available). Another part of the figure could illustrate the geographical location of each fossil/ footprint, with notation making it possible to reference each datapoint between the two panels.

4) The manuscript presentation requires rework, especially for general audience suitability. In the Introduction and Discussion, for non-specialist readers the significance of this result for interpretations of hominin behavior and evolutionary biology needs to be much more clear. There is not a need to list every theory; rather, focus on one or two of the main/ strongest implications (and the logic behind them, based on previous work) for early hominin behavior/ evolution based on the results of this study, laying out the case very clearly in the Discussion (after presenting possibilities of both sides in the Introduction). In the Results, the main results need more attention. For example, it is insufficient to simply (and briefly) refer the reader to the Tables 2 and 3 for the main results of the study. Also, some brief explanation for how body mass and stature are calculated should be provided in this section (Essential Revisions comment #1 above is also relevant here).

5) Many of the 14 figures are gorgeous, and the images and descriptions of the find are an important part of the paper. However, the key findings and results would be more apparent to the reader if there were some streamlining of the figures. Some of the existing figures could be integrated as panels into others (e.g., there are many figures with images of the S1 track and different footprints that could potentially be combined) or using the eLife feature for embedded supplementary figures.

6) Please ensure that the scans of the footprints and images (at the full resolution available and used for analyses in the study) are made publicly available through an appropriate data repository, and report the database accession details in the revised manuscript.

eLife. 2016 Dec 14;5:e19568. doi: 10.7554/eLife.19568.028

Author response


[…] Essential revisions:

The reviewers raise a several concerns that must be adequately addressed before the paper can be accepted. These points include the need to focus on the most appropriate body size estimation methods, to provide appropriate analysis and visualization of the comparisons of body size estimates among the different australopithecine individuals, and to revise the presentation of the manuscript to better reach a general, non-specialist audience.

1) The authors provide stature and mass estimates from the footprints using both modern human and australopithecine reference samples. The use of the modern human reference samples for stature estimates are inappropriate because they assume body proportions akin to modern humans, which are not possessed by australopithecines. Unfortunately, the australopith-based estimates are based on one individual, the tiny iconic female "Lucy" (A.L.288-1), and foot length in this individual is itself estimated. The authors should be more circumspect in reporting their results, acknowledging that the stature estimates from modern humans are likely exaggerations, and focus their interpretations on the more appropriate (but still tenuous) australopithecine-based predictions – still with the caveat about the limitations of the data from which the predictor is derived. Regardless, these footprints do expand the upper limit of size in (presumably) A. afarensis, and offer strong support for arguments favoring strong sexual size dimorphism in this extinct species.

We thank the reviewer for this. A new sentence was added in the manuscript to highlight that we mainly focused our interpretations on the australopithecine-based prediction method. For this reason, the estimated stature of S1 cited in the discussion was changed from about 170 to 165 cm (subsection “Implications of the new Laetoli footprints”). Finally, we formatted in bold type the australopithecine-based estimated statures and body masses in Table 3.

2) The manuscript should provide additional data and analysis on the footprints and on the comparisons to previous australopithecine body size estimates. Table 3 should provide the range and standard deviation for print length, width, and index in addition to the average for S1, G1 and G3 trails. An ANOVA or other statistical test for significant differences in these parameters among the 3 trails should also be provided.

Table 3 was amended as requested by the reviewers. Unfortunately, we could not perform any statistical test for significant differences because in the literature the individual measurements of the G footprints were never published, but only average values and, at most, ranges (see Leakey, 1981; Tuttle, 1987).

3) While there are 14 figures in the current version of the manuscript that contain images of the footprints themselves (see Essential Revisions comment #5 below), there are currently no figures depicting the key analytical result of the paper; that is, the large stature estimate of the S1 individual compared to estimates available for other australopithecines. This needs to be remedied. One option could be to depict stature estimates for all available australopithecines on the Y axis with MYA on the X axis, using different symbols for estimates derived from skeletal elements vs. footprints (and including the error estimates on the plot where available). Another part of the figure could illustrate the geographical location of each fossil/ footprint, with notation making it possible to reference each datapoint between the two panels.

We are grateful to the reviewers for highlighting this. We built a new figure (Figure 12) in which the estimated stature of hominin individuals is plotted against time (Ma). We decided to consider not only australopithecines, but also some early Homo individuals, in order to emphasise that the estimated stature of S1 can be comparable to that of more derived taxa, such as Homo erectus sensu lato. We used different symbols for estimations derived from footprints vs. skeletal elements, namely femurs. In the latter case, we also indicated graphically if the estimates are based on actual vs. estimated femur length. Each point in the graphic is also linked to the corresponding palaeontological locality through a colour code. Data used to build the figure are in the new Supplementary file 5. We commented on the figure in the Discussion (subsection “Implications of the new Laetoli footprints”) and wrote a dedicated section in the Materials and methods (subsection “Stature estimate comparisons”).

4) The manuscript presentation requires rework, especially for general audience suitability. In the Introduction and Discussion, for non-specialist readers the significance of this result for interpretations of hominin behavior and evolutionary biology needs to be much more clear. There is not a need to list every theory; rather, focus on one or two of the main/ strongest implications (and the logic behind them, based on previous work) for early hominin behavior/ evolution based on the results of this study, laying out the case very clearly in the Discussion (after presenting possibilities of both sides in the Introduction). In the Results, the main results need more attention. For example, it is insufficient to simply (and briefly) refer the reader to the tables 2 and 3 for the main results of the study. Also, some brief explanation for how body mass and stature are calculated should be provided in this section (Essential Revisions comment #1 above is also relevant here).

We think that this is definitely a good suggestion. We extensively modified the Abstract and Introduction, trying to provide a comprehensive background on the subject of intraspecific morphological variation in hominins and on how it can influence biological and behavioural aspects. In addition, in the Introduction, we discussed the basis for the scientific debate on the variation in Au. afarensis, in order to enable the reader to better understand the value of our conclusions.

Introductive notes about Laetoli were moved to a new section (The site: a brief overview), in which some additional information on this important site were added for non-specialist readers.

In the Results, we added a sentence (subsection “Speed, stature and body mass estimates”) to stress the main results of our stature and body mass estimation. The sentence in the aforementioned subsection briefly explains how stature and body mass were calculated.

The Discussion section was modified and expanded to emphasise the importance of our results in the context of the debate on the variation in Au. afarensis, also adding some recent references on the subject (e.g., Maslin et al., 2015; Jungers et al., 2016). Moreover, we started from the body size estimated data to add some inferences on biological aspects, such as sexual dimorphism and social structure.

5) Many of the 14 figures are gorgeous, and the images and descriptions of the find are an important part of the paper. However, the key findings and results would be more apparent to the reader if there were some streamlining of the figures. Some of the existing figures could be integrated as panels into others (e.g., there are many figures with images of the S1 track and different footprints that could potentially be combined) or using the eLife feature for embedded supplementary figures.

Previous Figures 12–13 and 14 are now supplementary to Figures 2 and 11, respectively.

6) Please ensure that the scans of the footprints and images (at the full resolution available and used for analyses in the study) are made publicly available through an appropriate data repository, and report the database accession details in the revised manuscript.

The 3D models of the test-pits with hominin tracks will be uploaded to MorphoSource (http://morphosource.org) as soon as the paper is accepted.

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    Supplementary file 1. Footprint imaging, measurement report 1.

    DOI: http://dx.doi.org/10.7554/eLife.19568.022

    elife-19568-supp1.docx (27.1KB, docx)
    DOI: 10.7554/eLife.19568.022
    Supplementary file 2. Footprint imaging, measurement report 2.

    DOI: http://dx.doi.org/10.7554/eLife.19568.023

    elife-19568-supp2.docx (47.4KB, docx)
    DOI: 10.7554/eLife.19568.023
    Supplementary file 3. Footprint imaging, measurement report 3.

    DOI: http://dx.doi.org/10.7554/eLife.19568.024

    elife-19568-supp3.docx (22.6KB, docx)
    DOI: 10.7554/eLife.19568.024
    Supplementary file 4. Footprint imaging, measurement report 4.

    DOI: http://dx.doi.org/10.7554/eLife.19568.025

    elife-19568-supp4.docx (23.8KB, docx)
    DOI: 10.7554/eLife.19568.025
    Supplementary file 5. Individual fossil ages, localities and estimated statures used to build Figure 12.

    DOI: http://dx.doi.org/10.7554/eLife.19568.026

    elife-19568-supp5.docx (37.2KB, docx)
    DOI: 10.7554/eLife.19568.026

    Articles from eLife are provided here courtesy of eLife Sciences Publications, Ltd

    RESOURCES