Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Jun 1;88(11):4741–4745. doi: 10.1073/pnas.88.11.4741

Different G proteins mediate the opioid inhibition or enhancement of evoked [5-methionine]enkephalin release.

A R Gintzler 1, H Xu 1
PMCID: PMC51742  PMID: 1828885

Abstract

This laboratory has previously demonstrated that there is an opiate receptor-mediated, concentration-dependent modulation of the electrically stimulated release of enkephalin from the guinea pig myenteric plexus. Low doses of opioids (nanomolar) enhance release, whereas higher concentrations (10-100 nM) inhibit release. We now demonstrate that the in vivo i.p. administration of the islet-activating protein from pertussis toxin (PTX; 50 micrograms/500 g of body weight) markedly diminishes the potency of mu, delta, or kappa-selective opioids to inhibit the evoked release of enkephalin. In contrast, PTX is without effect on the enhancement of enkephalin release observed after treatment with nanomolar concentrations of the above opioids. Conversely, pretreatment with cholera toxin (CTX; 0.01 nM for 3 hr in vitro) has no effect on the mu, delta, or kappa opioid inhibition of evoked enkephalin release but abolishes the ability of nanomolar concentrations of these agonists to enhance stimulated enkephalin release. These data indicate that different classes of guanine nucleotide-binding proteins (G proteins) appear to mediate the opioid enhancement or inhibition of stimulated enkephalin release. Furthermore, they suggest that a PTX-sensitive G protein (Gi or Go) and a CTX-sensitive G protein (Gs) are integral components of the mechanism that mediates opioid inhibition and opioid enhancement, respectively, of evoked enkephalin release. To our knowledge, this report represents the first demonstration that Gs-coupled opiate receptors (in addition to those that are coupled to Gi) can modulate transmitter release.

