Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2016 Dec 15;4(6):e01205-16. doi: 10.1128/genomeA.01205-16

Draft Genome Sequences of 40 Pseudomonas aeruginosa Clinical Strains Isolated from the Sputum of a Single Cystic Fibrosis Patient Over an 8-Year Period

Irene Bianconi a, Silvia D’Arcangelo a, Mattia Benedet a, Kate E Bailey a, Alfonso Esposito a, Elena Piffer a, Alex Mariotto a, Ermanno Baldo b, Grazia Dinnella b, Paola Gualdi c, Michele Schinella c, Claudio Donati d, Olivier Jousson a,
PMCID: PMC5159563  PMID: 27979930

Abstract

We report draft genome sequences of 40 Pseudomonas aeruginosa strains, isolated from the sputum of a single cystic fibrosis patient over eight years. Analyses indicated a correlation between multidrug-resistant phenotypes and population structure. Our data provide new insights into the mechanisms leading to acquisition of antibiotic resistance in P. aeruginosa.

GENOME ANNOUNCEMENT

Pseudomonas aeruginosa is the most pervasive of all recognized pathogens in the nosocomial environment, causing pulmonary and bloodstream infection with mortality rates of up to 50% (1). Multi-drug-resistant (MDR) P. aeruginosa strains are emerging with increasing frequency and infection rates have tripled over the past two decades (2, 3). Some P. aeruginosa strains have been found to be resistant to nearly all or all antibiotics in clinical use (4).

Cystic fibrosis (CF) patients infected with resistant P. aeruginosa are exposed to increased mortality and morbidity (5, 6) and estimates indicate that 25 to 45% of adult CF patients are chronically infected with MDR P. aeruginosa within their airway (7). The bacterium develops MDR phenotypes during its persistence in a CF patient’s airway by accumulating pathoadaptive mutations (8). Whole-genome sequencing (WGS) can help to point out potential molecular mechanisms of resistance and has already proved to be able to predict antimicrobial susceptibility in several pathogens (9, 10). However, despite the fact that several WGS studies on P. aeruginosa CF lineages have been published (1114), their evolutionary trajectories in relation to the development of antimicrobial resistance remain mostly unexplored to date.

To track the pathoadaptive changes leading to the development of MDR in P. aeruginosa during its microevolution in a CF patient’s airway, we obtained whole-genome sequences of 40 P. aeruginosa clinical CF strains isolated at Trentino Regional Support CF Centre (Rovereto, Italy) from the sputum of a single CF patient over an eight-year period (2007 to 2014). Interestingly, despite a high degree of genome sequence conservation, isolates evolved toward the acquisition of an MDR phenotype over time.

Bacteria were grown in Luria-Bertani broth overnight at 37°C in a shaking incubator. Cells were harvested and genomic DNA was extracted using the DNeasy blood and tissue kit (Qiagen, Germany) following the manufacturer’s instructions for Gram-negative bacteria. Genomic DNA libraries were prepared using the Nextera XT DNA library preparation kit and protocols (Illumina, USA) and sequenced on the Illumina MiSeq platform at the Next Generation Sequencing (NGS) Core Facility of the Centre for Integrative Biology, University of Trento. Assembly of draft genomes was carried out using SPAdes version 3.1.0 (15). To improve the assemblies’ qualities, raw reads were mapped on the contigs using Bowtie2 v2.2.6 (16) and contigs with less than three reads mapping and/or with coverage below 1 were removed.

Identification of MLST profiles (sequence types) was performed in silico from de novo assembled genomes using MLST 1.8 (Table 1) (17).

TABLE 1 .

Draft genome sequences and global statistics of the 40 P. aeruginosa CF isolates

Accession no. Isolate name Yr of isolation Sequence type No. of contigs Genome size (kb) N50 (kb) G+C content (%)
MAUO00000000 TNCF_3 2007 390 139 6,636 92 66.28
MAUP00000000 TNCF_4M 2007 390 161 6,630 78 66.29
MAUQ00000000 TNCF_6 2007 390 356 6,618 31 66.28
MAUR00000000 TNCF_7M 2007 390 259 6,623 47 66.28
MAUS00000000 TNCF_10 2007 390 101 6,643 143 66.28
MAUT00000000 TNCF_10M 2007 390 107 6,633 111 66.29
MAZG00000000 TNCF_12 2007 390 102 6,545 177 66.36
MAZI00000000 TNCF_13 2007 390 75 6,637 195 66.27
MAZH00000000 TNCF_14 2007 390 89 6,633 158 66.28
MAKL00000000 TNCF_16 2007 1864 59 6,638 269 66.28
MAZJ00000000 TNCF_23 2007 390 71 6,635 228 66.28
MAZK00000000 TNCF_23M 2007 390 64 6,636 228 66.28
MAKM00000000 TNCF_32 2007 390 67 6,639 229 66.28
MAZL00000000 TNCF_32M 2007 390 138 6,627 93 66.28
MAZM00000000 TNCF_42 2008 390 70 6,639 228 66.28
MAZN00000000 TNCF_42M 2008 390 71 6,640 228 66.28
MAZO00000000 TNCF_49M 2008 390 76 6,635 177 66.29
MAZP00000000 TNCF_68 2010 390 82 6,633 162 66.28
MAZQ00000000 TNCF_69 2010 1863 88 6,639 150 66.28
MAZR00000000 TNCF_76 2010 390 61 6,634 281 66.28
MAZS00000000 TNCF_85 2010 1864 101 6,644 124 66.29
MAZT00000000 TNCF_88M 2010 1864 65 6,636 229 66.28
MAZU00000000 TNCF_101 2011 1864 142 6,653 92 66.28
MAZV00000000 TNCF_105 2011 390 92 6,644 191 66.28
MAZW00000000 TNCF_106 2011 390 77 6,634 205 66.28
MAZX00000000 TNCF_109 2011 390 69 6,634 205 66.28
MAZD00000000 TNCF_130 2012 390 157 6,625 76 66.28
MAZF00000000 TNCF_133 2012 390 82 6,637 154 66.29
MAZE00000000 TNCF_133_1 2012 1864 87 6,641 269 66.28
MAKK00000000 TNCF_151 2013 390 53 6,629 378 66.28
MBMI00000000 TNCF_151M 2013 1864 103 6,636 143 66.28
MBMJ00000000 TNCF_154 2013 390 86 6,635 177 66.28
MBMK00000000 TNCF_155 2013 390 62 6,634 339 66.28
MBML00000000 TNCF_155_1 2013 1923 71 6,635 221 66.28
MBMM00000000 TNCF_165 2013 1923 119 6,634 135 66.28
MBMN00000000 TNCF_167 2013 390 73 6,634 191 66.27
MBMO00000000 TNCF_167_1 2013 390 91 6,628 143 66.28
MBMP00000000 TNCF_174 2014 390 111 6,645 143 66.29
MBMQ00000000 TNCF_175 2014 390 118 6,642 124 66.28
MBMR00000000 TNCF_176 2014 1923 61 6,637 354 66.28

The average number of contigs per genome was 101 with a standard deviation of 56. Draft genomes ranged in size from 6,545 kbp to 6,653 kb with a G+C content of 66.28% (Table 1). The N50 of the draft genomes ranged from 30,645 to 378,317 bp with an average of 179.843 bp (Table 1).

Accession number(s).

This whole-genome shotgun project has been deposited at DDBJ/ENA/GenBank. See Table 1 for accession numbers of the single genomes. The version described in this paper is the first one.

ACKNOWLEDGMENTS

We thank Veronica De Sanctis and Roberto Bertorelli (NGS Facility at the Centre for Integrative Biology and LaBSSAH, University of Trento) for NGS sequencing and helpful discussions.

This work was supported by a donation from Associazione Trentina Fibrosi Cistica, Trento, Italy.

Footnotes

Citation Bianconi I, D’Arcangelo S, Benedet M, Bailey KE, Esposito A, Piffer E, Mariotto A, Baldo E, Dinnella G, Gualdi P, Schinella M, Donati C, Jousson O. 2016. Draft genome sequences of 40 Pseudomonas aeruginosa clinical strains isolated from the sputum of a single cystic fibrosis patient over an 8-year period. Genome Announc 4(6):e01205-16. doi:10.1128/genomeA.01205-16.

REFERENCES

  • 1.Osmon S, Ward S, Fraser VJ, Kollef MH. 2004. Hospital mortality for patients with bacteremia due to Staphylococcus aureus or Pseudomonas aeruginosa. Chest 125:607–616. doi: 10.1378/chest.125.2.607. [DOI] [PubMed] [Google Scholar]
  • 2.Obritsch MD, Fish DN, MacLaren R, Jung R. 2005. Nosocomial infections due to multidrug-resistant Pseudomonas aeruginosa: epidemiology and treatment options. Pharmacotherapy 25:1353–1364. doi: 10.1592/phco.2005.25.10.1353. [DOI] [PubMed] [Google Scholar]
  • 3.Lautenbach E, Weiner MG, Nachamkin I, Bilker WB, Sheridan A, Fishman NO. 2006. Imipenem resistance among Pseudomonas aeruginosa isolates: risk factors for infection and impact of resistance on clinical and economic outcomes. Infect Control Hosp Epidemiol 27:893–900. doi: 10.1086/507274. [DOI] [PubMed] [Google Scholar]
  • 4.Centers for Disease Control and Prevention 2013. Antibiotic resistance threats in the United States, 2013. CDC, Atlanta, GA. [Google Scholar]
  • 5.Lyczak JB, Cannon CL, Pier GB. 2000. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2:1051–1060. doi: 10.1016/S1286-4579(00)01259-4. [DOI] [PubMed] [Google Scholar]
  • 6.Chmiel JF, Davis PB. 2003. State of the art: why do the lungs of patients with cystic fibrosis become infected and why can’t they clear the infection? Respir Res 4:8. doi: 10.1186/1465-9921-4-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Lechtzin N, John M, Irizarry R, Merlo C, Diette GB, Boyle MP. 2006. Outcomes of adults with cystic fibrosis infected with antibiotic-resistant Pseudomonas aeruginosa. Respiration 73:27–33. doi: 10.1159/000087686. [DOI] [PubMed] [Google Scholar]
  • 8.Breidenstein EBM, de la Fuente-Núñez C, Hancock RE. 2011. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19:419–426. doi: 10.1016/j.tim.2011.04.005. [DOI] [PubMed] [Google Scholar]
  • 9.Stoesser N, Batty EM, Eyre DW, Morgan M, Wyllie DH, Del Ojo Elias C, Johnson JR, Walker AS, Peto TEA, Crook DW. 2013. Predicting antimicrobial susceptibilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data. J Antimicrob Chemother 68:2234–2244. doi: 10.1093/jac/dkt180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Zankari E, Hasman H, Kaas RS, Seyfarth AM, Agersø Y, Lund O, Larsen MV, Aarestrup FM. 2013. Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. J Antimicrob Chemother 68:771–777. doi: 10.1093/jac/dks496. [DOI] [PubMed] [Google Scholar]
  • 11.Darch SE, McNally A, Harrison F, Corander J, Barr HL, Paszkiewicz K, Holden S, Fogarty A, Crusz SA, Diggle SP. 2015. Recombination is a key driver of genomic and phenotypic diversity in a Pseudomonas aeruginosa population during cystic fibrosis infection. Sci Rep 5:7649. doi: 10.1038/srep07649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Marvig RL, Sommer LM, Molin S, Johansen HK. 2015. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat Genet 47:57–64. doi: 10.1038/ng.3148. [DOI] [PubMed] [Google Scholar]
  • 13.Williams D, Evans B, Haldenby S, Walshaw MJ, Brockhurst MA, Winstanley C, Paterson S. 2015. Divergent, coexisting Pseudomonas aeruginosa lineages in chronic cystic fibrosis lung infections. Am J Respir Crit Care Med 191:775–785. doi: 10.1164/rccm.201409-1646OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Caballero JD, Clark ST, Coburn B, Zhang Y, Wang PW, Donaldson SL, Elizabeth Tullis D, Yau YCW, Waters VJ, Hwang DM, Guttman DS. 2015. Selective sweeps and parallel pathoadaptation drive pseudomonas aeruginosa evolution in the cystic fibrosis lung. mBio 6:e00981-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi: 10.1089/cmb.2012.0021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi: 10.1038/nmeth.1923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Sicheritz-Pontén T, Ussery DW, Aarestrup FM, Lund O. 2012. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 50:135–1361. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES