Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1977 Apr;22(1):243–246. doi: 10.1128/jvi.22.1.243-246.1977

Specific inhibition of DNA polymerase-associated RNase H by DNA.

M J Modak, S L Marcus
PMCID: PMC515708  PMID: 67222

Abstract

The RNase H activity associated with several RNA-directed DNA polymerases is inhibited by the addition of DNA, in contrast to RNase H activity from enzymes devoid of polymerizing activity. Kinetic investigations of the inhibitory effect of DNA, using purified Rauscher leukemia virus DNA polymerase as a test enzyme, revealed that the addition of DNA to an ongoing RNase H reaction causes an immediate cessation of RNase H activity. Concomitant initiation of DNA synthesis by inhibitory DNA can occur, provided that appropriate substrate and primer is available. Thus, in addition to providing a simple test for the distinction between polymerase-associated and polymerase-independent RNase H activity, this study strongly supports the concepts that (i) RNase H activity expressed by several mammalian oncoviral reverse transcriptases is an integral part of that molecule, and (ii) that the catalytic site of RNase H activity is also involuved in template-primer binding.

Full text

PDF
243

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bambara R. A., Uyemura D., Lehman I. R. On the processive mechanism of Escherichia coli DNA polymerase I. Delayed initiation of polymerization. J Biol Chem. 1976 Jul 10;251(13):4090–4094. [PubMed] [Google Scholar]
  2. Berkower I., Leis J., Hurwitz J. Isolation and characterization of an endonuclease from Escherichia coli specific for ribonucleic acid in ribonucleic acid-deoxyribonucleic acid hybrid structures. J Biol Chem. 1973 Sep 10;248(17):5914–5921. [PubMed] [Google Scholar]
  3. Brewer L. C., Wells R. D. Mechanistic independence of avian myeloblastosis virus DNA polymerase and ribonuclease H. J Virol. 1974 Dec;14(6):1494–1502. doi: 10.1128/jvi.14.6.1494-1502.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chang L. M. The distributive nature of enzymatic DNA synthesis. J Mol Biol. 1975 Apr 5;93(2):219–235. doi: 10.1016/0022-2836(75)90129-1. [DOI] [PubMed] [Google Scholar]
  5. Dube D. K., Loeb L. A. On the association of reverse transcriptase with polynucleotide templates during catalysis. Biochemistry. 1976 Aug 10;15(16):3605–3611. doi: 10.1021/bi00661a031. [DOI] [PubMed] [Google Scholar]
  6. Gerard G. F., Grandgenett D. P. Purification and characterization of the DNA polymerase and RNase H activities in Moloney murine sarcoma-leukemia virus. J Virol. 1975 Apr;15(4):785–797. doi: 10.1128/jvi.15.4.785-797.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Leis J. P. RNA-dependent DNA polymerase activity of RNA tumor virus. VI. Processive mode of action of avian myeloblastosis virus polymerase. J Virol. 1976 Sep;19(3):932–939. doi: 10.1128/jvi.19.3.932-939.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Marcus S. L., Modak M. J., Cavalieri L. F. Purification of avian myeloblastosis virus DNA polymerase by affinity chromatography on polycytidylate-agarose. J Virol. 1974 Oct;14(4):853–859. doi: 10.1128/jvi.14.4.853-859.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Marcus S. L., Modak M. J. Observations on template-specific conditions for DNA synthesis by avian myeloblastosis virus DNA polymerase. Nucleic Acids Res. 1976 Jun;3(6):1473–1486. doi: 10.1093/nar/3.6.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Marcus S. L., Sarkar N. H., Modak M. J. Purification and properties of murine mammary tumor virus DNA polymerase. Virology. 1976 May;71(1):242–254. doi: 10.1016/0042-6822(76)90109-4. [DOI] [PubMed] [Google Scholar]
  11. Modak M. J., Marcus S. L. Purification and properties of Rauscher leukemia virus DNA polymerase and selective inhibition of mammalian viral reverse transcriptase by inorganic phosphate. J Biol Chem. 1977 Jan 10;252(1):11–19. [PubMed] [Google Scholar]
  12. Modak M. J. Observations on the pyridoxal 5'-phosphate inhibition of DNA polymerases. Biochemistry. 1976 Aug 10;15(16):3620–3626. doi: 10.1021/bi00661a033. [DOI] [PubMed] [Google Scholar]
  13. Modak M. J. Pyridoxal 5' phosphate: a selective inhibitor of oncornaviral DNA polymerases. Biochem Biophys Res Commun. 1976 Jul 12;71(1):180–187. doi: 10.1016/0006-291x(76)90266-7. [DOI] [PubMed] [Google Scholar]
  14. Uyemura D., Bambara R., Lehman I. R. On the processive mechanism of Escherichia coli DNA polymerase I. J Biol Chem. 1975 Nov 25;250(22):8577–8584. [PubMed] [Google Scholar]
  15. Verma I. M. Studies on reverse transcriptase of RNA tumor viruses III. Properties of purified Moloney murine leukemia virus DNA polymerase and associated RNase H. J Virol. 1975 Apr;15(4):843–854. doi: 10.1128/jvi.15.4.843-854.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Verma I. M. Studies on reverse transcriptase of RNA tumor viruses. I. Localization of thermolabile DNA polymerase and RNase H activities on one polypeptide. J Virol. 1975 Jan;15(1):121–126. doi: 10.1128/jvi.15.1.121-126.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES