Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 May 1;88(9):4050–4053. doi: 10.1073/pnas.88.9.4050

Acquisition and loss of a neuronal Ca2+/calmodulin-dependent protein kinase during neuronal differentiation.

K F Jensen 1, C A Ohmstede 1, R S Fisher 1, J K Olin 1, N Sahyoun 1
PMCID: PMC51591  PMID: 2023954

Abstract

Calcium ions play a critical role in neural development. Insights into the ontogeny of Ca(2+)-signaling pathways were gained by investigating the developmental expression of granule cell-enriched Ca2+/calmodulin-dependent protein kinase (CaM kinase-Gr) in the cerebellum and hippocampus of the rat. Neurons of these brain regions displayed characteristic schedules by which they acquired and lost CaM kinase-Gr during differentiation. In the cerebellum, granule cells did not begin to express CaM kinase-Gr until after birth when they migrated into the granule cell layer, and this expression persisted in the adult. Purkinje cells expressed CaM kinase-Gr prenatally and lost this expression by postnatal day 14. In contrast, the granule and pyramidal cells of the hippocampus expressed the enzyme prenatally and in the adult. Moreover, CaM kinase-Gr was localized to the processes and nuclei of developing neurons. This subcellular localization together with the scheduled expression of CaM kinase-Gr can serve to regulate a developing neuron's sensitivity to Ca2+ at different subcellular levels.

Full text

PDF
4050

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bray D., Hollenbeck P. J. Growth cone motility and guidance. Annu Rev Cell Biol. 1988;4:43–61. doi: 10.1146/annurev.cb.04.110188.000355. [DOI] [PubMed] [Google Scholar]
  2. Burgin K. E., Waxham M. N., Rickling S., Westgate S. A., Mobley W. C., Kelly P. T. In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain. J Neurosci. 1990 Jun;10(6):1788–1798. doi: 10.1523/JNEUROSCI.10-06-01788.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Changeux J. P., Danchin A. Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature. 1976 Dec 23;264(5588):705–712. doi: 10.1038/264705a0. [DOI] [PubMed] [Google Scholar]
  4. Earnshaw W. C. Anionic regions in nuclear proteins. J Cell Biol. 1987 Oct;105(4):1479–1482. doi: 10.1083/jcb.105.4.1479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Easter S. S., Jr, Purves D., Rakic P., Spitzer N. C. The changing view of neural specificity. Science. 1985 Nov 1;230(4725):507–511. doi: 10.1126/science.4048944. [DOI] [PubMed] [Google Scholar]
  6. Erondu N. E., Kennedy M. B. Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain. J Neurosci. 1985 Dec;5(12):3270–3277. doi: 10.1523/JNEUROSCI.05-12-03270.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Greengard P. Neuronal phosphoproteins. Mediators of signal transduction. Mol Neurobiol. 1987 Spring-Summer;1(1-2):81–119. doi: 10.1007/BF02935265. [DOI] [PubMed] [Google Scholar]
  8. Jensen K. F., Ohmstede C. A., Fisher R. S., Sahyoun N. Nuclear and axonal localization of Ca2+/calmodulin-dependent protein kinase type Gr in rat cerebellar cortex. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2850–2853. doi: 10.1073/pnas.88.7.2850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kelly P. T., Vernon P. Changes in the subcellular distribution of calmodulin-kinase II during brain development. Brain Res. 1985 Feb;350(1-2):211–224. doi: 10.1016/0165-3806(85)90265-2. [DOI] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Leary J. J., Brigati D. J., Ward D. C. Rapid and sensitive colorimetric method for visualizing biotin-labeled DNA probes hybridized to DNA or RNA immobilized on nitrocellulose: Bio-blots. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4045–4049. doi: 10.1073/pnas.80.13.4045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mattson M. P., Kater S. B. Calcium regulation of neurite elongation and growth cone motility. J Neurosci. 1987 Dec;7(12):4034–4043. doi: 10.1523/JNEUROSCI.07-12-04034.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ohmstede C. A., Jensen K. F., Sahyoun N. E. Ca2+/calmodulin-dependent protein kinase enriched in cerebellar granule cells. Identification of a novel neuronal calmodulin-dependent protein kinase. J Biol Chem. 1989 Apr 5;264(10):5866–5875. [PubMed] [Google Scholar]
  14. Oppenheim R. W. The neurotrophic theory and naturally occurring motoneuron death. Trends Neurosci. 1989 Jul;12(7):252–255. doi: 10.1016/0166-2236(89)90021-0. [DOI] [PubMed] [Google Scholar]
  15. Sahyoun N., LeVine H., 3rd, Burgess S. K., Blanchard S., Chang K. J., Cuatrecasas P. Early postnatal development of calmodulin-dependent protein kinase II in rat brain. Biochem Biophys Res Commun. 1985 Nov 15;132(3):878–884. doi: 10.1016/0006-291x(85)91889-3. [DOI] [PubMed] [Google Scholar]
  16. Schulman H. The multifunctional Ca2+/calmodulin-dependent protein kinase. Adv Second Messenger Phosphoprotein Res. 1988;22:39–112. [PubMed] [Google Scholar]
  17. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Weinberger R. P., Rostas J. A. Subcellular distribution of a calmodulin-dependent protein kinase activity in rat cerebral cortex during development. Brain Res. 1986 Sep;394(1):37–50. doi: 10.1016/0165-3806(86)90080-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES