Abstract
Calcium ions play a critical role in neural development. Insights into the ontogeny of Ca(2+)-signaling pathways were gained by investigating the developmental expression of granule cell-enriched Ca2+/calmodulin-dependent protein kinase (CaM kinase-Gr) in the cerebellum and hippocampus of the rat. Neurons of these brain regions displayed characteristic schedules by which they acquired and lost CaM kinase-Gr during differentiation. In the cerebellum, granule cells did not begin to express CaM kinase-Gr until after birth when they migrated into the granule cell layer, and this expression persisted in the adult. Purkinje cells expressed CaM kinase-Gr prenatally and lost this expression by postnatal day 14. In contrast, the granule and pyramidal cells of the hippocampus expressed the enzyme prenatally and in the adult. Moreover, CaM kinase-Gr was localized to the processes and nuclei of developing neurons. This subcellular localization together with the scheduled expression of CaM kinase-Gr can serve to regulate a developing neuron's sensitivity to Ca2+ at different subcellular levels.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bray D., Hollenbeck P. J. Growth cone motility and guidance. Annu Rev Cell Biol. 1988;4:43–61. doi: 10.1146/annurev.cb.04.110188.000355. [DOI] [PubMed] [Google Scholar]
- Burgin K. E., Waxham M. N., Rickling S., Westgate S. A., Mobley W. C., Kelly P. T. In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain. J Neurosci. 1990 Jun;10(6):1788–1798. doi: 10.1523/JNEUROSCI.10-06-01788.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Changeux J. P., Danchin A. Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature. 1976 Dec 23;264(5588):705–712. doi: 10.1038/264705a0. [DOI] [PubMed] [Google Scholar]
- Earnshaw W. C. Anionic regions in nuclear proteins. J Cell Biol. 1987 Oct;105(4):1479–1482. doi: 10.1083/jcb.105.4.1479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Easter S. S., Jr, Purves D., Rakic P., Spitzer N. C. The changing view of neural specificity. Science. 1985 Nov 1;230(4725):507–511. doi: 10.1126/science.4048944. [DOI] [PubMed] [Google Scholar]
- Erondu N. E., Kennedy M. B. Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain. J Neurosci. 1985 Dec;5(12):3270–3277. doi: 10.1523/JNEUROSCI.05-12-03270.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greengard P. Neuronal phosphoproteins. Mediators of signal transduction. Mol Neurobiol. 1987 Spring-Summer;1(1-2):81–119. doi: 10.1007/BF02935265. [DOI] [PubMed] [Google Scholar]
- Jensen K. F., Ohmstede C. A., Fisher R. S., Sahyoun N. Nuclear and axonal localization of Ca2+/calmodulin-dependent protein kinase type Gr in rat cerebellar cortex. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2850–2853. doi: 10.1073/pnas.88.7.2850. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly P. T., Vernon P. Changes in the subcellular distribution of calmodulin-kinase II during brain development. Brain Res. 1985 Feb;350(1-2):211–224. doi: 10.1016/0165-3806(85)90265-2. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Leary J. J., Brigati D. J., Ward D. C. Rapid and sensitive colorimetric method for visualizing biotin-labeled DNA probes hybridized to DNA or RNA immobilized on nitrocellulose: Bio-blots. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4045–4049. doi: 10.1073/pnas.80.13.4045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattson M. P., Kater S. B. Calcium regulation of neurite elongation and growth cone motility. J Neurosci. 1987 Dec;7(12):4034–4043. doi: 10.1523/JNEUROSCI.07-12-04034.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohmstede C. A., Jensen K. F., Sahyoun N. E. Ca2+/calmodulin-dependent protein kinase enriched in cerebellar granule cells. Identification of a novel neuronal calmodulin-dependent protein kinase. J Biol Chem. 1989 Apr 5;264(10):5866–5875. [PubMed] [Google Scholar]
- Oppenheim R. W. The neurotrophic theory and naturally occurring motoneuron death. Trends Neurosci. 1989 Jul;12(7):252–255. doi: 10.1016/0166-2236(89)90021-0. [DOI] [PubMed] [Google Scholar]
- Sahyoun N., LeVine H., 3rd, Burgess S. K., Blanchard S., Chang K. J., Cuatrecasas P. Early postnatal development of calmodulin-dependent protein kinase II in rat brain. Biochem Biophys Res Commun. 1985 Nov 15;132(3):878–884. doi: 10.1016/0006-291x(85)91889-3. [DOI] [PubMed] [Google Scholar]
- Schulman H. The multifunctional Ca2+/calmodulin-dependent protein kinase. Adv Second Messenger Phosphoprotein Res. 1988;22:39–112. [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinberger R. P., Rostas J. A. Subcellular distribution of a calmodulin-dependent protein kinase activity in rat cerebral cortex during development. Brain Res. 1986 Sep;394(1):37–50. doi: 10.1016/0165-3806(86)90080-5. [DOI] [PubMed] [Google Scholar]