Full text

PDF
4741

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMBACHE N. Separation of the longitudinal muscle of the rabbit's ileum as a broad sheet. J Physiol. 1954 Aug 27;125(2):53–5P. [PubMed] [Google Scholar]
  2. Ashkenazi A., Winslow J. W., Peralta E. G., Peterson G. L., Schimerlik M. I., Capon D. J., Ramachandran J. An M2 muscarinic receptor subtype coupled to both adenylyl cyclase and phosphoinositide turnover. Science. 1987 Oct 30;238(4827):672–675. doi: 10.1126/science.2823384. [DOI] [PubMed] [Google Scholar]
  3. Brum G., Flockerzi V., Hofmann F., Osterrieder W., Trautwein W. Injection of catalytic subunit of cAMP-dependent protein kinase into isolated cardiac myocytes. Pflugers Arch. 1983 Jul;398(2):147–154. doi: 10.1007/BF00581064. [DOI] [PubMed] [Google Scholar]
  4. Cassel D., Selinger Z. Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3307–3311. doi: 10.1073/pnas.74.8.3307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crain S. M., Crain B., Makman M. H. Pertussis toxin blocks depressant effects of opioid, monoaminergic and muscarinic agonists on dorsal-horn network responses in spinal cord-ganglion cultures. Brain Res. 1987 Jan 1;400(1):185–190. doi: 10.1016/0006-8993(87)90670-6. [DOI] [PubMed] [Google Scholar]
  6. Daly J. W. Forskolin, adenylate cyclase, and cell physiology: an overview. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1984;17:81–89. [PubMed] [Google Scholar]
  7. Gill D. M., Meren R. ADP-ribosylation of membrane proteins catalyzed by cholera toxin: basis of the activation of adenylate cyclase. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3050–3054. doi: 10.1073/pnas.75.7.3050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gilman A. G. G proteins and dual control of adenylate cyclase. Cell. 1984 Mar;36(3):577–579. doi: 10.1016/0092-8674(84)90336-2. [DOI] [PubMed] [Google Scholar]
  9. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  10. Glass J., Chan W. C., Gintzler A. R. Direct analysis of the release of methionine-enkephalin from guinea pig myenteric plexus: modulation by endogenous opioids and exogenous morphine. J Pharmacol Exp Ther. 1986 Dec;239(3):742–747. [PubMed] [Google Scholar]
  11. Higashi H., Shinnick-Gallagher P., Gallagher J. P. Morphine enhances and depresses Ca2+-dependent responses in visceral primary afferent neurons. Brain Res. 1982 Nov 11;251(1):186–191. doi: 10.1016/0006-8993(82)91291-4. [DOI] [PubMed] [Google Scholar]
  12. Hirai K., Katayama Y. Methionine enkephalin presynaptically facilitates and inhibits bullfrog sympathetic ganglionic transmission. Brain Res. 1988 May 17;448(2):299–307. doi: 10.1016/0006-8993(88)91267-x. [DOI] [PubMed] [Google Scholar]
  13. Holmgren J., Lonnroth I. Oligomeric structure of cholera toxin: characteristics of the H and L subunits. J Gen Microbiol. 1975 Jan;86(1):49–65. doi: 10.1099/00221287-86-1-49. [DOI] [PubMed] [Google Scholar]
  14. Holz G. G., 4th, Rane S. G., Dunlap K. GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature. 1986 Feb 20;319(6055):670–672. doi: 10.1038/319670a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kameyama M., Hescheler J., Hofmann F., Trautwein W. Modulation of Ca current during the phosphorylation cycle in the guinea pig heart. Pflugers Arch. 1986 Aug;407(2):123–128. doi: 10.1007/BF00580662. [DOI] [PubMed] [Google Scholar]
  16. Katada T., Ui M. ADP ribosylation of the specific membrane protein of C6 cells by islet-activating protein associated with modification of adenylate cyclase activity. J Biol Chem. 1982 Jun 25;257(12):7210–7216. [PubMed] [Google Scholar]
  17. Katada T., Ui M. Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc Natl Acad Sci U S A. 1982 May;79(10):3129–3133. doi: 10.1073/pnas.79.10.3129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Katada T., Ui M. Islet-activating protein. A modifier of receptor-mediated regulation of rat islet adenylate cyclase. J Biol Chem. 1981 Aug 25;256(16):8310–8317. [PubMed] [Google Scholar]
  19. Kirsch G. E., Yatani A., Codina J., Birnbaumer L., Brown A. M. Alpha-subunit of Gk activates atrial K+ channels of chick, rat, and guinea pig. Am J Physiol. 1988 Jun;254(6 Pt 2):H1200–H1205. doi: 10.1152/ajpheart.1988.254.6.H1200. [DOI] [PubMed] [Google Scholar]
  20. Levitan I. B. Modulation of ion channels in neurons and other cells. Annu Rev Neurosci. 1988;11:119–136. doi: 10.1146/annurev.ne.11.030188.001003. [DOI] [PubMed] [Google Scholar]
  21. Luján M., López E., Ramírez R., Aguilar H., Martínez-Olmedo M. A., García-Sainz J. A. Pertussis toxin blocks the action of morphine, norepinephrine and clonidine on isolated guinea-pig ileum. Eur J Pharmacol. 1984 May 4;100(3-4):377–380. doi: 10.1016/0014-2999(84)90017-7. [DOI] [PubMed] [Google Scholar]
  22. McKnight A. T., Corbett A. D., Kosterlitz H. W. Increase in potencies of opioid peptides after peptidase inhibition. Eur J Pharmacol. 1983 Jan 21;86(3-4):393–402. doi: 10.1016/0014-2999(83)90189-9. [DOI] [PubMed] [Google Scholar]
  23. Mosberg H. I., Hurst R., Hruby V. J., Gee K., Yamamura H. I., Galligan J. J., Burks T. F. Bis-penicillamine enkephalins possess highly improved specificity toward delta opioid receptors. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5871–5874. doi: 10.1073/pnas.80.19.5871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Parolaro D., Patrini G., Giagnoni G., Massi P., Groppetti A., Parenti M. Pertussis toxin inhibits morphine analgesia and prevents opiate dependence. Pharmacol Biochem Behav. 1990 Jan;35(1):137–141. doi: 10.1016/0091-3057(90)90218-7. [DOI] [PubMed] [Google Scholar]
  25. Przewłocki R., Costa T., Lang J., Herz A. Pertussis toxin abolishes the antinociception mediated by opioid receptors in rat spinal cord. Eur J Pharmacol. 1987 Nov 24;144(1):91–95. doi: 10.1016/0014-2999(87)90013-6. [DOI] [PubMed] [Google Scholar]
  26. Ribi H. O., Ludwig D. S., Mercer K. L., Schoolnik G. K., Kornberg R. D. Three-dimensional structure of cholera toxin penetrating a lipid membrane. Science. 1988 Mar 11;239(4845):1272–1276. doi: 10.1126/science.3344432. [DOI] [PubMed] [Google Scholar]
  27. Rodbell M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature. 1980 Mar 6;284(5751):17–22. doi: 10.1038/284017a0. [DOI] [PubMed] [Google Scholar]
  28. Sabol S. L., Nirenberg M. Regulation of adenylate cyclase of neuroblastoma x glioma hybrid cells by alpha-adrenergic receptors. I. Inhibition of adenylate cyclase mediated by alpha receptors. J Biol Chem. 1979 Mar 25;254(6):1913–1920. [PubMed] [Google Scholar]
  29. Schubert B., VanDongen A. M., Kirsch G. E., Brown A. M. Beta-adrenergic inhibition of cardiac sodium channels by dual G-protein pathways. Science. 1989 Aug 4;245(4917):516–519. doi: 10.1126/science.2547248. [DOI] [PubMed] [Google Scholar]
  30. Shen K. F., Crain S. M. Cholera toxin-A subunit blocks opioid excitatory effects on sensory neuron action potentials indicating mediation by Gs-linked opioid receptors. Brain Res. 1990 Aug 20;525(2):225–231. doi: 10.1016/0006-8993(90)90868-c. [DOI] [PubMed] [Google Scholar]
  31. Shen K. F., Crain S. M. Dual opioid modulation of the action potential duration of mouse dorsal root ganglion neurons in culture. Brain Res. 1989 Jul 10;491(2):227–242. doi: 10.1016/0006-8993(89)90059-0. [DOI] [PubMed] [Google Scholar]
  32. Spiegel A. M. Signal transduction by guanine nucleotide binding proteins. Mol Cell Endocrinol. 1987 Jan;49(1):1–16. doi: 10.1016/0303-7207(87)90058-x. [DOI] [PubMed] [Google Scholar]
  33. Stadel J. M., Lefkowitz R. J. Differential effects of cholera toxin on guanine nucleotide regulation of beta-adrenergic agonist high affinity binding and adenylate cyclase activation in frog erythrocyte membranes. J Cyclic Nucleotide Res. 1981;7(6):363–374. [PubMed] [Google Scholar]
  34. Sternweis P. C., Robishaw J. D. Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain. J Biol Chem. 1984 Nov 25;259(22):13806–13813. [PubMed] [Google Scholar]
  35. Tamura M., Nogimori K., Murai S., Yajima M., Ito K., Katada T., Ui M., Ishii S. Subunit structure of islet-activating protein, pertussis toxin, in conformity with the A-B model. Biochemistry. 1982 Oct 26;21(22):5516–5522. doi: 10.1021/bi00265a021. [DOI] [PubMed] [Google Scholar]
  36. Tucker J. F. Effect of pertussis toxin on normorphine-dependence and on acute inhibitory effects of normorphine and clonidine in guinea-pig isolated ileum. Br J Pharmacol. 1984 Oct;83(2):326–328. doi: 10.1111/j.1476-5381.1984.tb16491.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Van Heyningen S., King C. A. Short communications. Subunit A from cholera toxin is an activator of adenylate cyclase in pigeon erythrocytes. Biochem J. 1975 Jan;146(1):269–271. doi: 10.1042/bj1460269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Xu H., Smolens I., Gintzler A. R. Opioids can enhance and inhibit the electrically evoked release of methionine-enkephalin. Brain Res. 1989 Dec 11;504(1):36–42. doi: 10.1016/0006-8993(89)91594-1. [DOI] [PubMed] [Google Scholar]
  39. Yatani A., Brown A. M. Rapid beta-adrenergic modulation of cardiac calcium channel currents by a fast G protein pathway. Science. 1989 Jul 7;245(4913):71–74. doi: 10.1126/science.2544999. [DOI] [PubMed] [Google Scholar]
  40. Yatani A., Codina J., Imoto Y., Reeves J. P., Birnbaumer L., Brown A. M. A G protein directly regulates mammalian cardiac calcium channels. Science. 1987 Nov 27;238(4831):1288–1292. doi: 10.1126/science.2446390. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES