Abstract
A posttranslational modification site in natural and recombinant urinary-type plasminogen activators (urokinases; EC 3.4.21.31) has been localized to Thr-18, in the growth factor domain of the molecule. This is the region of urinary plasminogen activator responsible for its specific receptor binding. An unusual carbohydrate-protein linkage, a single monosaccharide, fucose, covalently attached directly to threonine in the peptide, is described here. The glycan moiety and the site of modification have been identified with mass spectrometry and confirmed by carbohydrate composition analysis, Edman degradation, and one- and two-dimensional NMR studies. This type of modification is normally not detected without mass spectrometry because the fucose-threonine bond is hydrolyzed under standard acidic conditions of the amino acid analysis and Edman sequencing. This modification may be widely found in other proteins.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Appella E., Robinson E. A., Ullrich S. J., Stoppelli M. P., Corti A., Cassani G., Blasi F. The receptor-binding sequence of urokinase. A biological function for the growth-factor module of proteases. J Biol Chem. 1987 Apr 5;262(10):4437–4440. [PubMed] [Google Scholar]
- Badylak S. F., Voytik S., Klabunde R. E., Henkin J., Leski M. Bolus dose response characteristics of single chain urokinase plasminogen activator and tissue plasminogen activator in a dog model of arterial thrombosis. Thromb Res. 1988 Nov 15;52(4):295–312. doi: 10.1016/0049-3848(88)90071-0. [DOI] [PubMed] [Google Scholar]
- Cotter R. J. Plasma desorption mass spectrometry: coming of age. Anal Chem. 1988 Jul 1;60(13):781A–793A. doi: 10.1021/ac00164a002. [DOI] [PubMed] [Google Scholar]
- Danø K., Andreasen P. A., Grøndahl-Hansen J., Kristensen P., Nielsen L. S., Skriver L. Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res. 1985;44:139–266. doi: 10.1016/s0065-230x(08)60028-7. [DOI] [PubMed] [Google Scholar]
- Dua V. K., Rao B. N., Wu S. S., Dube V. E., Bush C. A. Characterization of the oligosaccharide alditols from ovarian cyst mucin glycoproteins of blood group A using high pressure liquid chromatography (HPLC) and high field 1H NMR spectroscopy. J Biol Chem. 1986 Feb 5;261(4):1599–1608. [PubMed] [Google Scholar]
- Gurewich V. Pro-urokinase: physiochemical properties and promotion of its fibrinolytic activity by urokinase and by tissue plasminogen activator with which it has a complementary mechanism of action. Semin Thromb Hemost. 1988 Jan;14(1):110–115. doi: 10.1055/s-2007-1002763. [DOI] [PubMed] [Google Scholar]
- Günzler W. A., Steffens G. J., Otting F., Kim S. M., Frankus E., Flohé L. The primary structure of high molecular mass urokinase from human urine. The complete amino acid sequence of the A chain. Hoppe Seylers Z Physiol Chem. 1982 Oct;363(10):1155–1165. doi: 10.1515/bchm2.1982.363.2.1155. [DOI] [PubMed] [Google Scholar]
- Hallgren P., Lundblad A., Svensson S. A new type of carbohydrate-protein linkage in a glycopeptide from normal human urine. J Biol Chem. 1975 Jul 25;250(14):5312–5314. [PubMed] [Google Scholar]
- Hsieh J. C., Lin F. P., Tam M. F. Electroblotting onto glass-fiber filter from an analytical isoelectrofocusing gel: a preparative method for isolating proteins for N-terminal microsequencing. Anal Biochem. 1988 Apr;170(1):1–8. doi: 10.1016/0003-2697(88)90082-6. [DOI] [PubMed] [Google Scholar]
- Husain S. S., Gurewich V., Lipinski B. Purification and partial characterization of a single-chain high-molecular-weight form of urokinase from human urine. Arch Biochem Biophys. 1983 Jan;220(1):31–38. doi: 10.1016/0003-9861(83)90383-1. [DOI] [PubMed] [Google Scholar]
- Kentzer E. J., Buko A., Menon G., Sarin V. K. Carbohydrate composition and presence of a fucose-protein linkage in recombinant human pro-urokinase. Biochem Biophys Res Commun. 1990 Aug 31;171(1):401–406. doi: 10.1016/0006-291x(90)91407-j. [DOI] [PubMed] [Google Scholar]
- Klinger M. M., Laine R. A., Steiner S. M. Characterization of novel amino acid fucosides. J Biol Chem. 1981 Aug 10;256(15):7932–7935. [PubMed] [Google Scholar]
- Morton P. A., Steiner S. M. Extracellular and cellular proteins of rat cells with O-glycosidically linked fucose. Biochem J. 1985 Jan 1;225(1):59–65. doi: 10.1042/bj2250059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rance M., Sørensen O. W., Bodenhausen G., Wagner G., Ernst R. R., Wüthrich K. Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun. 1983 Dec 16;117(2):479–485. doi: 10.1016/0006-291x(83)91225-1. [DOI] [PubMed] [Google Scholar]
- Robb R. J., Kutny R. M., Panico M., Morris H., DeGrado W. F., Chowdhry V. Posttranslational modification of human T-cell growth factor. Biochem Biophys Res Commun. 1983 Nov 15;116(3):1049–1055. doi: 10.1016/s0006-291x(83)80248-4. [DOI] [PubMed] [Google Scholar]
- Steffens G. J., Günzler W. A., Otting F., Frankus E., Flohé L. The complete amino acid sequence of low molecular mass urokinase from human urine. Hoppe Seylers Z Physiol Chem. 1982 Sep;363(9):1043–1058. doi: 10.1515/bchm2.1982.363.2.1043. [DOI] [PubMed] [Google Scholar]
- Wold F. In vivo chemical modification of proteins (post-translational modification). Annu Rev Biochem. 1981;50:783–814. doi: 10.1146/annurev.bi.50.070181.004031. [DOI] [PubMed] [Google Scholar]