Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1977 Aug;23(2):272–285. doi: 10.1128/jvi.23.2.272-285.1977

Interactions of Polyoma and Mouse DNAs. IV. Time Course and Extent of Integration of Polyoma DNA into Mouse DNA During Lytic Infection

Hans Türler 1
PMCID: PMC515829  PMID: 196109

Abstract

The time course of covalent binding of polyoma viral DNA to mouse DNA was followed in mouse embryo cells that had been grown prior to infection in the presence of 5-bromodeoxyuridine. Density-labeled (HL) mouse DNA was separated from free polyoma DNA by CsCl isopycnic centrifugation. Polyoma DNA sequences present in HL mouse DNA were detected by hybridization with radioactive cRNA synthesized in vitro. In reconstruction experiments, the limit of detection was found to be, on the average, about 0.5 genome equivalent (g.e.) of polyoma DNA per cell. To find conditions for the isolation of HL mouse DNA and for its complete separation from free polyoma DNA, cultures infected at 4°C were used. HL mouse DNA extracted with sodium dodecyl sulfate and high salt concentrations (5 to 6 M CsCl) and then purified by three consecutive CsCl density gradient centrifugations was free from detectable amounts of polyoma DNA, whereas HL mouse DNA extracted with chloroform and phenol and purified in the same way always contained contaminating, noncovalently bound polyoma DNA. In lytically infected bromodeoxyuridine-prelabeled mouse embryo cultures, polyoma DNA bound to HL mouse DNA that had been extracted by the sodium dodecyl sulfate-CsCl procedure was first detected in small amounts (1 to 2 g.e. per cell) at 10 h after infection. In cultures incubated with medium containing thymidine (5 μg/ml), 4 to 6 g.e. of polyoma DNA per cell was detected at 14 and 18 h after infection. In these samples, practically all viral DNA was bound to high-molecular-weight HL mouse DNA. In cultures incubated with normal medium (no additions) and extracted between 17 and 20 h after infection, 20 to 350 g.e. of polyoma DNA per cell banded with HL mouse DNA. However, when DNA of one of these samples was subfractionated by sodium dodecyl sulfate-salt precipitation prior to isolation of HL mouse DNA, about 80% of the viral DNA banding at increased density was present in the low-molecular-weight DNA fraction. This observation suggests that in normal medium some progeny viral DNA of increased density was synthesized. Covalent binding of polyoma DNA to density-labeled mouse DNA was demonstrated by alkaline CsCl density gradient centrifugation: nearly equal amounts of polyoma DNA were found in the H and L strands, respectively, as is expected for linear integration of viral DNA. The results lead to the conclusions that (i) early polyoma mRNA is transcribed from free parental viral DNA; (ii) covalent linear integration is first detectable at the time when tumor (T)-antigen is synthesized; and (iii) only few copies (<10 g.e./cell) become integrated between 10 and 18 h after infection, i.e., during the period when cellular and viral DNA replication starts in individual cells.

