Abstract
Some smut fungi of the family Ustilaginaceae produce itaconate from glucose. De novo genome sequencing of nine itaconate-producing Ustilaginaceae revealed genome sizes between 19 and 25 Mbp. Comparison to the itaconate cluster of U. maydis MB215 revealed all essential genes for itaconate production contributing to metabolic engineering for improving itaconate production.
GENOME ANNOUNCEMENT
The members of the family of Ustilaginaceae, belonging to the phylum Basidiomycota, are known to naturally produce many different industrially interesting compounds, such as organic acids, lipids, and polyols (1–6). Previous bioprospecting utilizing glucose or glycerol identified several itaconate-producing Ustilaginaceae (1, 7). The investigated species and strains varied in their product spectra and the amounts of product. Among the species Ustilago maydis, individual strains differed highly in their ability to produce organic acids, although the product spectra did not differ. Some of the species investigated, for example Ustilago vetiveriae CBS 131474, produced itaconate only with glycerol as carbon source (1, 7). Also, the pH dependency of itaconate production varied a lot. While in U. maydis itaconate production is only possible in the pH-range of 5 to 7, Ustilago cynodontis strains can tolerate pH values as low as 3 (1). To gain a deeper understanding of the sequence-function relationship between itaconate genes (8) and itaconate production, the genomes of 12 Ustilaginaceae with different itaconate production levels were sequenced. The itaconate clusters of Sporisorium iseilematis-ciliati BRIP 60887 a, Pseudozyma tsukubaensis NBRC 1940, Pseudozyma hubeiensis NBRC 105055, Ustilago vetiveriae CBS 131474, and Ustilago maydis strains AB33P5ΔR, ATCC 22892, ATCC 22899, ATCC 22901, and ATCC 22904, were compared, as well as Ustilago xerochloae CBS 131476 and Ustilago cynodontis NBRC 9727 and CBS 131467 (data not shown).
Here, we present the draft genome sequences of these Ustilaginaceae. Genomic DNA (gDNA) was isolated by standard phenol-chloroform extraction (9). Eurofins Genomics (Ebersberg, Germany) did the library creation using an NEBNext Ultra DNA Library prep kit for Illumina (Art no. E7370) and sequencing by using an llumina HiSeq2500 machine with TruSeq SBS kit v3, both according to manufacturer’s instructions. Sequencing mode was 1 × 100 and the software used was HiSeq Control Software 2.0.12.0 RTA 1.17.21.3 bcl2fastq-1.8.4. Quality check of the sequence data was performed with FastQC (Version 0.11.2). The SPAdes-3.7.0-Linux pipeline was used for de novo genome assembly of single-read libraries and read error or mismatch correction, including BayesHammer, IOnHammer, SPAdes, MismatchCorrector, dipSPAdes, and truSPAdes. The k-mer size was determined to 55 using VelvetOptimiser Version 2.2.5. Parameters of the resulting sequences are summarized in Table 1.
TABLE 1 .
Strain | Reference or source | NCBI GenBank accession no.a | Sequence size (bp) | No. of large contigs (>300 bp in size) | G+C content (%) | Avg contig sequence size N50 (bp) | Max contig sequence size (bp) |
---|---|---|---|---|---|---|---|
Ustilago maydis AB33P5ΔR | 11 | LZQU00000000 | 19,929,430 | 1,978 | 50 | 111,545 | 354,120 |
Sporisorium iseilematis-ciliati BRIP 60887 a | Culture collection of the Queenslad Plant Pathology Herbarium (BRIP), Australia | MJEU00000000 | 23,207,148 | 15,412 | 54 | 128,139 | 422,913 |
Pseudozyma tsukubaensis NBRC 1940 | 12 | MAIP00000000 | 23,769,677 | 12,840 | 52 | 161,943 | 632,715 |
Pseudozyma hubeiensis NBRC 105055 | 13 | MAIO00000000 | 21,322,328 | 9,793 | 54 | 260,601 | 1,046,041 |
Ustilago vetiveriae CBS 131474 | 13 | MAIM00000000 | 19,606,533 | 5,932 | 52 | 160,125 | 620,444 |
Ustilago maydis ATCC 22892 | 1 | LYOO00000000 | 20,622,051 | 4,767 | 50 | 104,350 | 527,495 |
Ustilago maydis ATCC 22899 | 1 | LYZD00000000 | 20,208,930 | 2,938 | 51 | 109,028 | 306,704 |
Ustilago maydis ATCC 22901 | 1 | LZNJ00000000 | 20,063,391 | 2,505 | 51 | 102,739 | 354,117 |
Ustilago maydis ATCC 22904 | 1 | LZQT00000000 | 20,132,962 | 2,695 | 49 | 120,656 | 551,297 |
Versions described are the first versions.
By comparison to the itaconate gene cluster of U. maydis MB215 (8) (GenBank Accession Number KT852988), the complete itaconate cluster was identified in all sequenced organisms except Pseudozyma tsukubaensis NBRC 1940, which did not contain rdo1 and cyp3, which encode a putative dioxygenase and a monooxygenase involved in OH-paraconate production, respectively (10). The synteny of the itaconate cluster is preserved in the investigated Ustilaginaceae. The sequences will foster research on the biology of Ustilaginaceae and increase the list of tools for metabolic engineering of itaconate production by Ustilaginaceae.
Accession number(s).
The whole-genome sequences have been deposited in DDBJ/ENA/GenBank. Their accession numbers and version numbers described in this paper are listed in Table 1.
ACKNOWLEDGMENTS
The scientific activities of the Bioeconomy Science Center were supported financially by the Ministry of Innovation, Science and Research within the framework of the NRW Strategieprojekt BioSC (No. 578 313/323-400-002 13).
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Footnotes
Citation Geiser E, Ludwig F, Zambanini T, Wierckx N, Blank LM. 2016. Draft genome sequences of itaconate-producing Ustilaginaceae. Genome Announc 4(6):e01291-16. doi:10.1128/genomeA.01291-16.
REFERENCES
- 1.Geiser E, Wiebach V, Wierckx N, Blank LM. 2014. Prospecting the biodiversity of the fungal family Ustilaginaceae for the production of value-added chemicals. BMC Fung Biol Biotech 1:2. doi: 10.1186/s40694-014-0002-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Maassen N, Panakova M, Wierckx N, Geiser E, Zimmermann M, Bölker M, Klinner U, Blank LM. 2013. Influence of carbon and nitrogen concentration on itaconic acid production by the smut fungus Ustilago maydis. Eng Life Sci 14:129–134. doi: 10.1002/elsc.201300043. [DOI] [Google Scholar]
- 3.Klement T, Milker S, Jäger G, Grande PM, Domínguez de María PD, Büchs J. 2012. Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microb Cell Fact 11:43. doi: 10.1186/1475-2859-11-43. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Klement T, Büchs J. 2013. Itaconic acid—a biotechnological process in change. Bioresour Technol 135:422–431. doi: 10.1016/j.biortech.2012.11.141. [DOI] [PubMed] [Google Scholar]
- 5.Feldbrügge M, Kellner R, Schipper K. 2013. The biotechnological use and potential of plant-pathogenic smut fungi. Appl Microbiol Biotechnol 97:3253–3265. doi: 10.1007/s00253-013-4777-1. [DOI] [PubMed] [Google Scholar]
- 6.Bölker M, Basse CW, Schirawski J. 2008. Ustilago maydis secondary metabolism—From genomics to biochemistry. Fungal Genet Biol 45:S88–S93. doi: 10.1016/j.fgb.2008.05.007. [DOI] [PubMed] [Google Scholar]
- 7.Zambanini T, Tehrani H, Geiser E, Merker D, Schleese S, Krabbe J, Büscher J, Meurer G, Wierckx N, Blank LM. 2016. Efficient itaconic acid production from glycerol with Ustilago vetiveriae TZ1. Biotechnol Biofuels 9:67. doi: 10.1186/s13068-016-0483-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Geiser E, Przybilla SK, Friedrich A, Buckel W, Wierckx N, Blank LM, Bölker M. 2016. Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate. Microb Biotechnol 9:116–126. doi: 10.1111/1751-7915.12329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Chomczynski P, Sacchi N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- 10.Geiser E, Przybilla SK, Engel M, Kleineberg W, Büttner L, Sarikaya E, Hartog TD, Klankermayer J, Leitner W, Bölker M, Blank LM, Wierckx N. 2016. Genetic and biochemical insights into the itaconate pathway of Ustilago maydis enable enhanced production. Metab Eng doi: 10.1016/j.ymben.2016.10.006. [DOI] [PubMed] [Google Scholar]
- 11.Sarkari P, Reindl M, Stock J, Müller O, Kahmann R, Feldbrügge M, Schipper K. 2014. Improved expression of single-chain antibodies in Ustilago maydis. J Biotechnol 191:165–175. doi: 10.1016/j.jbiotec.2014.06.028. [DOI] [PubMed] [Google Scholar]
- 12.Morita T, Takashima M, Fukuoka T, Konishi M, Imura T, Kitamoto D. 2010. Isolation of basidiomycetous yeast Pseudozyma tsukubaensis and production of glycolipid biosurfactant, a diastereomer type of mannosylerythritol lipid-B. Appl Microbiol Biotechnol 88:679–688. doi: 10.1007/s00253-010-2762-5. [DOI] [PubMed] [Google Scholar]
- 13.Blank LM, Wierckx N, Zambanini T, Sarikaya E, Büscher J, Meurer G. 2016. Process for the production of malate patent WO/2016/103140. [Google Scholar]