Abstract
Perforin lyses cells by binding to the target cell membrane, where it polymerizes into large nonspecific pores. It is shown here that the first 34 amino acids of the N-terminal region of either human or murine perforin are soluble in aqueous medium and spontaneously insert into membranes. The N-terminal peptides lyse liposomes and nucleated cells, and they form ion channels in planar bilayers, some of which are comparable to those previously described for perforin. The lytic activity of the N-terminal domains does not require calcium, is independent of the lipid headgroup composition, and can be inhibited by heparin. Tumor cells incubated with the N-terminal peptides undergo the same morphological changes as those induced by native perforin. None of the peptides corresponding to the putative membrane-spanning domains from the central region of perforin is cytolytic. Taken together, these results suggest that the N-terminal region is an important part of the pore-forming domain of perforin.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blumenthal R., Millard P. J., Henkart M. P., Reynolds C. W., Henkart P. A. Liposomes as targets for granule cytolysin from cytotoxic large granular lymphocyte tumors. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5551–5555. doi: 10.1073/pnas.81.17.5551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henkart P. A. Mechanism of lymphocyte-mediated cytotoxicity. Annu Rev Immunol. 1985;3:31–58. doi: 10.1146/annurev.iy.03.040185.000335. [DOI] [PubMed] [Google Scholar]
- Jiang S. B., Ojcius D. M., Persechini P. M., Young J. D. Resistance of cytolytic lymphocytes to perforin-mediated killing. Inhibition of perforin binding activity by surface membrane proteins. J Immunol. 1990 Feb 1;144(3):998–1003. [PubMed] [Google Scholar]
- Kleffel B., Garavito R. M., Baumeister W., Rosenbusch J. P. Secondary structure of a channel-forming protein: porin from E. coli outer membranes. EMBO J. 1985 Jun;4(6):1589–1592. doi: 10.1002/j.1460-2075.1985.tb03821.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kwon B. S., Wakulchik M., Liu C. C., Persechini P. M., Trapani J. A., Haq A. K., Kim Y., Young J. D. The structure of the mouse lymphocyte pore-forming protein perforin. Biochem Biophys Res Commun. 1989 Jan 16;158(1):1–10. doi: 10.1016/s0006-291x(89)80168-8. [DOI] [PubMed] [Google Scholar]
- Lichtenheld M. G., Olsen K. J., Lu P., Lowrey D. M., Hameed A., Hengartner H., Podack E. R. Structure and function of human perforin. Nature. 1988 Sep 29;335(6189):448–451. doi: 10.1038/335448a0. [DOI] [PubMed] [Google Scholar]
- Lowrey D. M., Aebischer T., Olsen K., Lichtenheld M., Rupp F., Hengartner H., Podack E. R. Cloning, analysis, and expression of murine perforin 1 cDNA, a component of cytolytic T-cell granules with homology to complement component C9. Proc Natl Acad Sci U S A. 1989 Jan;86(1):247–251. doi: 10.1073/pnas.86.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mathew M. K., Balaram P. Alamethicin and related membrane channel forming polypeptides. Mol Cell Biochem. 1983;50(1):47–64. doi: 10.1007/BF00225279. [DOI] [PubMed] [Google Scholar]
- Ojcius D. M., Young J. D. Cell-mediated killing: effector mechanisms and mediators. Cancer Cells. 1990 May;2(5):138–145. [PubMed] [Google Scholar]
- Ojcius D. M., Young J. D. Characterization of the inhibitory effect of lysolipids on perforin-mediated hemolysis. Mol Immunol. 1990 Mar;27(3):257–261. doi: 10.1016/0161-5890(90)90138-p. [DOI] [PubMed] [Google Scholar]
- Osterman D. G., Kaiser E. T. Design and characterization of peptides with amphiphilic beta-strand structures. J Cell Biochem. 1985;29(2):57–72. doi: 10.1002/jcb.240290202. [DOI] [PubMed] [Google Scholar]
- Shinkai Y., Takio K., Okumura K. Homology of perforin to the ninth component of complement (C9). Nature. 1988 Aug 11;334(6182):525–527. doi: 10.1038/334525a0. [DOI] [PubMed] [Google Scholar]
- Stanley K., Luzio P. Perforin. A family of killer proteins. Nature. 1988 Aug 11;334(6182):475–476. doi: 10.1038/334475a0. [DOI] [PubMed] [Google Scholar]
- Szoka F., Jr, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng. 1980;9:467–508. doi: 10.1146/annurev.bb.09.060180.002343. [DOI] [PubMed] [Google Scholar]
- Taylor J. W., Kaiser E. T. Structure-function analysis of proteins through the design, synthesis, and study of peptide models. Methods Enzymol. 1987;154:473–498. doi: 10.1016/0076-6879(87)54091-5. [DOI] [PubMed] [Google Scholar]
- Terwilliger T. C., Weissman L., Eisenberg D. The structure of melittin in the form I crystals and its implication for melittin's lytic and surface activities. Biophys J. 1982 Jan;37(1):353–361. doi: 10.1016/S0006-3495(82)84683-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tschopp J., Jongeneel C. V. Cytotoxic T lymphocyte mediated cytolysis. Biochemistry. 1988 Apr 19;27(8):2641–2646. doi: 10.1021/bi00408a001. [DOI] [PubMed] [Google Scholar]
- Tschopp J., Masson D., Schäfer S. Inhibition of the lytic activity of perforin by lipoproteins. J Immunol. 1986 Sep 15;137(6):1950–1953. [PubMed] [Google Scholar]
- Tschopp J., Schäfer S., Masson D., Peitsch M. C., Heusser C. Phosphorylcholine acts as a Ca2+-dependent receptor molecule for lymphocyte perforin. Nature. 1989 Jan 19;337(6204):272–274. doi: 10.1038/337272a0. [DOI] [PubMed] [Google Scholar]
- Wyllie A. H., Kerr J. F., Currie A. R. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306. doi: 10.1016/s0074-7696(08)62312-8. [DOI] [PubMed] [Google Scholar]
- Young J. D., Cohn Z. A., Podack E. R. The ninth component of complement and the pore-forming protein (perforin 1) from cytotoxic T cells: structural, immunological, and functional similarities. Science. 1986 Jul 11;233(4760):184–190. doi: 10.1126/science.2425429. [DOI] [PubMed] [Google Scholar]
- Young J. D., Damiano A., DiNome M. A., Leong L. G., Cohn Z. A. Dissociation of membrane binding and lytic activities of the lymphocyte pore-forming protein (perforin). J Exp Med. 1987 May 1;165(5):1371–1382. doi: 10.1084/jem.165.5.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young J. D., Hengartner H., Podack E. R., Cohn Z. A. Purification and characterization of a cytolytic pore-forming protein from granules of cloned lymphocytes with natural killer activity. Cell. 1986 Mar 28;44(6):849–859. doi: 10.1016/0092-8674(86)90007-3. [DOI] [PubMed] [Google Scholar]
- Young J. D. Killing of target cells by lymphocytes: a mechanistic view. Physiol Rev. 1989 Jan;69(1):250–314. doi: 10.1152/physrev.1989.69.1.250. [DOI] [PubMed] [Google Scholar]
- Young J. D., Liu C. C. How do cytotoxic T lymphocytes avoid self-lysis? Immunol Today. 1988 Jan;9(1):14–15. doi: 10.1016/0167-5699(88)91349-7. [DOI] [PubMed] [Google Scholar]
- Young L. H., Joag S. V., Zheng L. M., Lee C. P., Lee Y. S., Young J. D. Perforin-mediated myocardial damage in acute myocarditis. Lancet. 1990 Oct 27;336(8722):1019–1021. doi: 10.1016/0140-6736(90)92486-2. [DOI] [PubMed] [Google Scholar]
- Zheng L. M., Zychlinsky A., Liu C. C., Ojcius D. M., Young J. D. Extracellular ATP as a trigger for apoptosis or programmed cell death. J Cell Biol. 1991 Jan;112(2):279–288. doi: 10.1083/jcb.112.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]