Full text

PDF
272

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad-Zadeh C., Allet B., Greenblatt J., Weil R. Two forms of simian-virus-40-specific T-antigen in abortive and lytic infection. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1097–1101. doi: 10.1073/pnas.73.4.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Babiuk L. A., Hudson J. B. 'Integration' of polyoma virus DNA into mammalian genomes. Biochem Biophys Res Commun. 1972 Apr 14;47(1):111–118. doi: 10.1016/s0006-291x(72)80017-2. [DOI] [PubMed] [Google Scholar]
  3. Botchan M., Topp W., Sambrook J. The arrangement of simian virus 40 sequences in the DNA of transformed cells. Cell. 1976 Oct;9(2):269–287. doi: 10.1016/0092-8674(76)90118-5. [DOI] [PubMed] [Google Scholar]
  4. Brockman W. W., Lee T. N., Nathans D. The evolution of new species of viral DNA during serial passage of simian virus 40 at high multiplicity. Virology. 1973 Aug;54(2):384–397. doi: 10.1016/0042-6822(73)90151-7. [DOI] [PubMed] [Google Scholar]
  5. Dales S. Early events in cell-animal virus interactions. Bacteriol Rev. 1973 Jun;37(2):103–135. doi: 10.1128/br.37.2.103-135.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gelb L. D., Kohne D. E., Martin M. A. Quantitation of Simian virus 40 sequences in African green monkey, mouse and virus-transformed cell genomes. J Mol Biol. 1971 Apr 14;57(1):129–145. doi: 10.1016/0022-2836(71)90123-9. [DOI] [PubMed] [Google Scholar]
  7. Germond J. E., Vogt V. M., Hirt B. Characterization of the single-strand-specific nuclease S1 activity on double-stranded supercoiled polyoma DNA. Eur J Biochem. 1974 Apr 16;43(3):591–600. doi: 10.1111/j.1432-1033.1974.tb03446.x. [DOI] [PubMed] [Google Scholar]
  8. Gillespie D., Spiegelman S. A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol. 1965 Jul;12(3):829–842. doi: 10.1016/s0022-2836(65)80331-x. [DOI] [PubMed] [Google Scholar]
  9. Graessmann M., Graessman A. "Early" simian-virus-40-specific RNA contains information for tumor antigen formation and chromatin replication. Proc Natl Acad Sci U S A. 1976 Feb;73(2):366–370. doi: 10.1073/pnas.73.2.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Greenblatt J. F., Allet B., Weil R., Ahmad-Zadeh C. Synthesis of the tumour antigen and the major capsid protein of simian virus 40 in a cell-free system derived from Escherichia coli. J Mol Biol. 1976 Dec;108(2):361–379. doi: 10.1016/s0022-2836(76)80125-8. [DOI] [PubMed] [Google Scholar]
  11. Haas M., Vogt M., Dulbecco R. Loss of simian virus 40 DNA-RNA hybrids from nitrocellulose membranes; implications for the study of virus--host DNA interactions. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2160–2164. doi: 10.1073/pnas.69.8.2160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hill M., Hillova J. Recombinational events between exogenous mouse DNA and newly synthesized DNA strands of chicken cells in culture. Nat New Biol. 1971 Jun 30;231(26):261–265. doi: 10.1038/newbio231261a0. [DOI] [PubMed] [Google Scholar]
  13. Hirai K., Defendi V. Factors affecting the process and extent of integration of the viral genome. Cold Spring Harb Symp Quant Biol. 1975;39(Pt 1):325–333. doi: 10.1101/sqb.1974.039.01.043. [DOI] [PubMed] [Google Scholar]
  14. Hirai K., Defendi V. Integration of simian virus 40 deoxyribonucleic acid into the deoxyribonucleic acid of permissive monkey kidney cells. J Virol. 1972 Apr;9(4):705–707. doi: 10.1128/jvi.9.4.705-707.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hirai K., Lehman J., Defendi V. Integration of simian virus 40 deoxyribonucleic acid into the deoxyribonucleic acid of primary infected Chinese hamster cells. J Virol. 1971 Nov;8(5):708–715. doi: 10.1128/jvi.8.5.708-715.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967 Jun 14;26(2):365–369. doi: 10.1016/0022-2836(67)90307-5. [DOI] [PubMed] [Google Scholar]
  17. Hölzel F., Sokol F. Integration of progeny simian virus 40 DNA into the host cell genome. J Mol Biol. 1974 Apr 15;84(3):423–444. doi: 10.1016/0022-2836(74)90450-1. [DOI] [PubMed] [Google Scholar]
  18. Kasamatsu H., Wu M. Structure of a nicked DNA-protein complex isolated from simian virus 40: covalent attachment of the protein to DNA and nick specificity. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1945–1949. doi: 10.1073/pnas.73.6.1945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ketner G., Kelly T. J., Jr Integrated simian virus 40 sequences in transformed cell DNA: analysis using restriction endonucleases. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1102–1106. doi: 10.1073/pnas.73.4.1102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lavi S., Winocour E. Acquisition of sequences homologous to host deoxyribonucleic acid by closed circular simian virus 40 deoxyribonucleic acid. J Virol. 1972 Feb;9(2):309–316. doi: 10.1128/jvi.9.2.309-316.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lee T. N., Brockman W. W., Nathans D. Evolutionary variants of simian virus 40: cloned substituted variants containing multiple initiation sites for DNA replication. Virology. 1975 Jul;66(1):53–69. doi: 10.1016/0042-6822(75)90178-6. [DOI] [PubMed] [Google Scholar]
  22. Levine A. S., Oxman M. N., Henry P. H., Levin M. J., Diamandopoulos G. T., Enders J. F. Virus-specific deoxyribonucleic acid in simian virus 40-exposed hamster cells: correlation with S and T antigens. J Virol. 1970 Aug;6(2):199–207. doi: 10.1128/jvi.6.2.199-207.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. MASTER R. W. POSSIBLE SYNTHESIS OF POLYRIBONUCLEOTIDES OF KNOWN BASE-TRIPLET SEQUENCES. Nature. 1965 Apr 3;206:93–93. doi: 10.1038/206093b0. [DOI] [PubMed] [Google Scholar]
  24. Mackay R. L., Consigli R. A. Early events in polyoma virus infection: attachment, penetration, and nuclear entry. J Virol. 1976 Aug;19(2):620–636. doi: 10.1128/jvi.19.2.620-636.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Martin M. A., Gelb L. D., Fareed G. C., Milstien J. B. Reassortment of simian virus 40 DNA during serial undiluted passage. J Virol. 1973 Oct;12(4):748–757. doi: 10.1128/jvi.12.4.748-757.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Martin M. A., Howley P. M., Byrne J. C., Garon C. F. Characterization of supercoiled oligomeric SV40 DNA molecules in productively infected cells. Virology. 1976 May;71(1):28–40. doi: 10.1016/0042-6822(76)90091-x. [DOI] [PubMed] [Google Scholar]
  27. Maxwell I. H. Intracellular distribution and sedimentation properties of virus-specific RNA in two clones of BHK cells transformed by polyoma virus. J Virol. 1976 May;18(2):461–472. doi: 10.1128/jvi.18.2.461-472.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Meijs W. H., Schilperoort R. A. Determination of the amount of DNA on nitrocellulose mebrane filters. FEBS Lett. 1971 Jan 12;12(3):166–168. doi: 10.1016/0014-5793(71)80059-5. [DOI] [PubMed] [Google Scholar]
  29. Pétursson G., Weil R. A study on the mechanism of polyoma-induced activation of the cellular DNA-synthesizing apparatus. Synchronization by FUdR of virus-induced DNA synthesis. Arch Gesamte Virusforsch. 1968;24(1):1–29. doi: 10.1007/BF01242898. [DOI] [PubMed] [Google Scholar]
  30. Ralph R. K., Colter J. S. Evidence for the integration of polyoma virus DNA in a lytic system. Virology. 1972 Apr;48(1):49–58. doi: 10.1016/0042-6822(72)90113-4. [DOI] [PubMed] [Google Scholar]
  31. Robberson D. L., Fried M. Sequence arrangements in clonal isolates of polyoma defective DNA. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3497–3501. doi: 10.1073/pnas.71.9.3497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Salomon C., Türler H., Weil R. Polyoma-induced stimulation of cellular RNA synthesis is paralleled by changed expression of the viral genome. Nucleic Acids Res. 1977;4(5):1483–1503. doi: 10.1093/nar/4.5.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sambrook J., Botchan M., Gallimore P., Ozanne B., Pettersson U., Williams J., Sharp P. A. Viral DNA sequences in cells transformed by simian virus 40, adenovirus type 2 and adenovirus type 5. Cold Spring Harb Symp Quant Biol. 1975;39(Pt 1):615–632. doi: 10.1101/sqb.1974.039.01.075. [DOI] [PubMed] [Google Scholar]
  34. Sambrook J., Westphal H., Srinivasan P. R., Dulbecco R. The integrated state of viral DNA in SV40-transformed cells. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1288–1295. doi: 10.1073/pnas.60.4.1288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Shani M., Rabinowitz Z., Sachs L. Virus deoxyribonucleic acid sequences in subdiploid and subtetraploid revertants of polyoma-transformed cells. J Virol. 1972 Sep;10(3):456–461. doi: 10.1128/jvi.10.3.456-461.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Türler H. Interactions of polyoma and mouse DNAs. I. Lytic infection of bromodeoxyuridine-prelabeled mouse embryo cells. J Virol. 1974 Feb;13(2):276–284. doi: 10.1128/jvi.13.2.276-284.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Türler H., Salomon C., Allet B., Weil R. Mapping of the three species of polyoma mRNA. Proc Natl Acad Sci U S A. 1976 May;73(5):1480–1484. doi: 10.1073/pnas.73.5.1480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. VOGT M., DULBECCO R. Steps in the neoplastic transformation of hamster embryo cells by polyoma virus. Proc Natl Acad Sci U S A. 1963 Feb 15;49:171–179. doi: 10.1073/pnas.49.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. WEIL R., VINOGRAD J. THE CYCLIC HELIX AND CYCLIC COIL FORMS OF POLYOMA VIRAL DNA. Proc Natl Acad Sci U S A. 1963 Oct;50:730–738. doi: 10.1073/pnas.50.4.730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. WINOCOUR E. Purification of polyoma virus. Virology. 1963 Feb;19:158–168. doi: 10.1016/0042-6822(63)90005-9. [DOI] [PubMed] [Google Scholar]
  41. Waldeck W., Kammer K., Sauer G. Preferential integration of simian virus 40 deoxyribonucleic acid into a particular size class of CV-1 cell deoxyribonucleic acid. Virology. 1973 Aug;54(2):452–464. doi: 10.1016/0042-6822(73)90156-6. [DOI] [PubMed] [Google Scholar]
  42. Weil R., Kára J. Polyoma "tumor antigen": an activator of chromosome replication? Proc Natl Acad Sci U S A. 1970 Oct;67(2):1011–1017. doi: 10.1073/pnas.67.2.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Weil R., Salomon E., May E., May P. A simplifying concept in tumor virology: virus-specific "pleiotropic effectors". Cold Spring Harb Symp Quant Biol. 1975;39(Pt 1):381–395. doi: 10.1101/sqb.1974.039.01.050. [DOI] [PubMed] [Google Scholar]
  44. Westphal H., Dulbecco R. Viral DNA in polyoma- and SV40-transformed cell lines. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1158–1165. doi: 10.1073/pnas.59.4.1158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Winocour E., Frenkel N., Lavi S., Osenholts M., Rozenblatt S. Host substitution in SV40 and polyoma DNA. Cold Spring Harb Symp Quant Biol. 1975;39(Pt 1):101–108. doi: 10.1101/sqb.1974.039.01.015. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES